CM-2 Processors

- Each node contains 32 processors (implemented by 2 custom processor chips), 2 floating-point accelerator chips, and memory chips

- Processor chip (contains 16 processors)
 - Contains ALU, flag registers, etc.
 - Contains NEWS interface, router interface, and I/O interface
 - 16 processors are connected in a 4x4 mesh to their N, E, W, and S neighbors

- RAM memory
 - 64Kbits, bit addressable

- FP acceleration (2 chips)
 - First chip is interface, second is FP execution unit
 - 2 chips serve 32 processors

CM-2 Interconnect

- Broadcast and reduction network
 - Broadcast
 - Reduction (e.g., bitwise OR, numerically largest, or sum)
 - Scan — collect cumulative results over sequence of processors (e.g., parallel prefix)
 - Spread (scatter)
 - Sort elements

- NEWS grid can be used for nearest-neighbor communication
 - Communication in multiple dimensions: 256x256, 1024x64, 8x8192, 64x32x32, 16x16x16x16, 8x8x4x8x8x4
 - Regular pattern avoids overhead of explicitly specifying destination address

CM-2 Processor Chip

- Instruction
 - All processor chips receive the same instruction from the sequencer
 - Individual processors may be masked using a flag bit for processor activation
 - Produces outputs based on memory / flag lookup table (256 possible functions)
 - Arithmetic is bit-serial

- 16 flag registers
 - 8 bits for general purpose use
 - 8 bits predefined
 - NEWS flag — accessible by neighbors
 - 2 flags for message router data movement and handshaking
 - Memory parity flag
 - Flag for daisy-chaining processors
 - Zero flag (hardcoded)
 - 2 diagnostic flags
CM-2 Interconnect (cont.)

- The 16-processor chips are linked by a 12-dimensional hypercube
 - Send or get values from arbitrary locations in data-parallel fashion
- Hypercube uses router for point-to-point communication between processor chips
 - Messages move across each of 12 dimensions in sequence
 - If no conflicts, a message will reach its destination within 1 cycle of the sequence
 - All processors can send a message (of any length), all messages are sent and delivered at same time
 - Actual throughput depends on message length and access patterns

CM-2 Nexus

- The nexus is a 4x4 crosspoint switch that connects up to 4 front-end computers to up to 4 sequencers
 - CM can be configured as up to 4 sections, each used separately
 - Any front-end can be connected to any section or combination of sections
 - Example: 64K processors, four 16K sections (1 to one FE, 1 to another FE, 2 to third FE, fourth PE for other tasks)
- Each section connects to one of 8 I/O channels (graphics display frame buffer, or I/O controller)
 - Transfers initiated by front-end computers
 - Data goes into buffers, when buffers are full it goes to a data vault (each has 39 disk drives, total capacity 10GB)

Software

- System software is based on OS used in front-end computers
 - Use familiar OS, languages
 - Front end handles all flow of control, including storing and executing program, and interaction with user and programmer
 - Languages: Paris, *LISP, CM-LISP, C*
- Paris (parallel instruction set)
 - Inter-processor communication, vector summation, matrix multiplication, sorting
 - Front-end processor sends Paris instructions to processor sequencers
 - Functions & subroutines (direct actions of processors, router, I/O, etc., including scan and spread operations, global variables (find out how many processor are available, etc.)
 - Sequencer produces low-level instructs.

DAP Overview

- Distributed-memory SIMD (bit-serial)
- International Computers Limited (ICL)
 - 1976 prototype, deliveries in 1980
 - ICL spun off Actime Memory Technology Ltd in 1986, became Cambridge Parallel Processing Inc in 1992
- Matrix of PEs
 - 32x32 for DAP 500, 64x64 for DAP 600
 - Connection to 4 nearest neighbors (w/ wrap-around), plus column & row buses
 - One-bit PEs with 32Kb–1Mb of memory
- DAP system = host + MCU + PE array
 - Host (Sun or VAX) interacts with user
 - Master control unit (MCU) runs main program, PE array runs parallel code
DAP MCU and HCU

MCU (Master Control Unit)
- 32-bit 10 MHz CPU w/ registers, instruction counter, arithmetic unit, etc.
- Executes scalar instructions, broadcasts others to PE array

HCU (Host Connection Unit)
- Gateway between DAP and host
- Motorola 68020, SCSI port, VME interface, two RS232 serial ports
- Provides memory boundary protection, has EPROM for code storage, 1MB RAM for data and program storage
- Data transfers are memory-memory transfers across VME bus
- Provides medium-speed I/O plus fast data channels (e.g., to high-resolution color display)

DAP Processing Element

3 1-bit registers
- \(Q\) = accumulator, \(C\) = carry, \(A\) = activity control (can inhibit memory writes in certain instructions)
- All bits of a register over all PEs is called a “register plane” (32x32 or 64x64 bits)

Adder
- Two inputs connect to \(Q\) and \(C\) registers
- Third input connects to multiplexor, from PE memory, output of \(Q\) or \(A\) registers, carry output from neighboring PEs, or data broadcast from MCU
- A register also get input from this mux
- Mux output can also be inverted
- PE outputs (adder and mux) can be stored in memory, under control of \(A\) reg
- D reg for asynchronous I/O, S ref for instructs that both read & write to memory

PE Memory and MCU

PE Memory
- Each PE has between 32 Kb and 1 Mb
- Vector (horizontal) mode: successive bits of a word are mapped onto successive bits of a single row of a store plane
- Matrix (vertical) mode: successive bits…onto the same bit position in successive store planes

MCU functionality
- Instruction fetch, decoding, and address generation
- Executes scalar instructions and broadcasts instruction streams to PEs
- Transmits data between PE array memory and MCU registers
- Transmits data between DAP and host file system or peripherals

Master Control Unit (MCU)

Code store (memory)
- 32 bit instructions, between 128 K words and 1 M words

32-bit general-purpose registers
- \(M0 – M13\): general purpose, operated on by arithmetic and logical operations, can be transferred to and from memory array
- \(M1 – M7\) can be used as “modifiers” for addresses and values

Machine states
- Non-privileged, interruptible (user mode)
- Privileged, interruptible
- Privileged, non-interruptible

Datum / limit regs. for address checking
Master Control Unit (MCU) Instructions

- Addresses
 - A 32-bit word, within a row or column, within a store plane

- “DO” instruction
 - No hardware overhead for these loops
 - HW support allows instructions inside the loops to access, in successive iterations, successive bit planes, rows, columns, or words of memory

- Nearest neighbor
 - Specify direction in instruction for shifts
 - For vector adds, specify whether rows or columns are being added, which direction to send carry bit
 - Specify behavior at edge of operation

Gamma II Plus

- Fourth-generation DAP, produced by Cambridge Parallel Processing in 1995

- Gamma II Plus 1000 = 32x32
 - Gamma II Plus 4000 = 64x64

- PE memory: 128Kb–1Mb

- PE also contains an 8-bit processor
 - 32 bytes of internal memory
 - D register to transfer data to/from array memory (1-bit data path) and to/from internal memory (8-bit data path)
 - A register, similar to a 1-bit processor
 - Q register, like accumulator, 32 bits wide (any one of which can be selected as an operand), can also be shifted
 - ALU to provide addition, subtraction, and logical operations

Gamma II Plus 4000