On Strong Tree-Breadth

Arne Leitert and Feodor F. Dragan

Introduction and Motivation

Tree-Decomposition of a Graph

A family $\mathcal{T} = \{B_1, B_2, \dots, B_k\}$ of subsets of *V* (called bags) which form a tree such that

- each vertex is in a bag,
- each edge is in a bag, and
- the bags containing a vertex induce a subtree.

For a family \mathcal{T} , it can be checked in linear time if it is a tree-decomposition.

New(-ish) Concept: Tree-Breadth

Breadth of a Decomposition

• Maximum radius ρ of all bags B

 $breadth(\mathcal{T}) = \min\left\{ \rho \mid \forall B \in \mathcal{T} \ \exists v \in V \colon B \subseteq N^{\rho}[v] \right\}$

• Gives a center *v* for each bag.

Tree-Breadth of a Graph

• Smallest breadth of all tree-decompositions \mathcal{T} for G

 $\mathsf{tb}(G) = \min\{ \rho \mid \forall \mathcal{T} \colon \mathsf{breadth}(\mathcal{T}) \le \rho \}$

Dually Chordal Graphs

A graph G = (V, E) with $V = \{v_1, v_2, \dots, v_n\}$ is *dually chordal* if $\mathcal{N} = \{N[v_1], N[v_2], \dots, N[v_n]\}$ is a tree-decomposition for G.

Dually Chordal B = N[v] for *all* v

Dually Chordal B = N[v] for *all* v

 \subseteq

Tree-Breadth $B \subseteq N[v]$ for *some* v

Dually Chordal vs Tree-Breadth

 $B \subseteq N[v] \text{ for all } v$ \swarrow Dually Chordal B = N[v] for all v \subseteq $Dually Chordal
<math display="block">B \subseteq N[v] \text{ for some } v$

Dually Chordal vs Tree-Breadth

Dually Chordal vs Tree-Breadth

$$strongBreadth(\mathcal{T}) = \min \left\{ \rho \mid \forall B \in \mathcal{T} \exists v \in V \colon B = N^{\rho}[v] \right\}$$
$$stb(G) = \min \left\{ \rho \mid \forall \mathcal{T} \colon strongBreadth(\mathcal{T}) \leq \rho \right\}$$

Results

Determining Strong Tree-Breadth of a Graph

Theorem

For a given graph *G* and a given integer ρ , it is NP-complete to determine if $stb(G) \le \rho$, even for $\rho = 1$.

Reduction from 1-in-3-SAT

Subgraphs of *G* as created by a clause $c = \{p_i, p_j, p_k\}$ and a literal p_l with $p_i \equiv \neg p_l$.

Theorem

For a graph *G* with $stb(G) \leq \rho$, a tree-decomposition \mathcal{T} with "weak" breadth ρ can be computed in polynomial time.

Perfect Strong Tree-Breadth

Perfect Strong Tree-Breadth

For two adjacent bags N[u] and N[v], N[u] intersect only one connected component of G − N[v].

Theorem

If a graph admits a tree-decomposition with perfect strong breadth ρ , such a decomposition can be constructed in polynomial time.

Observation

If, in a decomposition *T* with strong breadth *ρ*, the distances of centers are at least *ρ*, then *T* has perfect strong breadth *ρ*.

Theorem

Distance-hereditary graphs, chordal graphs, chordal bipartite graphs, and permutation graphs have strong tree-breadth 1.

For all these classes, an according tree-decomposition can be computed in linear time.

Open Questions

Open Questions

Strong Path-Breadth

- How hard is it to determine the strong path-breadth of a graph?
- Conjecture: Doable in polynomial time.

Difference to "weak" Tree-Breadth

- ▶ Is there a constant *c* such that, for all graphs *G*, $stb(G) \le c \cdot tb(G)$?
- ► Conjecture: 2, 3, or *none*.

Thank You!