Embarrassingly Parallel Computations

A computation that can be divided into a number of completely independent parts, each of which can be executed by a separate processor.

Figure 3.1: Practical embarrassingly parallel computational graph with dynamic process creation and the master-slave approach.

Figure 3.2: Disconnected computational graph (embarrassingly parallel problem).
Geometrical Transformations of Images

Examples of low level embarrassingly parallel image operations:

(a) Shifting
The coordinates of an object shifted by a distance D_x in the x-dimension and D_y in the y-dimension are given by

\[
\begin{align*}
 x' &= x + D_x \\
y' &= y + D_y
\end{align*}
\]

(b) Scaling
The coordinates of an object scaled by a factor S_x in the x-direction and S_y in the y-direction are given by

\[
\begin{align*}
 x' &= xS_x \\
y' &= yS_y
\end{align*}
\]

The object is enlarged in size when S_x and S_y are greater than 1 and reduced in size when S_x and S_y are between 0 and 1. Note that the magnification or reduction do not need to be the same in both x- and y-directions.

(c) Rotation
The coordinates of an object rotated through an angle θ about the origin of the coordinate system are given by

\[
\begin{align*}
 x' &= x\cos\theta - y\sin\theta \\
y' &= x\sin\theta + y\cos\theta
\end{align*}
\]

Examples of low level embarrassingly parallel image operations:

- Shifting
- Scaling
- Rotation

Parallel Programming concern is division of bitmap/pixmap into groups of pixels for each processor because there are usually many more pixels than processors. Two general methods of grouping are by square/rectangular regions and by columns/rows.
Pseudocode to Perform Image Shift

Master

```plaintext
for (i = 0, row = 0; i < 48; i++, row = row + 10) /* for each process*/
    send(row, Pi); /* send row no.*/
for (i = 0; i < 480; i++) /* initialize temp */
    for (j = 0; j < 640; j++)
        temp_map[i][j] = 0;
for (i = 0; i < (640 * 480); i++) { /* for each pixel */
    recv(oldrow, oldcol, newrow, newcol, PANY); /* accept new coords */
    if !(newrow < 0 || (newrow >= 480) || (newcol < 0 || (newcol >= 640)))
        temp_map[newrow][newcol] = map[oldrow][oldcol];
}
for (i = 0; i < 480; i++) /* update bitmap */
    for (j = 0; j < 640; j++)
        map[i][j] = temp_map[i][j];
```

Slave

```plaintext
recv(row, Pmaster); /* receive row no.*/
for (oldrow = row; oldrow < (row + 10); oldrow++)
    for (oldcol = 0; oldcol < 640; oldcol++) { /* transform coords */
        newrow = oldrow + delta_x; /* shift in x direction */
        newcol = oldcol + delta_y; /* shift in y direction */
        send(oldrow, oldcol, newrow, newcol, Pmaster); /* coords to master */
    }
```

Analysis

Suppose each pixel requires one computational step and there are \(n \times n \) pixels.

Parallel

\[
\text{Computation} = O\left(\frac{n^2}{p}\right)
\]

\[
\text{Parallel Communication} = t_{\text{startup}} + 2t_{\text{data}} + 4n^2(t_{\text{startup}} + t_{\text{data}}) = O(n^2 + pn^2)
\]

Sequential

\[
\text{Sequential Computation} = n^2
\]

\[
\text{Sequential Parallelism} = \frac{n^2}{p}
\]

However, the constant hidden in the communication part far exceeds those constants in the computation part.

Overall Execution Time

\[
t_p = t_{\text{computation}} + t_{\text{communication}}
\]

For constant \(p \), this is \(O(n^2) \).
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen
Prentice Hall, 1999

Mandelbrot Set

A set of points in the complex plane that are quasi-stable (will increase and decrease, but not exceed some limit) when computed by iterating the function

\[z_{k+1} = z_k^2 + c \]

where \(z_k \) is the \((k+1)\)th iteration of the complex number \(z = a + bi \) and \(c \) is a complex number giving the position of the point in the complex plane. The initial value for \(z \) is zero.

The iterations are continued until the magnitude of \(z \) is greater than 2 or the number of iterations reaches some arbitrary limit.

