Chapter 3: The Efficiency of Algorithms

Introduction

- Desirable characteristics in an algorithm
 - Correctness
 - Ease of understanding
 - Elegance
 - Efficiency

Attributes of Algorithms

- Correctness
 - Does the algorithm solve the problem it is designed for?
 - Does the algorithm solve the problem correctly?
- Ease of understanding
 - How easy is it to understand or alter an algorithm?
 - Important for program maintenance

Attributes of Algorithms (continued)

- Elegance
 - How clever or sophisticated is an algorithm?
 - Sometimes elegance and ease of understanding work at cross-purposes
- Efficiency
 - How much time and/or space does an algorithm require when executed?
 - Perhaps the most important desirable attribute

Measuring Efficiency

- Analysis of algorithms
 - Study of the efficiency of various algorithms
- Efficiency measured as function relating size of input to time or space used
 - For one input size, best case, worst case, and average case behavior must be considered
- The Θ notation captures the order of magnitude of the efficiency function
Sequential Search

- Search for NAME among a list of n names

- Start at the beginning and compare NAME to each entry until a match is found

Sequential Search (continued)

- Comparison of the NAME being searched for against a name in the list
 - Central unit of work
 - Used for efficiency analysis

- For lists with n entries:
 - Best case
 - NAME is the first name in the list
 - 1 comparison
 -Θ(1)

Sequential Search (continued)

- For lists with n entries:
 - Worst case
 - NAME is the last name in the list
 - NAME is not in the list
 - n comparisons
 -Θ(n)
 - Average case
 - Roughly n/2 comparisons
 -Θ(n)

Sequential Search (continued)

- Space efficiency
 - Uses essentially no more memory storage than original input requires
 - Very space-efficient

Order of Magnitude: Order n

- As n grows large, order of magnitude dominates running time, minimizing effect of coefficients and lower-order terms
- All functions that have a linear shape are considered equivalent
- Order of magnitude n
 - Written Θ(n)
 - Functions vary as a constant times n
Selection Sort

- Sorting
 - Take a sequence of n values and rearrange them into order
- Selection sort algorithm
 - Repeatedly searches for the largest value in a section of the data
 - Moves that value into its correct position in a sorted section of the list
 - Uses the Find Largest algorithm

Selection Sort (continued)

- Count comparisons of largest so far against other values
- Find Largest, given m values, does m-1 comparisons
- Selection sort calls Find Largest n times,
 - Each time with a smaller list of values
 - Cost = n-1 + (n-2) + ... + 2 + 1 = n(n-1)/2

Order of Magnitude – Order n^2

- All functions with highest-order term cn^2 have similar shape
- An algorithm that does cn^2 work for any constant c is order of magnitude n^2, or $\Theta(n^2)$

Selection Sort (continued)

- Time efficiency
 - Comparisons: $n(n-1)/2$
 - Exchanges: n (swapping largest into place)
 - Overall: $\Theta(n^2)$, best and worst cases
- Space efficiency
 - Space for the input sequence, plus a constant number of local variables
Order of Magnitude – Order n^2 (continued)

- Anything that is $\Theta(n^2)$ will eventually have larger values than anything that is $\Theta(n)$, no matter what the constants are.

- An algorithm that runs in time $\Theta(n)$ will outperform one that runs in $\Theta(n^2)$.

Analysis of Algorithms

- Multiple algorithms for one task may be compared for efficiency and other desirable attributes.
- Data cleanup problem
- Search problem
- Pattern matching

Data Cleanup Algorithms

- Given a collection of numbers, find and remove all zeros.
- Possible algorithms
 - Shuffle-left
 - Copy-over
 - Converging-pointers

The Shuffle-Left Algorithm

- Scan list from left to right
 - When a zero is found, shift all values to its right one slot to the left.
The Shuffle-Left Algorithm

Space efficiency
- \(n \) slots for \(n \) values, plus a few local variables
- \(\theta(n) \)

Time efficiency
- Count examinations of list values and shifts
- Best case
 - No shifts, \(n \) examinations
 - \(\theta(n) \)
- Worst case
 - Shift at each pass, \(n \) passes
 - \(n^2 \) shifts plus \(n \) examinations
 - \(\Theta(n^2) \)

The Copy-Over Algorithm

Use a second list
- Copy over each nonzero element in turn

Time efficiency
- Count examinations and copies
- Best case
 - All zeros
 - \(n \) examinations and 0 copies
 - \(\theta(n) \)

Space efficiency
- \(2n \) slots for \(n \) values, plus a few extraneous variables

The Copy-Over Algorithm (continued)

