Overview of This Course:
4 Main Components

■ Introduction to VLSI design
 ▸ Brief introduction to VLSI design and ASICs vs FPLDs
 ▸ Using Altera’s Max-PLUS II for design entry and simulation
 ▸ Review of combinational and sequential circuits

■ IC technology
 ▸ Brief introduction to CMOS
 ▸ Comparison of various FPLD families

■ HDL-based design
 ▸ Design using AHDL and VHDL
 ▸ Large examples

■ Projects using schematic capture, AHDL and VHDL in Altera’s MAX+PLUS II
Logic Synthesis Design Flow

- Two alternative design entry methods:
 - Manual design and schematic capture — draw and interconnect structural elements (gates, multiplexors, flip-flops, adders, ALUs, etc.)
 - Sequential or combinational design
 - CAD — manual design with automated bookkeeping & simulation / analysis
 - HDL-based design — describe design in textual form using familiar programming constructs plus some additional ones
 - EDA — automated low-level decisions plus simulation / analysis

- Compilation / Synthesis — compile modules into a flat netlist of gates, usually optimizing the design to minimize area, speed, power, etc.

- Simulation and verification — make sure the design does what you think it does
Logic Synthesis Design Flow (cont.)

Figure from *Application-Specific Integrated Circuits*, Smith, Addison-Wesley, 1997
Logic Synthesis in a Larger Context

- System synthesis — converts a task specification into processors, memories, ASICs, etc. plus software
 - Hardware / software codesign
 - Tradeoffs between hardware & software

- Behavioral (high-level) synthesis — converts an algorithmic description of behavior into registers, adders, ALUs, busses, multiplexors, etc.
 - Scheduling breaks design into states
 - Data path synthesis produces interconnected set of functional units, registers, etc.

- Logic synthesis — converts a structural description into gates and flip-flops
 - Designer must specify all states