The magnitude of \(z \) is the length of the vector given by

\[|z| = \sqrt{a^2 + b^2} \]

Computing the complex function, \(z_{k+1} = z_k^2 + c \), is simplified by recognizing that

\[z^2 = (a + bi)^2 = a^2 + 2abi + b^2 \]

or a real part that is \(a^2 - b^2 \) and an imaginary part that is \(2ab \).

The next iteration values can be produced by computing:

\[z_{\text{real}} = z_{\text{real}}^2 - z_{\text{imag}}^2 + c_{\text{real}} \]
\[z_{\text{imag}} = 2z_{\text{real}}z_{\text{imag}} + c_{\text{imag}} \]

Sequential Code

Routine for computing value of one point and returning number of iterations for real and imaginary parts of \(z \):

```c
struct complex {
    float real;
    float imag;
};

int cal_pixel(complex c) {
    int count, max;
    complex z;
    float temp, lengthsq;
    max = 256;
    z.real = 0;
    z.imag = 0;
    count = 0;  // number of iterations
    do {
        temp = z.real * z.real - z.imag * z.imag + c.real;
        z.imag = 2 * z.real * z.imag + c.imag;
        z.real = temp;
        lengthsq = z.real * z.real + z.imag * z.imag;
        count++;
    } while ((lengthsq < 4.0) && (count < max));
    return count;
}
```

The length of \(z \) is the length of the vector given by

\[|z| = \sqrt{a^2 + b^2} \]

The length of \(z \) is used in some computations. The magnitude of \(z \) is greater than 2 or the number of iterations reaches some arbitrary limit.

The initial value for the function \(f(z) = z^2 + c \) is the \((k+1)\)th iteration of the complex number \(z = a + bi \) and \(c \) is a complex number giving the position of the point in the complex plane. The initial value for the function \(f(z) = z^2 + c \) is the \((k+1)\)th iteration of the complex number \(z = a + bi \) and \(c \) is a complex number giving the position of the point in the complex plane.
Suppose the display height is $disp_{height}$, the display width is $disp_{width}$, and the point in this display area is (x, y).

For computational efficiency, let

$$scale_{real} = \frac{real_{max} - real_{min}}{disp_{width}};$$
$$scale_{imag} = \frac{imag_{max} - imag_{min}}{disp_{height}};$$

Including scaling, the code could be of the form

```c
for (x = 0; x < disp_width; x++) /* screen coordinates x and y */
    for (y = 0; y < disp_height; y++) {
        c.real = real_min + ((float) x * scale_real);
        c.imag = imag_min + ((float) y * scale_imag);
        color = cal_pixel(c);
        display(x, y, color);
    }
```

where `display()` is a routine suitable within to display the pixel (x, y) at the computed color.
Parallelizing Mandelbrot Set Computation

Static Task Assignment

Dynamic Task Assignment

WORK POOL/PROCESSOR PArts

Parallelizing Mandelbrot Set Computation
Coding for Work Pool Approach

```c
// Master
count = 0; /* counter for termination*/
row = 0; /* row being sent */
for (k = 0; k < procno; k++) { /* assuming procno<disp_height */
    send(&row, P, data_tag); /* send initial row to process */
    count++; /* count rows sent */
    row++; /* next row */
}
do {
    recv (&slave, &r, color, P, ANY, result_tag);
    count--; /* reduce count as rows received */
    if (row < disp_height) {
        send (&row, P, data_tag); /* send next row */
        row++; /* next row */
        count++;
    } else
        send (&row, P, terminator_tag); /* terminate */
    rows_recv++;
display (r, color); /* display row */
} while (count > 0);
```

Slave
recv(y, Pmaster, ANYTAG, source_tag); /* receive 1st row to compute */
while (source_tag == data_tag) {
 c.imag = imag_min + ((float) y * scale_imag);
 for (x = 0; x < disp_width; x++) { /* compute row colors */
 c.real = real_min + ((float) x * scale_real);
 color[x] = cal_pixel(c);
 }
 send(&i, &y, color, P, master, result_tag); /* row colors to master */
 recv(y, Pmaster, source_tag); /* receive next row */
};

Figure 3.6
Counter termination. Terminate

<table>
<thead>
<tr>
<th>Count</th>
<th>Increment</th>
<th>Decrement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termination</td>
<td>0</td>
<td>Rows outstanding in slaves (count)</td>
</tr>
<tr>
<td>Count</td>
<td>0</td>
<td>Rows outstanding in slaves (count)</td>
</tr>
</tbody>
</table>
Sequentially, the fraction of points within the circle will be \(\frac{\text{area of circle}}{\text{area of square}} \). Points within the square are chosen randomly and a score is kept of how many points happen to be within the circle. The ratio of the area of the circle to the square is given by

\[
\frac{\text{area of circle}}{\text{area of square}} = \frac{\pi r^2}{(2r)^2} = \frac{\pi}{4}.
\]

Example - To Calculate \(\pi \)

The basis of Monte Carlo methods is the use of random selections in calculations. Monte Carlo methods

Analysis
Figure 3.8 Function being integrated in computing p by a Monte Carlo method.

