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Centrality indices are essential concepts in network analysis. Closeness centrality is the

very popular and most widely used centrality in the analysis of real-world complex networks.

Closeness of a vertex is the inverse of the average distance to each other vertex, it shows

how important and influential the vertex is. In particular, the current best algorithm of

selecting the k most central vertices in unweighted undirected graphs is based on the All-

Pairs-Shortest-Path approach (in short, APSP). However, in practice finding the most k

central vertices in a dataset is computationally intractable, even for sparse graphs, since

it requires a quadratic running time in the worst case. Fortunately, in this problem we

are not required to compute the exact closeness centrality for all vertices, to save time, we

can cut computation after finding the k vertices with the most closeness value. Bergamini

et al. [7] proposed a new algorithm for computing top-k ranking in unweighted graphs.

Their work is based on computing a lower bound on total distances of every vertex and

stopping the search when k vertices already have lower total distances than the bounds

computed for the other vertices. In Bergamini et al. algorithm, the tightness of the bounds

dramatically influences the algorithm performance. In this work, first, we propose a new

method of computing lower bounds on total distances of vertices to replace the method of

computing lower bounds in Bergamini et al. algorithm. We achieve excellent improvements

through replacing the method of computing lower bounds in Bergamini et al. algorithm

by our method of computing lower bounds. In our experiments on real-world networks we



show that our new method of computing bounds combined with top-k ranking algorithm

of Bergamini et al. significantly improves computation of finding the k most closeness

vertices over the APSP and Bergamini et al. algorithm. Second, our method of computing

lower bounds can be used as an approximation algorithm for finding the median vertex in a

graph; the median of a graph is a vertex with the highest closeness centrality. We validate

our approximation algorithm experimentally on various datasets from different domains,

such as biology, social networks, collaboration networks, etc.
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Chapter 1

Introduction

1.1 Introduction

Discovering the most central nodes in a real-world network is a fundamental problem that

rises in many research areas, such as biology, computer science, sociology, and psychology [9].

Although many centrality measures have been introduced in literature (see survey [8]), the

graph closeness centrality is the most popular and widely used one among those centralities.

Informally, the closeness centrality of a node v is the inverse of the average shortest path

distance [7]. Intuitively, the most central node is a node that can reach the rest of the graph

quickly. The centrality of a node tells how efficient the node is in spreading information

to other nodes. Also, nodes with the highest closeness centrality are considered the most

influential nodes in the network.

The importance of closeness centrality comes from its real-world applications. One

example is facility location: a company planning to open a store in a city might be interested

in knowing one or few locations that are close, on average, to a large number of potential

customers [22]. In viral marketing, the crucial question is to find a group of people in a

network who can trigger the most efficient product adoption [18]. National security, power

grid administration, and computer network management are other applications that stated

1



in [21] to benefit from the discovery of nodes with most closeness centrality in a network.

Given an unweighted undirected graph G = (V,E) and an integer k. Finding the k nodes

with highest closeness centrality values is related to the All-Pairs-Shortest-Path problem

(APSP). It requires the computation of distances for all pairs of nodes. Williams and

Vassilevska [24] proposes fast matrix multiplication for solving the top-k closeness centrality

problem in O(n2.373) time, where n is the number of vertices. However, this approach is not

practical due to its memory requirements O(n2) time. A more practical approach is to run

BFS for each node in the network. The complexity of the second approach is O(n(n+m))

time, where m is the number of edges. Since real-world networks are often sparse, the

BFS approach is more suitable. Unfortunately, the quadratic running time of the second

approach makes it prohibitive to be used in real-world networks with few millions of nodes.

Just recently Bergamini et al. [7] propose an algorithm for finding the k most central

vertices in an unweighted graph, we call it top-k ranking. The basic idea of their algorithm

is to discover a lower bound on total distances for each vertex. The algorithm works by

running BFS from vertices to compute total distances and stops computation when k vertices

whose total distances values are lower than the lower bounds on total distances of the other

nodes. In their experiments on real-world networks Bergamini et al. achieve significant

improvements over [9] and [21]. However, in the worst case the three algorithms are not

guaranteed to be faster than APSP approach, not surprising since it was proven that the

problem of finding vertices with highest closeness centrality is equivalent to APSP problem

[7].

The performance of Bergamini et al. top-k ranking algorithm is dramatically influenced

by the tightness of lower bounds on total distances of vertices. In our work, we propose a

new method of computing a lower bound for each vertex. Through replacing the method

of computing lower bounds in Bergamini et al. top-k ranking algorithm by our method of

computing lower bounds (LPLB : Layering Partition Lower Bound) we achieve excellent

improvements. We refer to Bergamini et al. method of computing lower bounds as Level-



Based Lower Bound, for short LBLB. Our method LPLB of computing lower bounds is

based on the layering partition procedure proposed by V. Chepoi and F. Dragan [13]. We

decompose graph into a tree like metric graph, Γ tree. Then, we compute exact distances

on Γ tree and use them to assign lower bounds to the vertices of the original graph.

Our method of finding lower bounds, Layering Partition Lower Bound, provides bounds

to vertices that are very close to exact values of total distances. If the lower bounds produced

by LPLB are not close by number to exact total distances values of the graph’s vertices,

they are close by the order. For example, let us assume that a vertex x is the most central

vertex in the graph. x will be assigned one of the best (lowest) lower bounds by LPLB

algorithm. This finding encouraged us to propose an approximation algorithm for finding

a median vertex in a graph. A median vertex in a graph is a vertex with highest closeness

centrality. It is a vertex that is the closest on average to all other vertices in the graph.

Our algorithm LPLB of finding lower bounds finds bounds on total distances for vertices

that are always better than the bounds that are found by Bergamini et al. method LPLP. In

our experiments on large collection of real-world networks, we show that our algorithm LPLB

of finding lower bounds combined with Bergamini et al. top-k ranking algorithm drastically

improves the APSP approach. In all the experiments LPLB combined with Bergamini

et al. top-k ranking algorithm [7] is mostly better, and never worse, than Bergamini et

al. FastClosL algorithm. However, in general graphs and in the worst case Bergamini et

al. and our method are not guarantied to be better than APSP approach. We show also

experimentally that our method LPLB of finding lower bounds can help in finding a median

vertex of a graph very fast. In our experiment, we show that after the preprocessing we

need only to examine 5% of the graph’s vertices to find a median of the graph.



