Altera FLEX 8000 Block Diagram (Review)

- FLEX 8000 chip contains 26–162 LABs
 - Each LAB contains 8 Logic Elements (LEs), so a chip contains 208–1296 LEs, totaling 2,500–16,000 usable gates
 - LABs arranged in rows and columns, connected by FastTrack Interconnect, with I/O elements (IOEs) at the edges

Altera FLEX 10K Block Diagram

- FLEX 10K chip contains 72–1520 LABs
 - Each LAB contains 8 Logic Elements (LEs), so a chip contains 576–12,160 LEs, totaling 10,000–250,000 usable gates
 - Each chip also contains 3–20 Embedded Array Blocks (EABs), which can provide 6,164–40,960 bits of RAM

Altera FLEX 10K Embedded Array Blocks (EABs)

- Each chip contains 3–20 EABs, each of which can be used to implement either logic or memory
- When used to implement logic, an EAB can provide 100 to 600 gate equivalents (in contrast, a LAB provides 96 g.e.’s)
 - Provides a very large LUT
 - Very fast — faster than general logic, since it’s only a single level of logic
 - Delay is predictable — each RAM block is not scattered throughout the chip as in some FPGAs
 - Can be used to create complex logic functions such as multipliers (e.g., a 4x4 multiplier with 8 inputs and 8 outputs), microcontrollers, large state machines, and DSPs
 - Each EAB can be used independently, or combined to implement larger functions

Altera FLEX 10K Embedded Array Blocks (cont.)

- Using EABs to implement memory, a chip can have 6K–40K bits of RAM
 - Each EAB provides 2,048 bits of RAM, plus input and output registers
 - Can be used to implement synchronous RAM, ROM, dual-port RAM, or FIFO
 - Each EAB can be configured in the following sizes:
 - 256x8, 512x4, 1024x2, or 2048x1
 - To get larger blocks, combine multiple EABs:
 - Example: combine two 256x8 RAM blocks to form a 256x16 RAM block
 - Example: combine two 512x4 RAM blocks to form a 512x8 RAM block
 - Can even combine all EABs on the chip into one big RAM block
 - Can combine so as to form blocks up to 2048 words without impacting timing
Altera FLEX 10K
Embedded Array Blocks (cont.)

- EAB gets input from a row channel, and can output to up to 2 row channels and 2 column channels
- Input and output buffers are available

Altera APEX 20K Overview

- APEX 20K chip contains:
 - 256–3,456 LABs, each of which contains 10 Logic Elements (LEs), so a chip contains 2,560–51,840 LEs, 162,000–2,391,552 usable gates
 - 16–216 Embedded System Blocks (EABs), each of which can provide 32,768–442,368 bits of memory
 - Can implement CAM, RAM, dual-port RAM, ROM, and FIFO
- Organization:
 - MultiCore architecture, combining LUT, product-terms, & memory in one structure
 - Designed for “system on a chip”
 - MegaLAB structures, each of which contains 16 LABs, one ESB, and a MegaLAB interconnect (for routing within the MegaLAB)
 - ESB provides product terms or memory

Altera APEX 20K Overview

APEX LABs and Interconnect

- Logic Array Block (LAB)
 - 10 LEs
 - Interleaved local interconnect (each LE connects to 2 local interconnect, each local interconnect connects to 10 LEs)
 - Each LE can connect to 29 other LEs through local interconnect

- Logic Element (LE)
 - 4-input LUT, carry chain, cascade chain, same as FLEX devices
 - Synchronous and asynchronous load and clear logic

- Interconnect
 - MegaLAB interconnect between 16 LABs, etc. inside each MegaLAB
 - FastTrack row and column interconnect between MegaLABs

APEX Embedded System Blocks (ESBs)

- Each ESB can act as a macrocell and provide product terms
 - Each ESB gets 32 inputs from local interconnect, from adjacent LAB or MegaLAB interconnect
 - In this mode, each ESB contains 16 macrocells, and each macrocell contains 2 product terms and a programmable register (parallel expanders also provided)

- Each ESB can also act as a memory block (dual-port RAM, ROM, FIFO, or CAM memory) configured in various sizes
 - Inputs from adjacent local interconnect, which can be driven from MegaLAB or FastTrack interconnect
 - Outputs to MegaLAB and FastTrack, some outputs to local interconnect