Integrated Circuits (ICs)

- Integrated Circuit (IC) = “chip”
 - General-purpose microprocessor, CPU
 - Application-Specific Instruction Set Processor (ASIP), e.g. video processor or digital signal processor
 - Application-Specific IC (ASIC) or Field-Programmable Logic Device (FPLD)

- IC package contains:
 - silicon chip = “die”
 - Pins, wires between die and pins

![Figure from Application-Specific Integrated Circuits, Smith, Addison-Wesley, 1997]

- Package may have heat sink attached

Some Applications of ICs

- Home
 - Appliances, intercom, telephones, security system, garage door opener, answering machines, fax machines, home computers, TVs, cable TV tuner, VCR, camcorder, video games, cellular phones, sewing machines, cameras, exercise equipment, microwave oven

- Office
 - Telephones, computers, security system, fax machines, copier, printers, pagers

- Automobile
 - Trip computer, air bags, ABS, instrumentation, security system, transmission control, entertainment system, climate control, keyless entry, cellular phone, GPS

List from Hardware/Software Codesign, Giovanni De Micheli, 1996.

Integrated Circuits (ICs) (cont.)

- A modern digital system is built out of a collection of integrated circuits (ICs), each of which is made up of gates

- ICs are typically classified based on the number of gates they contain
 - SSI (small scale integration) < 10
 - 4 nand gates
 - 4 or gates
 - 4 and gates
 - MSI (medium…) 10-100
 - simple adders, counters
 - multiplexers
 - flip-flops
 - LSI (large…) 100-10,000
 - Interface devices
 - Calculators
 - Digital clocks
 - Simple microprocessors

Integrated Circuits (ICs) (cont.)

- Classification, cont.
 - VLSI (very large…) >10,000
 - Modern microprocessors
 - 8086 = 29,000
 - i386DX = 275,000
 - i486DX = 1,200,000
 - Pentium = 3,100,000
 - Pentium Pro = 5,500,000
 - Pentium II = 7,500,000
 - Pentium M = 77,000,000 (half are for the L2 cache)
 - Application-Specific Instruction Set Processor (ASIP), e.g. video processor or digital signal processor
 - Application-Specific IC (ASIC)
 - Generally cost-effective only when produced in high volume (hundreds of thousands of part)
 - Also used when very high performance is needed
 - Field-Programmable Logic Device (FPLD)
 - Very common, 80,000 new design starts in 2003 (vs. 4,000 for ASICs)
ASICS vs. FPLDs

- IC contains a *chip* ("die") cut from a *wafer*
 - Transistors, wires, etc. are built up on the chip in a series of *layers* (10-50 layers)
 - A *mask* is used to define the components of a layer as they are applied to the chip
- **ASICS vs. FPLDs** (+ pizza equivalent)
 - Full-custom ASIC
 - Prepare pizza sauce, toppings, dough from scratch; takes a long time
 - Standard-cell-based ASIC
 - Choose from limited selection of toppings and dough; less work but still slow
 - Gate-array-based ASIC
 - Add canned toppings to pre-cooked crusts; save some time and cost
 - Field-programmable logic device
 - Frozen pizza — limited selection, trivial to cook, very cheap

Full-Custom ASICs

- **Design** — engineer does detailed design of logic cells, circuit, and layout
 - Time-consuming and costly!
 - Primarily used if no pre-designed modules are available (e.g., new or highly specialized circuit), or when very high performance is needed
- **Fabrication** — design is sent to a *fabrication facility* (a "fab"), where it is etched onto *wafer*s, each wafer containing 100’s of chips
 - Wafers used to be 8", now 13", discs
 - Fabrication is expensive (huge fixed startup cost), and takes a couple of months
 - Most chips fabricated using CMOS techniques (details later in the course)

Standard-Cell-Based ASICs

- **Design** — chip is built from pre-defined modules called *standard cells*
 - Standard cells are built by someone else using full-custom design techniques
 - Save time, money, and risk by using a well-designed, verified *cell library*
 - But — have to pay for the cell library
 - Also use larger cells (microprocessors, etc.) called *mega cells* (sometimes *cores*)

Standard-Cell-Based ASICs (cont.)

- Cells fit together like bricks in a wall — rows of (variable-width) cells
 - Most interconnect goes in *channels* between rows, though some cells may be designated as *feedthroughs* (vias) between rows
 - Most *metal layers* provide interconnect
 - Others provide power and ground
 - Fabrication remains costly and slow

Figure from *Application-Specific Integrated Circuits*, Smith, Addison-Wesley, 1997
Gate Array-Based ASICs

- Designed using pre-defined modules
- Fabrication time reduced — transistors are placed in a fixed pattern on the chip
 - Interconnect is defined by designer and fabricated using a custom mask
- Chip is partially fabricated (cells, power, etc. added) and then stockpiled
 - When design is received for fabrication, the remaining metal layers are added
 - Cheaper — everyone shares cost of producing high volume of initial chip
 - Quick turn-around — days, couple weeks
- Variations:
 - Channeled gate arrays
 - Channelless gate arrays

Programmable Logic Devices (FPLDs)

- Known by a variety of names:
 - Field-Programmable Gate Array (FPGA)
 - Field-Programmable Logic Device (FPLD)
 - Complex Programmable Logic Device (CPLD)
- Similar to PLDs, but more complex
 - Core is a regular array of programmable logic cells, each of which contains combinational and sequential logic
 - Programmable interconnect surrounds the logic cells
 - Some method provided for programming the base logic cells and the interconnect
 - Designed using pre-defined modules, with “fabrication” turn-around on the order of minutes

Field Programmable Logic Devices (FPLDs)

- Standard ICs, available in standard configurations, sold in high volume
 - No customized cells or masks, just a single large block of programmable interconnect
 - Can be configured / programmed to create a specialized device
 - Fast turn-around time
- Examples
 - Mask-programmable ROM — programmed when ordered
 - Programmable ROM — programmed electrically, erased electrically or using ultraviolet light, all by customer
 - PAL, PLA — 2-level sum-of-products and/or array, programmed electrically by customer (blowing fuses in array)

ASICs vs. FPLDs

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>ASIC</th>
<th>FPLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to market</td>
<td>Long</td>
<td>Short</td>
</tr>
<tr>
<td>High volume unit cost</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>NRE</td>
<td>High</td>
<td>None</td>
</tr>
<tr>
<td>Flexibility after manufacturing</td>
<td>None</td>
<td>High</td>
</tr>
<tr>
<td>Performance</td>
<td>Very High</td>
<td>Medium</td>
</tr>
<tr>
<td>Density</td>
<td>Very High</td>
<td>Medium</td>
</tr>
<tr>
<td>Power consumption</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Minimum order quantity</td>
<td>High</td>
<td>None</td>
</tr>
<tr>
<td>Design flow complexity</td>
<td>Very High</td>
<td>Medium</td>
</tr>
<tr>
<td>Complexity of testing</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Turnaround time</td>
<td>Months</td>
<td>Hours</td>
</tr>
</tbody>
</table>

Source: Jack Horgan, EDA Weekly, Monday 8/9/04