1.2 Problem Definition and Notation

Given an unweighted undirected graph G = (V,E) and an integer k, we want to find the k

most central vertices in G. G is a strongly connected graph with V,E set of vertices and

edges respectively. The group k of most central vertices is the vertices in G that are close,

on average, to all other vertices. Let’s denote the closeness centrality of a vertex v, c(v)

Then

c(v) =
n− 1

S(v)
, (1.1)

where n is the number of vertices, n = |V |, and S(v) is the total distances, farness, from

the vertex v to all other vertices of G.

S(v) =
∑
u∈V

dG(v, u). (1.2)

The total distances, farness, from a vertex v is the sum of distances from v to all the

other vertices in G. dG(v, u) denotes the number of edges in a shortest path from v to u.

We define Γ = (Q,E ′) is the graph tree resulting from layering partition (LP (G, s)) of the

graph G with a starting vertex s. Q,E ′ denote set of nodes and edges of Γ respectively.

Table 1.1 summarizes notations.

1.3 Related Work

Closeness centrality is one of the most popular and used centrality in network analysis.

Due to its real-world applications, closeness has been studied extensively in literature. It

was proven in [1] that the complexity of discovering a node with the best closeness value is

related to the APSP problem. However, computing distances for all pairs of vertices in the

network may not be even feasible in a network with few millions of vertices. As we discussed,

even the proposed algorithm in [24] is, feasibly, prohibited to use in large networks.



Symbol Definition

G = (V,E) Graph with V , E sets of vertices and edges respectively
n Number of vertices = |V |
m Number of edges = |E|

Γ = (Q,E ′) A tree graph with Q,E ′ sets of nodes and edges respectively
q Number of nodes = |Q|
q′ Number of edges = |E ′|

dG(v, u) The number of edges in a shortest path between u and v in G
W (v) The number of vertices residing in the cluster v
dΓ(v, u) The number of edges in the shortest path between u and v in Γ
LP (G, s) Layering partition of a graph G from a starting point s
c(v) Closeness centrality of v
S(v) The total distances, farness, of v
σ(Γ) The dismantling ordering of the graph tree Γ

LPLB Layering partition lower bound
LBLB Level-based lower bound

Table 1.1: Summary of Notation

Some effort has been devoted to approximation algorithms. An approximation algo-

rithm for computing closeness values for all vertices in the network with an adaptive error ε

proposed by Eppstein et al. [16]. Although approximation algorithms might give a fast so-

lution, they may fail at preserving ranking of vertices since the difference between centrality

of some vertices might be very small [9].

The problem of computing the k nodes with the top closeness centralities with an accu-

rate ranking has been studied in [21] and [9]. Just recently, Bergamini et al. [7] proposed an

algorithm for extracting the k vertices with top closeness centralities of unweighted graph.

In their algorithm, a lower bound on total distances is computed for each vertex. A BFS

based algorithm computes exact total distances values of vertices and stops computation

when k vertices with total distances lower than the lower bounds for the other vertices is

found. In Bergamini et al. work, the computation of lower bounds is based on the fact that

the distance between any two nodes u at level i and v at level j and i ≤ j, is at least j − 1.

The computation for a very large number of vertices will be skipped if the lower bounds are

close to the exact values of total distances.



Experimentally, Bergamini et al. out performs all the current algorithms of finding the

k vertices with the best closeness such as [9]. However, the worst case complexity of all

proposed algorithms is not better than the worst case complexity of APSP approach.



Chapter 2

Theory Review and Datasets

2.1 Theory Review

In this section we will go through literature reviews for graph definition, representation, and

basic graph algorithms, such as BFS.

2.1.1 Graph

A graph G is a pair (V,E), where V is a set of objects (items) and E is a set of binary

relations on V [14]. V is called the vertex set of G, the elements of V are called vertices. E

is called the edgeset of G, the elements of E are called edges. A graph G can be directed

or undirected. We use notation (u, v) to represent edge that connects the two vertices u,

v. In an undirected graph G, we say u, v are adjacent if and only if the edge (u, v) ∈ E.

The degree of a vertex in the undirected graph G is the number of edges incident on it. We

denote the degree of a vertex v by deg(v).

A path of length k from a vertex u to a vertex u′ in a graph G = (V,E) is a sequence

{v0, v1, .., vk} of vertices such that u = v0 and u′ = vk, and (v(i−1), vi) ∈ E for i = 0, 1, .., k.

The number of edges on the path denotes the length of the path [14]. A path P is said to

be a simple path if all vertices in P are distinct.

7



In an undirected graph a path P = v0, v1, ..., vk forms a cycle if v0 = vk. The cycle is

called simple if, v0, v1, ..., vk are distinct. We say that G′ = (V ′, E ′) is a subgraph of the

graph G = (V,E) if V ′ ⊆ V and E ′ ⊆ E. If we are given V ′ ⊆ V , the subgraph induced by

V ′ is the graph G′ = (V ′, E ′), where E = {(u, v) ∈ E ′ : u, v ∈ V ′}

2.1.2 Representation of Graphs

There are two standard ways to represent a graph G = (V,E): adjacency list or adjacency

matrix [14]. The two representations are applicable for directed and undirected graphs.

However, the adjacency list is the more compact way to represent sparse graphs (real-world),

since real-world graphs are mostly sparse [7]. The graph algorithms in this thesis assume the

input graph to be represented as an adjacency list. Figure 2.1 shows the two representations

of an undirected graph. 2.1(a) shows an undirected graph with |V | = 5 and |E| = 7, 2.1(b)

the adjacency list representation, and 2.1(c) the adjacency matrix representation of the

graph.

((a)) An undirected graph ((b)) Adjacency list repre-
sentation

((c)) Adjacency matrix
representation

Figure 2.1: The two representations of an undirected graph

2.1.3 Undirected Graph

A graph G is called undirected graph when edges have no orientation [3]. In an undirected

graph G the edge (v, u) is identical to the edge (u, v). The maximum number of edges in

any undirected graph is n(n − 1)/2 [3]. The graph algorithms in this thesis assume the



input graph to be undirected. Figure 2.2 shows an undirected graph G with 6 vertices and

4 edges.

