Altera FLEX 8000 Block Diagram (Review)

- FLEX 8000 chip contains 26–162 LABs
 - Each LAB contains 8 Logic Elements (LEs), so a chip contains 208–1296 LEs, totaling 2,500–16,000 usable gates
 - LABs arranged in rows and columns, connected by FastTrack Interconnect, with I/O elements (IOEs) at the edges

Altera FLEX 10K Block Diagram (Review)

- FLEX 10K chip contains 72–1520 LABs
 - Each LAB contains 8 Logic Elements (LEs), so a chip contains 576–12,160 LEs, totaling 10,000–250,000 usable gates
 - Each chip also contains 3–20 Embedded Array Blocks (EABs), which can provide 6,164–40,960 bits of RAM

Altera APEX 20K Overview

- APEX 20K chip contains:
 - 256–3,456 LABs, each of which contains 10 Logic Elements (LEs), so a chip contains 2,560–51,840 LEs, 162,000–2,391,552 usable gates
 - 16–216 Embedded System Blocks (EABs), each of which can provide 32,768–442,368 bits of memory
 - Can implement CAM, RAM, dual-port RAM, ROM, and FIFO
- Organization:
 - MultiCore architecture, combining LUT, product-terms, & memory in one structure
 - Designed for "system on a chip"
 - MegaLAB structures, each of which contains 16 LABs, one ESB, and a MegaLAB interconnect (for routing within the MegaLAB)
 - ESB provides product terms or memory

APEX LABs and Interconnect

- Logic Array Block (LAB)
 - 10 LEs
 - Interleaved local interconnect (each LE connects to 2 local interconnect, each local interconnect connects to 10 LEs)
 - Each LE can connect to 29 other LEs through local interconnect
- Logic Element (LE)
 - 4-input LUT, carry chain, cascade chain, same as FLEX devices
 - Synchronous and asynchronous load and clear logic
- Interconnect
 - MegaLAB interconnect between 16 LABs, etc. inside each MegaLAB
 - FastTrack row and column interconnect between MegaLABs
APEX Embedded System Blocks (ESBs)

- Each ESB can act as a macrocell and provide product terms
 - Each ESB gets 32 inputs from local interconnect, from adjacent LAB or MegaLAB interconnect
 - In this mode, each ESB contains 16 macrocells, and each macrocell contains 2 product terms and a programmable register (parallel expanders also provided)

- Each ESB can also act as a memory block (dual-port RAM, ROM, FIFO, or CAM memory) configured in various sizes
 - Inputs from adjacent local interconnect, which can be driven from MegaLAB or FastTrack interconnect
 - Outputs to MegaLAB and FastTrack, some outputs to local interconnect

Xilinx XC4000

- Based on LUTs and SRAM programming

- Xilinx XC4000 chip contains a matrix of Combinational Logic Blocks (CLBs)
 - Chips range from 10x10 to 56x56 CLBs
 - Each CLB can be used for logic or RAM
 - Used entirely as logic, a chip provides 3,000–85,000 gates
 - Used entirely as RAM, a chip provides 3,200–100,352 bits of RAM
 - With "typical" usage of 20–30% RAM, a chip provides 2,000–55,000 gates

Each Combinational Logic Block (CLB):

- Two 4-input LUTs (called “function generators” F and G)
 - A 3-input LUT, which has 1–3 of its inputs coming from outside the CLB
 - CLB can implement two 4-variable functions, one 5-variable function, or some functions of up to 9 variables
- Two edge-triggered D flip-flops

Fast carry logic provides carry and borrow signals

- Not shown on previous slide, this computation occurs between CLB inputs and F & G LUTs
- Results are propagated between CLBs
- Flexibility is limited in high-capacity XC4000X series to improve speed
- Allows high-speed address calculation, high-speed addition for DSP, etc.
RAM

- LUTs can be treated as RAM cells

- Single-port operation
 - Configure as either one 16x2 or 32x1 bit array (both LUTs), two 16x1 bit arrays (both LUTs), or one 16x1 bit array (one LUT; use the other as logic)
 - Each has a common read / write port
 - Synchronous (edge-triggered) operation
 - Asynchronous (level-triggered) operation

- Dual-port operation
 - Configure as one 16x1 bit array, using both LUTs
 - One write port, two read ports
 - Supports simultaneous read and write operations to same or different addresses
 - Synchronous (edge-triggered) operation

Xilinx XC4000 I/O Block

- Two I/O Blocks (IOBs) are at the end of each row and column
 - Each IOB contains an input register / latch and an output register / latch
 - Two inputs (to chip): direct & register
 - The associated I/O pin can be used as either an input, output, or bidirectional pin

Xilinx XC4000 Routing

- CLB inputs and outputs connect to channels on all four sides, to provide maximum routing flexibility

- Switch matrix connects rows and columns
 - Six transistors per switch point

- CLBs connect to lines of various lengths:
 - Single-length lines — enter a switch matrix every row / column
 - Double-length lines — enter a switch matrix every two rows / columns
 - Longlines — for high fanout, time-critical nets, or nets that need to be distributed over much of the chip
 - XC4000X only:
 - Quad- and octal-length lines
 - Direct connections between adjacent CLBs
Xilinx FPGAs

- XCS00/XL (Spartan)
 - High volume ASIC replacement
 - 5v, 3v, 2,000–40,000 typical gates

- XC2S00 (Spartan-II)
 - High volume ASIC/ASSP replacement
 - 2.5v, 6,000–150,000 typical gates

- XC4000XLA, XC4000XL, XC4000XV
 - High density
 - 3v, 1,500–500,000 typical gates

- XCV00 (Virtex)
 - High density / performance
 - 2.5v, 34,000–1,124,000 typical gates