Altera FLEX 8000 Block Diagram

- FLEX 8000 chip contains 26–162 LABs
 - Each LAB contains 8 Logic Elements (LEs), so a chip contains 208–1296 LEs, totaling 2,500–16,000 usable gates
 - LABs arranged in rows and columns, connected by FastTrack Interconnect, with I/O elements (IOEs) at the edges

Altera FLEX 8000 Logic Array Block

- LAB = 8 LEs, plus local interconnect, control signals, carry & cascade chains

Altera FLEX 8000 Logic Element

- Each Logic Element (LE) contains:
 - 4-input Look-Up Table (LUT)
 - Can produce any function of 4 variables
 - Programmable flip-flop
 - Can configure as D, T, JR, SR, or bypass
 - Has clock, clear, and preset signals that can come from dedicated inputs, I/O pins, or other LEs
 - Carry chain & cascade chain

Altera FLEX 8000 Carry Chain (Example: n-bit adder)

- Carry chain provides very fast (< 1ns) carry-forward between LEs
 - Feeds both LUT and next part of chain
 - Good for high-speed adders & counters
Cascade chain provides wide fan-in

- Adjacent LE’s LUTs can compute parts of the function in parallel; cascade chain then serially connects intermediate values
- Can use either a logical AND or a logical OR (using DeMorgan’s theorem) to connect outputs of adjacent LEs
- Each additional LE provides 4 more inputs to the width of the function

Altera FLEX 8000 LE Operating Modes

- **Normal**
 - 7 out of 10 inputs (4 data from LAB local interconnect, feedback from register, and carry-in & cascade-in) go to specific destinations to implement the function
 - Remaining 3 provide clock, clear, and preset for register

- **Arithmetic**
 - Provides two 3-input LUTs to implement adders, accumulators, and comparators
 - One LUT provides a 3-bit function
 - Other LUT generates a carry bit

- **Up/down counter**
 - Provides counter enable, synchronous up / down control, and data loading options
 - Uses two 3-input LUTs
 - One LUT generates counter data
 - Other LUT generates fast carry bit
 - Use 2-to-1 multiplexer for synchronous data loading, clear and preset for asynchronous data loading

Altera FLEX 8000 Operating Modes (cont.)

- **Normal mode**
 - Used for general logic applications, and wide decoding functions that can benefit from the cascade chain

- **Arithmetic mode**
 - Provides two 3-input LUTs to implement adders, accumulators, and comparators
 - One LUT provides a 3-bit function
 - Other LUT generates a carry bit

- **Up/down counter mode**
 - Provides counter enable, synchronous up / down control, and data loading options
 - Uses two 3-input LUTs
 - One LUT generates counter data
 - Other LUT generates fast carry bit
 - Use 2-to-1 multiplexer for synchronous data loading, clear and preset for asynchronous data loading

Altera FLEX 8000 FastTrack Interconnect

- Device-wide rows and columns
 - Each LE in LAB drives 2 column (total 16) channels, which connects... that column
 - Each LE in LAB drives 1 row channel, which connects to other LABs in that row
 - 3-to-1 muxs connect either LE outputs or column channels to row channels

Note: (1) See Table 4 for the number of row channels.
Altera FLEX 8000 I/O Elements

- Eight I/O Elements (IOEs) are at the end of each row and column
 - Some restrictions on how many row / column channels each IOE connects to
 - Contains a register that can be used for either input or output
 - Associated I/O pins can be used as either input, output, or bidirectional pins

Altera FLEX 8000 Configuration

- Loading the FLEX 8000’s SRAM with programming information is called configuration, and takes about 100ms
 - After configuration, the device initializes itself (resets its registers, enables its I/O pins, and begins normal operation)
 - Configuration & initialization = command mode, normal operation = user mode

- Six configuration schemes are available:
 - Active serial — FLEX gives configuration EPROM clock signals (not addresses), keeps getting new values in sequence
 - Active parallel up, active parallel down — FLEX 8000 gives configuration EPROM sequence of addresses to read data from
 - Passive parallel synchronous, passive parallel asynchronous, passive serial — passively receives data from some host

Altera FLEX 10K Block Diagram

- FLEX 10K chip contains 72–1520 LABs
 - Each LAB contains 8 Logic Elements (LEs), so a chip contains 576–12,160 LEs, totaling 10,000–250,000 usable gates
- Each chip also contains 3–20 Embedded Array Blocks (EABs), which can provide 6,164–40,960 bits of RAM

Altera FLEX 10K Embedded Array Blocks (EABs)

- Each chip contains 3–20 EABs, each of which can be used to implement either logic or memory
- When used to implement logic, an EAB can provide 100 to 600 gate equivalents (in contrast, a LAB provides 96 g.e.’s)
 - Provides a very large LUT
 - Very fast — faster than general logic, since it’s only a single level of logic
 - Delay is predictable — each RAM block is not scattered throughout the chip as in some FPGAs
 - Can be used to create complex logic functions such as multipliers (e.g., a 4x4 multiplier with 8 inputs and 8 outputs), microcontrollers, large state machines, and DSPs
 - Each EAB can be used independently, or combined to implement larger functions
Using EABs to implement memory, a chip can have 6K–40K bits of RAM

- Each EAB provides 2,048 bits of RAM, plus input and output registers
- Can be used to implement synchronous RAM, ROM, dual-port RAM, or FIFO
- Each EAB can be configured in the following sizes:
 - 256x8, 512x4, 1024x2, or 2048x1
- To get larger blocks, combine multiple EABs:
 - Example: combine two 256x8 RAM blocks to form a 256x16 RAM block
 - Example: combine two 512x4 RAM blocks to form a 512x8 RAM block
 - Can even combine all EABs on the chip into one big RAM block
 - Can combine so as to form blocks up to 2048 words without impacting timing

EAB gets input from a row channel, and can output to up to 2 row channels and 2 column channels

Input and output buffers are available