Computing an Integral

One quadrant of the construction in Figure 3.7 can be described by the integral:

$$\int_{x_r}^{1} \int_{y_r}^{1} f(x) \, dx \, dy$$

A random pair of numbers, (x_r, y_r), would be generated, each between 0 and 1, and then counted as in circle if $x^2 + y^2 \leq 1$, that is,

$$x^2 + y^2 \leq 1$$

Alternatively (better) Method

The routine randv(xl, x2) returns a pseudorandom number between x_1 and x_2.

The sequential code might be of the form:

```
sum = 0;
for (i = 0; i < N; i++) { /* N random samples */
  x_r = randv(x1, x2); /* generate next random value */
  sum = sum + x_r * x_r - 3 * x_r; /* compute f(x_r) */
}
area = (sum / N) * (x2 - x1);
```

The routine randv(x1, x2) returns a pseudorandom number between x_1 and x_2.

Example

Compute the integral of $f(x)$ from x_1 to x_2.

An alternative probabilistic method is to use the random values of x to compute the integral:

$$\int_{x_1}^{x_2} f(x) \, dx$$

One quadrant of the construction in Figure 3.7 can be described by the integral $x^2 + y^2 \leq 1$. Compute $f(x)$ by integrating $f(x)$ over x from x_1 to x_2. The sequential code is as follows:

```
sum = 0;
for (i = 0; i < N; i++) { /* N random samples */
  x_r = randv(x1, x2); /* generate next random value */
  y_r = randv(x1, x2); /* generate next random value */
  if ($x_r^2 + y_r^2 \leq 1$) sum = sum + $x_r^2$ - 3 * $x_r$; /* compute f(x_r) */
}
area = (sum / N) * (x2 - x1);
```

The routine randv(x1, x2) returns a pseudorandom number between x_1 and x_2. The area under the mean function $f(x)$, integrated over x, can be determined as:

$$\int_{x_1}^{x_2} f(x) \, dx$$

This is an alternative probabilistic method to find an integral.
Parallel Monte Carlo integration.

Pseudocode

```c
// Master
for (i = 0; i < N/n; i++) {
    for (j = 0; j < n; j++) /* n=no of random numbers for slave */
        xr[j] = rand(); /* load numbers to be sent */
    recv(PANY, req_tag, Psource); /* wait for a slave to make request */
    send(xr, &n, Psource, compute_tag);
}
for (i = 0; i < slave_no; i++) /* terminate computation */
    recv(Pi, req_tag);
send(Pi, stop_tag);
sum = 0; reduce_add(&sum, Pgroup);

// Slave
sum = 0; send(Pmaster, req_tag);
recv(xr, &n, Pmaster, source_tag);
while (source_tag == compute_tag) {
    for (i = 0; i < n; i++)
        sum = sum + xr[i] * xr[i] - 3 * xr[i];
    send(Pmaster, req_tag);
    recv(xr, &n, Pmaster, source_tag);
}
reduce_add(&sum, Pgroup);
```
Parallel Random Number Generation

The most popular way of creating a pseudorandom number sequence, \(x_1, x_2, x_3, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n-1, x_n \), is by evaluating \(x_{i+1} \) from a carefully chosen function of \(x_i \), often of the form

\[
x_{i+1} = (ax_i + c) \mod m
\]

where \(a \), \(c \), and \(m \) are constants chosen to create a sequence that has similar properties to truly random sequences.

Parallel Pseudorandom Number Generators

The most popular way of creating a pseudorandom number sequence is by evaluating \(x_{i+1} \) from a carefully chosen function of \(x_i \), often of the form

\[
x_{i+1} = (ax_i + c) \mod m
\]

where \(a \), \(c \), and \(m \) are constants chosen to create a sequence that has similar properties to truly random sequences.