Figure 2.2: An undirected graph G = (V,E), where V = {1, 2, 3, 4, 5, 6} , and E =
{(1, 2), (2, 5), (1, 5), (3, 6)}

2.1.4 Connected Components

A subgraph of an undirected graph G is called a connected component if and only if there

is a path that connects any two vertices of that subgraph [14]. Figure 2.3 shows a graph

G with three connected components. The graph algorithms in this thesis assume the input

graph to be connected, if not, then we extract the largest connected component.

Figure 2.3: A graph G with three connected

2.1.5 Distance Between Vertices

The distance between any two vertices u, v in a graph G is the number of edges in a shortest

path connecting them. If there is no path connecting u, v, they belong to different connected

components. We denote the distance between any two vertices u, v in G by dG(u, v). The



diameter of a graph G, dim(G), is the greatest distance between any pair of vertices u, v ∈ G.

Formally, dim(G) of a set of vertices Y ⊆ V is max(u,v∈Y ) dG(u, v).

2.1.6 Breadth-First Search

Breadth-First Search (BFS) is one of the fundamental algorithms for exploring a graph.

Many important graph algorithms, such as Prim’s minimum spanning tree and Dijkstra’s

single-source shortest-path algorithms, use concepts related to those in Breadth-First Search

[14].

Given a graph G = (V,E) and a source vertex s, BFS(G, s) explores the edges of G to

discover every vertex that is reachable from the starting vertex s. It computes the shortest

path from s to every reachable vertex. BFS(G, s) procedure produces a breadth-first-search

tree of the graph G rooted at s. The breadth-first-search tree contains all shortest paths

from s to any reachable vertex v.

In order to track the progress, vertices will be colored white, gray, or black. At the

beginning all vertices are white. A vertex is colored black or gray while it is discovered for

the first time. If (u, v) ∈ E and vertex u is black, vertex v is either gray or black. All

vertices that attached (adjacent) to a black vertex have been discovered. Gray vertex could

have white neighbors.

The construction of breadth-first-search tree is started from the root vertex s. Whenever

a white vertex v is discovered in the scanning process of the adjacency list of an already

visited vertex u, the vertex v and the edge (u, v) is added to the breadth-first-search tree.

We say that u is the parent of v in the tree. Every vertex in the breadth-first-search tree

has at most one parent. If u is on the simple path in the breadth-first-search tree from s to

v, then u is an ancestor of v and v is a descendant of u.

Figure 2.4 shows the pseudocode of breadth-first search algorithm. The input graph

G = (V,E) is assumed to be represented using adjacency list. Several additional attributes

are added to each vertex in the graph. The color of each vertex is stored at u. color and



the parent of u in u.π. At the beginning the parent of each vertex u.π = NIL. u.d holds

the distance from the source vertex s to u.

Figure 2.4: Breadth-First Search procedure

The BFS procedure works as follows. In line 1 − 4 every vertex, except s, is colored

white, distance u.d is set to be infinity, and the parent is set to be NIL. In line 5, s is

painted gray, since it is already discovered. Line 6 initializes s.d = 0, and line 7 sets parent

of s to be NIL. Line 9 − 10 initialize a queue Q. The while loop of lines 10 − 18 iterates

while there remain gray vertices. Line 11 determines and removes the gray vertex u from

the head of the queue. Lines 12− 17 deal with each vertex v is in the adjacency list of u. In

case v is white, it has not been explored, and we will discover it by executing lines 14− 17.

We paint v gray, and set its distance v.d = u.d+ 1 and save u as v’s parent, v.π = u. Once

all the adjacent vertices of u have been examined, the procedure paints u black. Figure 2.5

shows the process of BFS procedure on a simple example.

The total running time of the breadth-first search (BFS) procedure on a graphG = (V,E)

is O(V + E). It runs in linear time in the size of adjacency list of representation of G.



Figure 2.5: BFS procedure works on an undirected graph. Tree edges are shown as they are
processed by the BFS

2.1.7 Trees

A tree T = (V,E) is a connected, acyclic graph. Any two nodes u, v ∈ V are connected

by a unique simple path [14]. In case any edge is removed from E, the resulting graph is

disconnected. T is also called a free tree, shown in Figure 2.6.

Figure 2.6: A free tree



A rooted tree is a tree in which one of the nodes is distinguished from the others [14].

The distinguished node is called the root of the tree. Consider a rooted tree T at r and a

node x. Any node y on the simple path from r to x is called an ancestor of x. In this case

x is a descendant of y. When the last edge on the simple path from r to x is (y, x), then y

is called the parent of x, and x is called a child of y. The root r of T is the only node with

no parent. Siblings are the nodes of T with same parent. A leafnode is the node with no

children. Any non-leaf node is called internal node.

The depth of a node x in T is the length of the simple path from the root r to x. All

nodes in the same depth in T is in the same level of T . The height of a node x in T is the

length of the longest simple path from x to a leaf node. The largest depth of any node in

the tree T denotes the height of T . Figure 2.7 illustrates a rooted tree with height 4. The

root of the tree is node 7, and its children at depth 1(nodes 3, 10, 4). Nodes 6, 9, 1, 10, 11, 2

are leaf nodes.

Figure 2.7: A rooted tree T



2.2 Datasets

In this section, we demonstrate our datasets which come from different domains such as bi-

ology, web graph, internet measurements, collaboration, and social network datasets. Table

2.1 summarizes basic statistics about our graph datasets in terms of number of vertices n,

number of edges m, and diameter of graph diam.

Datasets n m diam

Euroroad [4] 1,174 1,417 62
PPI [17] 1,458 1,948 19

Yeast [11] 2,224 6,609 11
Facebook [2] 2,888 2,981 9

DutchElite [15] 3,621 4,311 22
EVA [20] 4,475 4,664 18

AS-733 [12] 6,475 13,895 9
Erdös [6]] 6,927 11,850 4

Routeview [23] 10,515 21,455 10
PGP [5] 10,681 24,316 24

CAIDA [19] 26,475 53,381 17

Table 2.1: Summarization of graph datasets used in this work: n, m is the number of
vertices and edges respectively, diam is the diameter of the graph

2.2.1 Biological Networks

2.2.1.1 PPI

This biological graph demonstrates interactions between proteins in yeast Saccharomyces

Cerevisiae. PPI is a protein-protein interaction dataset, where each vertex represents a

protein, and each edge represents an interaction between two proteins. In the original

dataset, self loops are deleted. PPI has been analyzed and described in depth in [17].



