Sieve of Eratosthenes

- Find the prime numbers less than or equal to some positive integer n
 - Begin with a list of natural numbers $2, 3, 4, \ldots, n$
 - Remove composite numbers from the list by striking multiples of $2, 3, 5,$ and successive primes
 - After each striking, next unmarked natural number is prime
 - Sieve terminates after multiples of largest prime less than or equal to have been struck from the list

Sequential algorithm
- Boolean array containing numbers being sieved, integer corresponding largest prime found so far, integer keeping track of multiples of current prime

A Control-Parallel Approach

- Control parallelism refers to applying different operations to different data elements simultaneously
 - Shared-memory MIMD, Distributed-memory MIMD

Control-parallel Sieve
- Each processor works with a different prime, and is responsible for striking multiples of that prime and identifying a new prime number
- Each processor starts marking…
- Shared memory contain boolean array containing numbers being sieved, integer corresponding largest prime found so far
- PE’s local memories contain integer keeping track of multiples of its current prime (each working with different prime)

A Data-Parallel Approach

- Data parallelism refers to using multiple PEs to apply the same operation to different data elements simultaneously
 - Shared-memory MIMD, Distributed-memory MIMD, Distributed-memory SIMD

Data-parallel Sieve
- Each processor works with a same prime, and is responsible for striking multiples of that prime from a segment of the array of natural numbers
- Assume we have p processors, where $p \ll \sqrt{n}$
 - Each processor gets no more than ceiling(n/p) natural numbers
 - All primes less than \sqrt{n}, as well as first prime greater than \sqrt{n} are in list controlled by first processor

A Control-Parallel Approach (cont.)

- Problems and inefficiencies:
 - Processor accesses variable containing current prime, searches for next unmarked value, then updates variable containing current prime
 - Two processors could do this at once
 - Processor could end up sieving multiples of a composite number

- How much speedup can we get?
 - Suppose $n = 1000$
 - Sequential algorithm
 - Multiples of 2: \((1000–4)+1)/2=997/2=498\)
 - Multiples of 3: \((1000–9)+1)/3=992/3=330\)
 - Sum = 1411 (number of “steps”)
 - 2 PEs gives speedup 1411/706=2.00
 - 3 PEs gives speedup 1411/499=2.83
 - 4 PEs is same, so upper bound is 2.83
A Data-Parallel Approach (cont.)

- Data-parallel Sieve (cont.)
 - Algorithm
 - Processor 1 finds next prime, broadcasts it to all PEs
 - Each PE goes through their part of the array, striking multiples of that prime (performing same operation)
 - Continues until first processor reaches a prime greater than \sqrt{n}

- How much speedup can we get?
 - Suppose $n = 1,000,000$
 - There are 168 primes less than 1,000, the largest of which is 997
 - Maximum execution time = $(\text{ceil}(\text{ceil}(1,000,000/50)/2)+\text{ceil}(\text{ceil}(1,000,000/50)/3)+\text{ceil}(\text{ceil}(1,000,000/50)/5)\ldots)\times \text{etime}$
 - Communication time = $168(50-1)\times \text{ctime}$

- How much speedup can we get? (cont.)
 - Speedup is not directly proportional to the number of PEs — it’s highest at 11 PEs
 - Computation time is inversely proportional to the number of processors used
 - Communication time increases linearly
 - After 11 processors, increase in communication time is higher than decrease in computation time, and total execution time increases
 - How about I/O time?
 - Have to output 78,498 primes!
 - I/O time is constant because output must be performed sequentially
 - This sequential code limits the speedup
 - Amdahl’s law says that the fraction of operations that must be performed sequentially limits the maximum speedup possible (more on this later in the course)