Time efficiency (continued)
- Worst case
 - No zeros
 - \(n \) examinations and \(n \) copies
 - \(\Theta(n) \)

Space efficiency
- \(2n \) slots for \(n \) values, plus a few extraneous variables
The Copy-Over Algorithm (continued)

- Time/space tradeoff
 - Algorithms that solve the same problem offer a tradeoff:
 - One algorithm uses more time and less memory
 - Its alternative uses less time and more memory

The Converging-Pointers Algorithm

- Swap zero values from left with values from right until pointers converge in the middle
- Time efficiency
 - Count examinations and swaps
 - Best case
 - \(n \) examinations, no swaps
 - \(\Theta(n) \)

Swap zero values from left with values from right until pointers converge in the middle

Time efficiency (continued)

- Worst case
 - \(n \) examinations, \(n \) swaps
 - \(\Theta(n) \)
- Space efficiency
 - \(n \) slots for the values, plus a few extra variables

Figure 3.16
The Converging-Pointers Algorithm for Data Cleanup

Figure 3.17
Analysis of Three Data Cleanup Algorithms

The Converging-Pointers Algorithm (continued)

- Space efficiency
 - \(n \) slots for the values, plus a few extra variables

Time efficiency (continued)

- Worst case
 - \(n \) examinations, \(n \) swaps
 - \(\Theta(n) \)

Space efficiency

- \(n \) slots for the values, plus a few extra variables

Binary Search

- Given ordered data,
 - Search for NAME by comparing to middle element
 - If not a match, restrict search to either lower or upper half only
 - Each pass eliminates half the data
Binary Search (continued)

- **Efficiency**
 - Best case
 - 1 comparison
 - $\Theta(1)$
 - Worst case
 - $\lg n$ comparisons
 - $\lg n$: The number of times n may be divided by two before reaching 1
 - $\Theta(\lg n)$

Pattern Matching (continued)

- **Efficiency**
 - Best case
 - Pattern does not match at all
 - $n - m + 1$ comparisons
 - $\Theta(n)$
 - Worst case
 - Pattern almost matches at each point
 - $(m - 1)(n - m + 1)$ comparisons
 - $\Theta(m \times n)$
When Things Get Out of Hand (continued)

- **Exponential algorithm**
 - $O(2^n)$
 - More work than any polynomial in n

- **Approximation algorithms**
 - Run in polynomial time but do not give optimal solutions

Figure 3.25 Comparisons of $\lg n$, n, n^2, and 2^n

Summary of Level 1

- **Level 1 (Chapters 2 and 3) explored algorithms**
 - Chapter 2
 - Pseudocode
 - Sequential, conditional, and iterative operations
 - Algorithmic solutions to three practical problems
 - Chapter 3
 - Desirable properties for algorithms
 - Time and space efficiencies of a number of algorithms

Figure 3.27 A Comparison of Four Orders of Magnitude

<table>
<thead>
<tr>
<th>Order of Magnitude</th>
<th>Time Efficiency Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorting</td>
<td>Compartions</td>
</tr>
<tr>
<td></td>
<td>Selection sort</td>
</tr>
<tr>
<td></td>
<td>Shuffle-iff</td>
</tr>
<tr>
<td></td>
<td>Converging-pointers</td>
</tr>
<tr>
<td>Pattern matching</td>
<td>Character comparisons</td>
</tr>
<tr>
<td></td>
<td>Forward match</td>
</tr>
</tbody>
</table>

Table 3.22 Order-of-Magnitude Time Efficiency Summary

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Time of Work</th>
<th>Access Cost</th>
<th>Best Case</th>
<th>Worst Case</th>
<th>Amount Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Searching</td>
<td>Compartions</td>
<td>Sequential</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Sorting</td>
<td>Compartions</td>
<td>Selection</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td></td>
<td>and exchanges</td>
<td>sort</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Data cleanup</td>
<td>Examinations</td>
<td>Shuffle-iff</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td></td>
<td>copies</td>
<td>Converging</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>point</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Pattern</td>
<td></td>
<td>character</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td></td>
<td>matching</td>
<td>comparison</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>forward</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

When Things Get Out of Hand

- Polynomially bound algorithms
 - Work done is no worse than a constant multiple of n^2

- Intractable algorithms
 - Run in worse than polynomial time

Examples
- Hamiltonian circuit
- Bin-packing
Desirable attributes in algorithms:
- Correctness
- Ease of understanding
- Elegance
- Efficiency
Efficiency – an algorithm’s careful use of resources – is extremely important

To compare the efficiency of two algorithms that do the same task:
- Consider the number of steps each algorithm requires
Efficiency focuses on order of magnitude