2.2.1.2 Yeast

This biological graph shows interactions between proteins in the budding yeast. Yeast is a

protein-protein interaction dataset, where vertices represent proteins, each edge represents

an interaction between two proteins. In the original dataset, self loops are eliminated. This

dataset is well analyzed and described in [11].

2.2.2 Social and Collaboration Networks

2.2.2.1 DutchElite

This dataset was collected by De Volkskrant and Wouter de Nooy [15] from the administra-

tive elite in Netherland, 2006. Memberships in the administrative and organization bodies

were represented in this dataset. The structure of the dataset as follow: persons and or-

ganizations are represented by vertices. An edge is drawn between a person vertex and an

organization vertex if the person belongs to the organization.

2.2.2.2 EVA

EVA dataset represents interconnections between corporations. Each vertex represents a

company, and there is an edge between two vertices (companies) if one of them is the owner

of the other one. This graph is well described in [20].

2.2.2.3 Erdös

Erdös is a collaboration network, where each vertex represents an author, and an edge

between two vertices (authors) represents a paper co-authorship between them. Erdös is

the collaboration network of the mathematician Paul Erdös [6].



2.2.2.4 PGP

List of edges of the giant component of the network of users of the Pretty-Good-Privacy

algorithm for secure information interchange. This is the interaction network presented by

M. Boguña [5].

2.2.2.5 Facebook

Facebook is a social network graph that is collected from a Facebook user’s friend list. In

this graph, each vertex represents a user, and each edge represents a friendship. Two users

are friends if and only if there is an edge connected their two vertices in the graph. This

graph collected by J. McAuley and J. Leskovec [2].

2.2.3 Internet Measurements Networks

2.2.3.1 Routeview

The Routeview graph dataset was obtained from Route-View Project by The University

of Oregon [23]. Routeview is an Autonomous System (AS) graph using looking glass data

and routing registry. The dataset represented as an undirected graph where each vertex

represents an AS, and edges represent physical links between them.

2.2.3.2 CAIDA

CAIDA is an autonomous system (AS) graph dataset of internet relationships. Data is

derived from BGP table snapshots taken over a 5 days’ period [19]. The obtainable AS

relationships are customer-provider, peer-to-peer, and sibling- to-sibling.

2.2.3.3 AS-733

This graph dataset is presented by J. Leskovec, J. Kleinberg and C. Faloutsos [12] as an

organization of sub-graphs, to the graph of routers comprising the internet, that is called



Autonomous System (AS). Each AS exchanges traffic flows with some neighbors. This

project is also collected from Route-View Project by The University of Oregon. Vertices are

autonomous systems (AS), and edges represent communication. The network has loops.

2.2.4 Road Networks

2.2.4.1 2.2.4.1. Euroroad

This dataset is an international E-road network that is located in Europe. Euroroad dataset

was collected by Lovro Šubelj and Marko Bajec [4]. Vertices in this graph denote cites and

an edge between two nodes represents that they are joined by an E-road.



Chapter 3

Algorithms

In this section we describe our method of computing top-k closeness centrality in a network.

Our basic idea of computing the k most central vertices is the following: (1) compute a lower

bound, S ′(v), of total distance for every vertex v in the graph, (2) run BFS for vertices with

lowest lower bounds, S ′(.), to compute exact total distance of a vertex, (3) stop computation

when the k vertices are found.

We start with describing the method of computing a lower bound for every vertex in the

network (graph), layering partition lower bound (LPLB) algorithm, we also refer it as the

precomputation step. After we build lower bounds, we use the top-k ranking algorithm by [7]

for finding the k vertices with the highest closeness centrality. Furthermore, we propose an

approximation algorithm to find the median vertex in the graph. We verify experimentally

that our approximate median is no worse that 1.5× the total distance of the optimal median.

3.1 Computing Lower Bound

Our main idea of designing a tight lower bound, S ′(v), for every v ∈ G is to decompose the

graph G into a tree graph, Γ = (Q,E ′). Each node w ∈ Q represents a group of vertices of

G. We compute farness, total distances, SΓ(w) for each node w. After that, each node w
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will assign its farness value as a lower bound on total distances, S ′G(v), to the vertices of G

that the node w represents.

Our algorithm of computing lower bounds, layering partition lower bound (LPLB), we

also call it the preprocessing, consists of four steps. First step is to decompose the graph

metric into a tree. Every node in the tree corresponds to at least one vertex of the original

graph. Second step puts nodes of the tree in an order based on the dismantling ordering.

The third step computes total distance, farness on the tree, form every node to all other

nodes of the tree. The fourth step assigns the total distance of every node on the tree to its

corresponding vertices in the graph as a lower bound.

3.1.1 Step 1: Layering Partition

Our first step of designing a tight lower bound, S ′(v), for each vertex v ∈ V comes from

[10] and [13]. Layering partition is a procedure that embeds graph’s metric into a tree, we

denote it as Γ. Γ is very operational in calculating a tight lower bound on distances between

vertices, that is the main tool in our strategy. Building Γ = (Q,E ′) tree from a graph

G = (V,E) starts by layering G with respect to a starting vertex s. A layering of G starting

from any vertex s is the decomposition of V into r + 1 layers Li = {u ∈ V : dG(s, u) = i},

i = 0, 1, ..., r. Layering of any graph can be done in linear time O(n + m) by running BFS

algorithm starting from s. Figure 3.1 shows the graph G after layering process.



.

Figure 3.1: Layering on Graph G with a starting node s

Partitioning starts with partition each layer Li into clusters Li
1, . . . , L

i
(pi). The method of

building these clusters is that any two vertices u, v ∈ Li belong to the same cluster Li
j if and

only if they can be connected by a path outside the ball B(i−1)(s) of radius i − 1 centered

at s. Formally, LP (G, s) = Li
1, . . . , L

i
(pi) : i = 0, 1, . . . , r. Figure 3.2 shows partition process.

