Major speedup alternatives:
- Overlap (pipelining & buffering)
- Multiprocessors
- SIMD (duplicate the PE, not the CU)
 - Vector processor

Three earlier designs (vacuum tubes and transistors) culminating in the Illiac IV design, all at the University of Illinois
- Logical organization similar to the Solomon (prototyped by Westinghouse)
- Sponsored by DARPA, built by various companies, assembled by Burroughs
- Plan was for 256 PEs, in 4 quadrants of 64 PEs, but only one quadrant was built
- Used at NASA Ames Research Center in mid-1970s

Array = CU + processor array

CU (Control Unit)
- Controls the 64 PEs (vector operations)
- Can also execute instructions (scalar ops)
- 64 64-bit scratchpad registers
- 4 64-bit accumulators

PE (Processing Element)
- 64 PEs, numbered 0 through 63
- RGA = accumulator
- RGB = for second operand
- RGR = routing register, for communication
- RGS = temporary storage
- RGX = index register for instruction addrs.
- RGD = indicates active or inactive state

PEM (PE Memory)
- Each PE has a 2048-word 64-bit local random-access memory
- PE 0 can only access PEM 0, etc.

PU (Processing Unit) = PE + PEM

Data paths
- CU bus — 8 words of instructions or data can be fetched from a PEM and sent to the CU (instructions distributed in PEMs)
- CDB (Common Data Bus) — broadcasts information from CU to all PEs
- Routing network — PE \(i \) is connected to PE \(i -1 \), PE \(i +1 \), PE \(i -8 \), and PE \(i +8 \)
 - Wraps around, data may require multiple transfers to reach its destination
- Mode bit line — single line from RGD of each PE to the CU
Programming Issues

Consider the following FORTRAN code:
DO 10 I = 1, 64
10 A(I) = B(I) + C(I)

- Put A(1), B(1), C(1) on PU 1, etc.
- Each PE loads RGA from base+1, adds base+2, stores into base, where “base” is base of data in PEM
- Each PE does this simultaneously, giving a speed up of 64
- For less than 64 array elements, some processors will sit idle
- For more than 64 array elements, some processors might have to do more work
- For some algorithms, it may be desirable to turn off PEs
 - 64 PEs compute, then one half passes data to other half, then 32 PEs compute, etc.

Illiac IV I/O System

- I/O system = I/O subsystem, DFS, and a B6500 control computer
- I/O subsystem
 - CDC (Control Descriptor Controller) — interrupts the B6500 upon request by the CU, also loads programs and data from the DFS into the PEM array
 - BIOM (Buffer I/O Memory) — buffers (much faster) data from DFS to CPU
 - IOS (I/O Switch) — selects input from DFS vs. real-time data
- DFS (Disk File System?)
 - 1 Gbit, 128 heads (one per track)
 - 2 channels, each of which can transmit or receive data at 0.5 Gb/s over a 256-bit bus (1 Gb/s using both channels)

Illiac IV I/O System (cont.)

- B6500 control computer
 - CPU, memory, peripherals (card reader, card punch, line printer, 4 magnetic tape units, 2 disk files, console printer, and keyboard)
 - Manages requests for system resources
 - OS, compilers, and assemblers
 - Laser memory
 - 1 Tbit write-once read-only laser memory
 - Thin film of metal on a polyester sheet, on a rotating drum
 - 5 seconds to access random data
 - ARPA network link
 - High-speed network (50 Kbps)
 - Illiac IV system was a network resource available to other members of the ARPA network

Illiac IV Software

- Illiac IV delivered to NASA Ames Research Center in 1972, operational sometime (?) after mid-1975
 - Eventually operated M–F, 60-80 hours of uptime, 44 hours of maintenance / downtime
- No real OS, no shared use of Illiac IV, one user at a time
 - An OS and two languages (TRANQUIL & GLYPNIR) were written at Illinois
 - At NASA Ames, since PDP-10 and PDP-11 computers were used in place of the B6500, new software was needed, and a new language called CFD was written for solving differential equations