Integrated Circuits (ICs)

- A modern digital system is built out of a collection of integrated circuits (ICs), each of which is made up of gates.

- ICs are typically classified based on the number of gates they contain.
 - SSI (small scale integration) < 10
 - 4 nand gates
 - 4 or gates
 - 4 and gates
 - MSI (medium...) 10-100
 - 4-bit adder
 - 8-input 1-bit multiplexer
 - LSI (large...) 100-10,000
 - Simple microprocessors
 - Interface devices
 - PLAs

- Classification, cont.
 - VLSI (very large...) > 10,000
 - Modern microprocessors
 - 8086 = 29,000
 - i386DX = 275,000
 - i486DX = 1,200,000
 - Pentium = 3,100,000
 - Pentium MMX = 4,500,000
 - Pentium Pro = 5,500,000
 - Pentium II = 7,500,000
 - PA8000 = 3,900,000
 - Application-specific integrated circuits (ASICs):
 - Dedicated controllers (portable telephone, CD player, auto dashboard)
 - Digital signal processors (image processing, multimedia)
 - Field-programmable logic devices (FPLDs)

PLAs

- A 2-level and-or structure is replicated many times in a programmable array called a PLA (programmable logic array).

Diagram from Computer Systems, Maccabe, Irwin 1993
- This PLA has 2 inputs, 2 outputs, and can represent up to 3 product terms.

PLAs (cont.)

This is an abstract diagram of a PLA with 6 inputs, 4 outputs, which can represent up to 12 product terms.

Diagram from Digital Design, Johnson & Karim, PWS-Kent 1987
- Try the Java KMap->PLA animation at http://tech-www.informatik.uni-hamburg.de/applets/kvd

Integrated Circuits (ICs) (cont.)

Classification, cont.

- VLSI (very large...) > 10,000
 - Modern microprocessors
 - 8086 = 29,000
 - i386DX = 275,000
 - i486DX = 1,200,000
 - Pentium = 3,100,000
 - Pentium MMX = 4,500,000
 - Pentium Pro = 5,500,000
 - Pentium II = 7,500,000
 - PA8000 = 3,900,000
 - (Data from "CPU & System Performance Info" at CPU Info Center — http://infopad.eecs.berkeley.edu/cic)
 - Application-specific integrated circuits (ASICs):
 - Dedicated controllers (portable telephone, CD player, auto dashboard)
 - Digital signal processors (image processing, multimedia)
 - Field-programmable logic devices (FPLDs)
Field-Programmable Logic Device

- The next step beyond a PLA is the field-programmable logic device (FPLD), also called:
 - Field-programmable gate array (FPGA)
 - Field-programmable logic array (FPLA)
 - Complex programmable logic device (CPLD)

- Essentially, a FPLD is an nxn array of PLA, with interconnection between them
 - Connections to 4 nearest neighbors
 - "Longer" connections across chip
 - May include D (or more complex) flip-flops, to easily build sequential circuits
 - May include RAM
 - Can be "field-programmed" repeatedly
 - Available in different sizes up to 100,000 gates or so per device

The VLSI Design Process

- Design tasks:
 - System synthesis — converts a task specification into processors, memories, ASICs, etc.
 - Behavioral (high-level) synthesis — converts an algorithmic description of behavior into registers, adders, ALUs, busses, multiplexors, etc.
 - Logic synthesis — converts a structural description into gates and flip-flops

- Computer-aided design (CAD) tools for logic synthesis:
 - Schematic capture — draw and interconnect structural elements
 - Synthesis — produce gates, minimizing area, propagation delay, or power
 - Simulation and verification — make sure the design does what you think it does

Homework #2 — Due 9/28/98 (Part 3/3)

5. Can the Boolean expression \((A' + B)(C + D')\) be implemented using a PLA? Explain your answer.

(This is the last question on Homework #2)