The implementation of the portioning procedure in linear time comes from V. Chepoi and

F. Dragan [13]. Just after layering G, we start from the layer Lr(s) of largest radius. We

start by finding connected components of the layer r based on the predefined method and

contruct each of them into a node. After that we go to the lower layer and find the connected

components in the graph induced by L(r−1)(s) and the set of contracted vertices, contract

each of them and descend to the lower level, until we will come to the vertex s.

Figure 3.2: Clusters of the layering partition LP (G, s).



Γ = (Q,E ′) is the graph that results from layering partition process, LP (G, s).The

graph’s Γ nodes Q are the clusters of LP (G, s) and two nodes in Γ are adjacent if and only

if there exist vertices u ∈ Li
j, v ∈ Li′

j′ such that there exists an edge (u, v) ∈ E.The resulting

graph Γ is proven to be a tree by [13]. Figure 3.3 shows Γ tree.

Figure 3.3: Γ tree that is resulted from LP (G, s).

3.1.2 Step 2: Dismantling Ordering on Trees

Our main idea of computing a tight lower bound for each vertex in a graph G is to build

a Γ = (Q,E ′) graph from G = (V,E). Next, we compute exact value of total distances,

farness, for every node of Γ. Since we know every node in Γ is a cluster that represents

group of vertices of G, we assign the total distances value of each node w ∈ Γ as a lower

bound to the vertices of G that the node w represents.

Let SΓ(w) represents the total distances, farness, of any node w ∈ Q then

SΓ(w) =
∑
v∈Q

dΓ(w, v)×W (v), (3.1)

where dΓ(w, v) is the number of edges on the shortest path between w, v in Γ, and W (v) is

the number of vertices of G residing in the cluster Li
j that is represented by the node v.

For a fast computation of the distance between any two nodes in Γ tree, a two stages

procedure will be followed:



(1) find the dismantling ordering, σ, of Γ;

(2) based on σ we build a |Q| × |Q| array to compute exact distances.

In this subsection we present the solution to (1). The solution to (2) will be shown in

subsection 3.1.3

The dismantling ordering of a tree can be built by finding leaf nodes of the tree at each

iteration. The linear time implementation can be done by: (1) run BFS algorithm from a

random node; (2) iteratively, cut leaf nodes and put them in the order. Figure 3.4(a) shows

an example of a Γ tree, Figure 3.4(b) demonstrates Γ tree after running BFS from a starting

node, node1. Building σ(Γ) is done iteratively by cut nodes in the higher layer of the tree

shown in Figure 3.4(b). After that, we add to the order, σ, nodes in the lower layer, and so

on till we reach the starting node, Figure 3.4(c) shows the resulting order of Γ tree.

((a)) A Γ tree ((b)) Γ tree after running
BFS from node1

((c)) The dismantling or-
dering σ(Γ)

Figure 3.4: Building The dismantling ordering of Γ tree.

3.1.3 Step 3: Distance Matrix

Computing distance between any pair of nodes can be done using a two dimensional array,

we denote it as A, of size p× p, where p = |Q|. Columns and rows of A are occupied by the

dismantling ordering, σ. The idea of computing exact distance between any pair of nodes

is that: each node will rely on its parent to compute distances to other nodes. Since the

distance between every node and its parent is 1, for every node that is reachable from the

parent of a node w with distance d, it is also reachable from w with distance d + 1. One

thing that we need to make sure of is that we should compute distances of a parent before its



children. This property is preserved since we compute distances based on the dismantling

ordering, σ.

The calculation will start from the bottom right corner and go up diagonally. To make

the computation clear, we will rely on the following example: Example 1: Assume we have

the perfect elimination ordering σ of Γ tree shown in Figure 3.5(b). Also, every node in

σ has a pointer to its parent in Γ tree. We start the computation of exact distances on Γ

tree by building matrix A shown in Figure 3.5(a). We start filling the array as follows: we

start from the bottom right corner and fill A(6, 6) = 0 because the distance from a node to

itself is 0. We go diagonally up and fill A(5, 5) = 0. We rely on node1 to calculate distances

of node2, because node1 is the parent of node2, as follows: we will copy all distances that

node1 knows so far and add 1 to each one of them and give them to node2. We will get

A(5, 6) = A(6, 6) + 1, A(6, 5) = A(5, 6). We continue to calculate distances of node5 as

follows: node5 knows its parents, node2, so its distances will be the same as for its parent,

node2, plus 1 to each of them. The distances of node5 will be as follows: A(4, 4) = 0,

A(4, 5) = A(5, 5) + 1, A(4, 6) = A(5, 6) + 1, A(5, 4) = A(4, 5), A(4, 6) = A(4, 6). And so on

for all the remaining nodes.



((a)) Steps of filling the distances matrix, A ((b)) The dismantling or-
dering σ(Γ)

Figure 3.5: Computing exact distances of Γ tree.

After building the two dimentional array A, every node in Γ tree will have information

about the shortest path to every other node. In order to compute value of total distances,

farness, SΓ(w) for every node w ∈ Γ, we apply Equation (3.1). From the implementation

point of view this step can be done in O(p2) time, where p = |Q|. The running time is linear

to the graph G, since |Q| ≤ |V |, however, in practice Q is way smaller than V .

3.1.4 Step 4: Assignment of Lower Bounds

By the end of Subsection 3.1.3, we have calculated the total value of distances SΓ(Li
j) for

every node Li
j in Γ tree. Just a reminder that the graph Γ = (Q,E ′) was built from

G = (V,E) through clustering vertices of G into groups based on a specific method, defined

in Subsection 3.1.1. Every node Li
j ∈ Γ is a cluster that holds a group of vertices from G

in a list we denote it as l(Li
j). In this subsection, every node Li

j in Γ tree assigns its value

of total distances, SΓ(Li
j), as a lower bound for all vertices v in its cluster list as S ′(v).

Formally: ∀v ∈ l(Li
j), S

′
G(v) = SΓ(Li

j), where S
′
G(v) is the lower bound on total distances



for the vertex v ∈ V , and SΓ(Li
j) is the exact total distances of the node Li

j ∈ Q.

