Design Entry

- Computer Aided Design (CAD) tools typically support both graphical schematic capture as well as textual design entry (e.g., AHDL, VHDL)
 - Documentation, design, simulation, verification

- A circuit *schematic* shows the interconnection of structural elements that make up a circuit
 - Captures only interconnection; behavior specified separately
 - The electronic (usually ASCII) version of that schematic is called a *netlist*

- Schematic capture
 - Direct entry of the circuit schematic
 - More “bookkeeping” than “automation”
Graphic Editor

- Enter cells from various predefined component libraries, or user-defined cells
- Connect cells using nets, buses, or name
- “Smart” selection tool — automatically becomes proper tool for task at hand

Figure from Altera technical literature
Schematic Entry

- Circuit schematics are drawn on *schematic sheets*, which come in standard sizes (8.5x11, 11x17, etc.)
 - Each sheet includes a labeled border, and a block listing the circuit name, designer’s name, date, etc.
 - There are standards for most of the commonly-used symbols

- Terms used in circuit schematics:

Figure from *Application-Specific Integrated Circuits*, Smith, Addison-Wesley, 1997
Cell Library

- **Components** (sometimes called *modules*) in a schematic are chosen from a library of cells
 - ASIC vendors provide a library of primitive gates for schematic entry
 - Users can define their own components and symbols

- **Problem** — no standard exists
 - Individual vendors might use different names to refer to a 2-input or gate
 - May be TTL 7400-series names:
 - 2-input NAND = 7400
 - 2-input AND = 7408
 - 2-input OR = 7432
 - May be more descriptive:
 - nand2, xor3, …

- Behavior may vary
 - Which input does 2-input multiplexor select when select input S = 0?
Names & Symbols

- Each cell is represented by a picture, or icon, called a *symbol*
 - Primitive cells (e.g., AND gates) have standardized non-rectangular symbols
 - Subschematics are represented by special custom icons

- Each cell, whether a primitive cell or a subschematic, has a name
 - Each use of a cell in a schematic is a different *instance* of that cell, and is given a unique *instance name*

Figure from *Application-Specific Integrated Circuits*, Smith, Addison-Wesley, 1997
Nets

- Cell instances have *terminals*, also known as pins, connectors, or signals, that are the inputs and outputs of the cell.

- Cell instances are connected by *wire segments*, commonly called *nets*.
 - A *local* (internal) net is internal to a cell.
 - An *external* net connects to the inputs and/or outputs of the cell.

- Nets may sometimes be collected together into *buses* for convenience.
 - May be represented by a thicker line on the schematic, with some indication of number of nets involved.
 - Individual nets can still be accessed when necessary.
Hierarchical Design

- **Hierarchy** is used to reduce the size and complexity of the schematic

- The alternative — drawing all symbols on one giant schematic with no hierarchy — is called a *flat schematic*

- Flat schematics are impractical to work with for even thousands of components

- Flat netlists, however, are occasionally used when the hierarchy isn’t relevant

Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997
Altera MAX+PLUS II Overview

Figure from Altera technical literature
The “Chiptrip” Tutorial Example

Simulates an auto driving around town

- auto_max — AHDL state machine that keeps track of location of auto and acceleration at that point in time, gives ticket if you accelerate on small roads

- speed_ch — waveform state machine that gives ticket if you accelerate for a second time

- tick_cnt — counter that counts tickets

- time_cnt — AHDL counter that keeps track of time taken to reach Altera
Graphic Editor

- Enter cells from various predefined component libraries, or user-defined cells
- Connect cells using nets, buses, or name
- “Smart” selection tool — automatically becomes proper tool for task at hand
Waveform Editor (for Design Entry)

- Can contain logical and state machine inputs; combinational, registered, and state machine outputs; and "buried" nodes to help define desired outputs
 - Can specify state names for state machines
- Can compare desired and actual outputs
- Checks for design entry errors, builds a single large flat database

- Logic synthesis to minimize resource usage (see Assign/Global Project Logic Synthesis), partitioner and fitter to match to available devices
Waveform Editor + Simulation

- Use waveform editor to specify simulation inputs

- Simulate, then view results in waveform editor (as shown above)
 - Simulate individual or grouped nodes (particularly good for state machines)

Figure from Altera technical literature
Floorplan Editor

- Device view shows pins, LAB view shows LABs, equations, I/O, and routing
- Can use to edit assignments
- After compilation, get information on most congested area of chip, number of expanders used within each LAB