A nice observation has been made by Bergamini et al. [7] that can more tighten our

lower bound. They observe that in every graph the number of vertices at distance 1 from

v is exactly the degree of v. As well as, all other vertices u are at least at 2 distance away

from v, except v itself. This observation can tighten our lower bound S ′(v). Formally:

S ′G(v) := S ′G(v) +
∑

∀u∈adjΓ(v)

W (u) + 2×W (v)− deg(v)− 2. (3.2)

3.2 Computation of Top-k Closeness Centrality and

Median

Both the computation of the exact top-k closeness centrality and the approximate median

rely on the same preprocessing step, which is the computation of the lower bound, LPLB.

3.2.1 Computation of Top-k Closeness Centrality

In previous sections we gradually built a very tight lower bound S ′(v) for every vertex v ∈ V .

In this section, we are going to describe the approach that we use to compute the top-k

vertices with maximum closeness centrality. The basic idea of this algorithm is described in

[7], however we visit it again.

Let S(v) be the total distances of a vertex v and let S ′(v) be its lower bound. If

S(v) ≤ S ′(u), ∀u ∈ V , it is true that S(v) ≤ S(u), ∀u ∈ V , thus v is one of the nodes,

might be the one, with maximum closeness centrality. Based on this observation, we are

not required to compute the total distances S(u) for all remaining vertices. Algorithm 1 is

the pseudocode of the idea above.

First, we insert all vertices into an ascending ordered priority queue, ordered by the value

of S ′(v). At the same time, we set a truth value exact(v) to false. Then, we pop vertices



from the queue one after another. For the popped vertex v∗, we compute the exact total

distance S(v) and set exact(v) to true and re-enqueue v∗ again based on its new priority

S(v). If we encounter a vertex with exact(v) = true that means its exact value has been

computed and the total distances of it is smaller than the lower bound on total distances of

all other vertices in the queue. Therefore, we can append v∗ to the list of the most central

vertices.

Algorithm 1 Top-k ranking

Input: A graph G=(V, E)
Output: top-k vertices with highest closeness and their closeness values c(u)

1: S ′ ← ComputeLowerBounds
2: Q1← ∅
3: for each v ∈ V do
4: Q1← enqueue(v, pv = S ′(v))
5: exact[v]← false
6: end for
7: i← 0
8: TopK ← [ ]
9: while i < k do

10: (v∗, S∗)← extractMin(Q1)
11: if exact[v∗] then
12: TopK ← (v∗,S∗)
13: i← i+ 1
14: else
15: S(v)←

∑
w∈V d(v, w)

16: Q1← enqueue(v, pv = S(v))
17: exact[v]← enqueue(v, pv = S(v))
18: end if
19: end while
20: return TopK

3.2.2 The Approximation Algorithm for Computing Median

In this subsection, we describe our approximation algorithm (Approximation Cut, for short

AproxCut) for computing a median vertex of a network. In many real-world networks the

problem of finding a median vertex is critical and challenging. To the best of our knowledge,



even for a graph with few millions of nodes, there is no feasible algorithm to compute the

exact median on large networks. Since the problem of finding the exact median (top-k

closeness centrality, when k = 1) is proven to be equivalent to APSP problem, the attention

has been devoted toward the approximation algorithms. The approximation algorithms can

give solution that can be correct or close to the correct answer. In this section we propose a

new approximation algorithm for finding a median in a graph. Our approximation algorithm

is based on a near linear preprocessing (computing lower bounds) and after the preprocessing

it examines only 5 % of the graph’s vertices to give an approximate median that is no worse

than 1.5× the total distances of the optimal median.

AproxCut starts with computing a lower bound for each vertex v ∈ V using LPLB

procedure. The next step is to insert all vertices V into a min-priority queue, Q1 based on

the lower bound S ′(v). After that we extract only 5% of the vertices in Q1, compute their

exact values of total distances, and insert them into a new priority queue Q2 based on their

S(v). The approximate median will be in the peek of Q2. Algorithm 2 is the pseudocode

of the AproxCut.

The reason behind the proposal of this algorithm is the following. The lower bound

algorithm can give a good prediction of the top-k closeness centrality vertices. We have

noticed that LPLB puts the top-k vertices early in the queue, however, to validate them

we need to spend some time. The proposed approximation algorithm (AproxCut) does

not validate the median, however, we show experimentally that the vertex that AproxCut

provides is a median in many cases, and, if not a median, its value is very close to the optimal.

In particular, we verify experimentally, in Chapter 4, that the approximate median is no

more than 1.5× the total distances of the optimal median.



Algorithm 2 ApproxCut

Input: A graph G=(V, E)
Output: Median vertex of G with its closeness value c(v)

1: S ′ ← ComputeLowerBounds
2: Q1← ∅
3: Q2← ∅
4: for each v ∈ V do
5: Q1← enqueue(v, pv = S ′(v))
6: end for
7: i← 0
8: k ← G.size ∗ 0.05
9: while i < k do

10: (v∗, S∗)← extractMin(Q1)
11: S(v)←

∑
w∈V d(v, w)

12: Q2← enqueue(v, pv = S(v))
13: i← i+ 1
14: end while
15: median← extractMin(Q2)
16: return median



Chapter 4

Experimental Evaluation

We denote our algorithm of finding the exact top-k closeness centrality by BestClos and

the-state-of-the-art algorithm by FastClosL [7]. Furthermore, we denote our approxima-

tion algorithm for finding median by AproxCut. In this section, we experimentally evaluate

the performance of the algorithms BestClos and AproxCut. BestClos is evaluated against

Bergamini et al. algorithm, FastClosL, that is the-state-of-the-art algorithm for finding

top-k closeness centrality in unweighted undirected graphs. All three algorithms are imple-

mented in Java 1.8., the machine used is MacBook Pro, 2.6 GHz Intel Core i5 processor,

and 8 GB 1600 MHz DDR3 memory.

4.1 Datasets

We use eleven real-world datasets, which come from different domains such as biology, web

graph, internet measurements, social and collaboration networks, to evaluate BestClos and

AproxCut. The networks are taken from SNAP (snap.stanford.edu), KONECT (konect.uni-

koblenz.de) and other resources stated in Section 2.2. Table 2.1 summarizes the properties

of datasets. Section 2.2 gives a clear explanation to each dataset.
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4.2 Preprocessing

Preprocessing, performed by Bergamini et al. algorithm [7] Level-Based Lower Bound

(LBLB) and our algorithm Layering Partition Lower Bound (LPLB), is used to compute a

lower bound for each vertex v ∈ V . LBLB computes lower bounds by first running BFS

from a starting vertex s. BFS will layer the graph into levels based on the distance from the

starting vertex s. Let i and j be two levels, and i ≤ j. Then, the distance between any two

vertices v at level i and w at level j must be at least j − i. Actually, if d(v, w) was smaller

than j − i, w would be at level i + d(v, w) < j, which contradicts the assumption. LBLB

produces lower bounds that are not very close to the exact total distances values of vertices

to help Algorithm 1 to terminate early.

On the other hand, our algorithm of computing lower bounds LPLB produces lower

bounds to vertices that are very close to the exact total distances. LPLB strategy is to

further partition the graph not only to layers, but also to clusters in these layers. The main

weakness in LBLB is that they treat all vertices in the same layer similarly. However, LPLB

further divides the graph into layers and also clusters in every layer. Dividing the graph

helps us to compute better lower bounds. Figures 4.1, 4.2, and 4.3 show direct comparison

of LPLB bounds, LBLB bounds, and the exact total distances of every vertex.

In Figures 4.1, 4.2, and 4.3, the performance is shown for every vertex in sorted order

based on their exact total distances. Every vertex in charts represented on Figures 4.1, 4.2,

and 4.3 contributed three values as follows: (1) its exact total distance, S(v), (2) its lower

bound on total distances computed by LPLB, S ′LPLB(v), we denote it as LPLB, and (3)

its lower bound on total distances computed by LBLB, S ′LBLB(v), we denote is as LBLB.

We can clearly see that LPLB lower bounds are most of the time better than lower bounds

of vertices produced by LBLB. Both LPLB and LBLB produce same lower bound values

for some vertices, however, LBLB does not produce lower bounds that are better than that

LPLB produces. So, LPLB most of the time produces lower bounds on total distances

for vertices that are better than the ones produces by LBLB. It is worth to mention that



even though in some cases both LPLB and LBLB produces similar lower bounds for some

vertices, FastClosL fails to confirm the top-k vertices fast enough. FastClosL performance

is mostly behind our algorithm’s, BestClos, performance. The performance comparison in

the next sections clearly demonstrates that.



Figure 4.1: Comparison between lower bounds produced by our algorithm LPLB and lower
bounds produced by LBLB to the optimal total distances, EXACT. The x−axis is the vertex
ID and y − axis represents the three values for every vertex of Social and Collaboration
Networks.



Figure 4.2: Comparison between lower bounds produced by our algorithm LPLB and lower
bounds produced by LBLB to the optimal total distances, EXACT. The x − axis is the
vertex ID and y−axis represents the three values for every vertex of Internet Measurements
Networks.



((a)) Biological Networks

((b)) Road Networks

Figure 4.3: Comparison between lower bounds produced by our algorithm LPLB and lower
bounds produced by LBLB to the optimal total distances, EXACT. The x − axis is the
vertex ID and y − axis represents the three values for every vertex of Biological Networks
and Road Networks.

4.3 Performance Measure

In this test we adopt the measure of performance the performance ratio that is introduced

by Borassi et al. [9]. Their performance ratio is based on edge traversed, however, we adopt

it for vertices. Let |Vvis| be the number of vertices visited by the top-k ranking algorithm

(Algorithm 1) at line 15. The performance ratio is defined as |Vvis| divided by the number of



vertices that the exhaustive algorithm (running BFS for all nodes) would use, i.e., |Vvis|
|V | . This

measure depends on the number of operations performed. Furthermore, this measure allows

an assessment autonomous of computer architecture. This test is independent in terms that

it does not consider the preprocessing step. Table 4.1 shows the performance ratio of our

algorithm BestClos and Bergamini et al. algorithm FastClosL [7] with k = 1, 5, and 10.

From Table 4.1 we can clearly see that our algorithm for small k, k = 1 to 10, outperforms

the-state-of-the-art algorithm FastClosL.

Dataset Number of
Vertices

performance
ratio(k=1)
BestClos

performance
ratio(k=1)
FastClosL

performance
ratio(k=5)
BestClos

performance
ratio(k=5)
FastClosL

performance
ratio(k=10)
BestClos

performance
ratio(k=10)
FastClosL

Euroroad 1175 45% 76% 48% 80% 50% 80%
PPI 1458 73% 97% 85% 98% 86% 98%
Yeast 2224 95% 99% 95% 99% 97% 99%
Facebook 2889 0.2% 91% 1% 94% 16% 99%
DutchElite 3621 83% 99% 85% 99% 85% 99%
EVA 4475 14% 98% 34% 99% 39% 99%
AS-733 6475 24% 99% 25% 99% 91% 99%
Erdös 6927 0.01% 0.01% 98% 99% 98% 99%
Routeview 10515 24% 99% 24% 99% 26% 99%
PGP 10681 64% 98% 71% 99% 71% 99%
CAIDA 26476 71% 99% 71% 99% 71% 99%

Table 4.1: Performace evaluation of BestClos against the-state-of-the-art algorithm,
FastClosL, with k= 1, 5, and 10. Performance ratio is the ratio of the visited vertices
by BestClos and FastClosL to the number of vertices visited by the näıve algorithm of
finding top-k most central vertices in a network.

4.4 Full Performance Measure

In this experiment, we monitor the performance ofBestClos and FastClosL with all possible

values of k. In Subsection 4.3 we restrict k to specific values, but in this experiment we

will see the algorithms’ performance for all possible values of k. The results will be shown

in a figure for each graph dataset where x − axis represents number of vertices visited by

the top-k ranking algorithm (Algorithm 1) and y − axis specifies the specific value k. As

in previous experiments, we examine the same collection of various datasets that comes

from different domains, described in Section 2.2. The reason behind considering graphs



from different domains is to draw a conclusion about the performance of our algorithm

(BestClos) in order to recommend it to be used in specific fields. We strongly believe that

our algorithm, BestClos, same as most of the proposed algorithms to solve the closeness

centrality, performs differently based on characteristics of the network, it is interesting to

show that experimentally. Figures 4.4, 4.5, and 4.6 show the performance of BestClos and

FastClosL on different collections of graph datasets.

Figures Figures 4.4, 4.5, and 4.6 show that BestClos has significant improvements over

the-state-of-the-art FastClosL. Furthermore, we notice that the performance may differ

based on the network. For some social networks, such as Facebook [2] BestClos has superior

performance, see Figure 4.4, however, on biological network, such as Yeast [11] it has a poor

performance, see Figure 4.6(a). Biological networks are known to have a high degree of

vertices and low diameter. These characteristics may affect the method of computing lower

bounds. We notice from Figure 4.3(a) that the lower bound of biological network is not very

close to the exact total distances values. We do not recommend our method for biological

networks. However, we highly recommend it to be used for other networks such as, social

and road networks.



Figure 4.4: Full performance test of BestClos against the-state-of-the-art FastClosL. The
x− axis shows the value of k, and the y − axis represents number of BFSs needed by the
two algorithms to produce the top-k vertices with best closeness centralities for Social and
Collaboration Networks.



Figure 4.5: Full performance test of BestClos against the-state-of-the-art FastClosL. The
x− axis shows the value of k, and the y − axis represents number of BFSs needed by the
two algorithms to produce the top-k vertices with best closeness centralities for Internet
Measurements Networks.



((a)) Biological Networks

((b)) Road Networks

Figure 4.6: Full performance test of BestClos against the-state-of-the-art FastClosL. The
x− axis shows the value of k, and the y − axis represents number of BFSs needed by the
two algorithms to produce the top-k vertices with best closeness centralities for Biological
Networks and Road Networks.

4.5 Median Test

In this experiment, we test how good is our approximate median that results from the

proposed approximation algorithm AproxCut ( Algorithm 2). We do the test by compar-

ing results of the proposed algorithm of finding approximate median, AproxCut, with the

optimal median for various datasets. In Subsection 3.2.2, we mentioned that in order to



find the approximate median we do preprocessing, LPLB, and after that, we examine only

5% of the dataset to give the approximate median with confidence. In this test, we show

that examining only 5% of the graph after the preprocessing step is enough to give a result

that is very close to the optimal solution, if it does not give the optimal. We show that

by comparing the result of examining 5% of the graph, AproxCut, with the optimal, exact,

median. The metric of this experiment is the ratio between total distances, S(.), of the

approximate median found by AproxCut and total distances of the optimal median of the

dataset, S(v)
S(u)

, where S(v) is the value of total distances of the approximate median v, and

S(u) is the value of total distances of the optimal median u. If the ratio is one, we have

the optimal median. The higher the ratio is the far AproxCut solution is from the optimal

median.

To make sure that AproxCut algorithm gives a high confidence median by examining

only 5% of the dataset, in this experiment we go even beyond examining only 5% to 3%

and even 1% to see how good the approximate median that AproxCut provides. We test

AproxCut on eleven datasets from various domains. Our datasets are described in depth

in Section 2.2 . Table 4.2 shows that ratio between the total distances of the approximate

median provided by AproxCut and the total distances of the optimal median.

The result of this experiment shows that for the eleven datasets from various domains

that we have examined, AproxCut algorithm gives the optimal median in many cases. If

AproxCut does not give the optimal median, it gives a vertex that is very close to the

optimal. We can say with confidence that the approximate median provided by AproxCut

is no worse than 1.5× the total distances of the optimal median. It is clear that AproxCut

can give a very good answers not only by examining 5% of the graph, but also 3% and

even 1%. To sum up, experiments that we have used in this subsection validate AproxCut

proposed in Subsection 3.2.2.



Dataset Farness of AproxCut
median / Farness of
optimal median, only
5% of vertices exam-
ined

Farness of AproxCut
median/ Farness of
optimal median only
3% of vertices exam-
ined

Farness of AproxCut
median / Farness of
optimal median only
1% of vertices exam-
ined

Euroroad 1.05 1.05 1.05
PPI 1.12 1.12 1.14
Yeast 1 1 1
Facebook 1 1 1
DutchElite 1.02 1.02 1.02
EVA 1.06 1.06 1.23
AS-733 1 1 1
Erdös 1 1 1
Routeview 1 1 1
PGP 1.08 1.08 1.08
CAIDA 1 1 1

Table 4.2: Total distances, farness, of the median proposed by the approximation algorithm
(AproxCut) to the total distances, farness, of optimal median.



Chapter 5

Conclusion

In this work we tackled an important problem in network analysis, closeness centrality.

We proposed a practical solution to the problem of finding the top-k most central vertices

in large networks. The most recent work on finding most central vertices are based on

computing a lower bound on total distances for vertices and stop computation when the k

most central vertices are found. However, their method of computing lower bounds is not

very effective. We present a new method of finding lower bounds for each vertex in the

network. We show that our method significantly improves the-state-of-the-art method of

computing lower bounds [7]. As a result we can efficiently find the top-k closeness centrality

faster than all the known methods.

Our method of finding lower bounds helps to find approximate median of a network very

fast. Median of a network is a vertex that is the closest, on average, to all other vertices in

the network. We present an efficient algorithm for finding an approximate median that is

no worse than 1.5× total distances of optimal median.

To verify our algorithms, we tested them on eleven datasets from various domains such

as biology, social networks, collaboration networks, and road networks. We have drawn into

a conclusion that our method outperforms the state-of-the-art methods on all domains of

networks that we have tested. Our method gives its best performance on social and road
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networks where the diameter is high.

For future work, we may examine different starting points because we highly believe

that choosing a good vertex to start with the layering partition step may give even better

results. We plan to propose an upper bound on total distances to prune many vertices.

Furthermore, we plan to adopt our method of computing lower bounds to weighted directed

graphs. Also, we want to use our method to suggest a top-k approximation algorithm of

computing closeness centrality. Furthermore, it would be interesting to adapt our method

of computing lower bounds for another centrality measure such as betweenness centrality.
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