Parameterized Approximation Algorithms for some Location Problems in Graphs

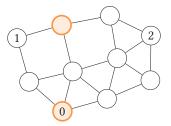
Arne Leitert and Feodor F. Dragan

r-Domination and *p*-Cencter

r-Domination Problem

(Connected) r-Domination Problem

For a given graph G = (V, E) and given function $r: V \to \mathbb{N}$, determine a (connected) vertex set D with minimum cardinality such that, for each vertex v, $d(v, D) \leq r(v)$.

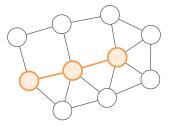


Optimal r-domination.

p-Center Problem

(Connected) p-Center Problem

For a given graph G = (V, E) and given integer p, determine a (connected) vertex set D with $|D| \le p$ such that $\max_{v \in V} d(v, D)$ is minimal.



Optimal connected 3-center.

r-Domination vs. *p*-Center

Two versions of the same problem.

r-Domination

- Given: Maximal distance.
- Find: Best cardinality.

p-Center

- Given: Maximal cardinality.
- Find: Lowest maximum distance.

An algorithm for one problem gives an algorithm for the other problem with low computational overhead.

Approximation for *r*-Domination

Theorem

[Chlebík, Chlebíková 2008]

Under reasonable assumptions, the *r*-Domination problem cannot be approximated within a factor of $(1 - \varepsilon) \ln n$ in polynomial time. (Even for very restricted graphs).

Our Approach

- Do not approximate cardinality, approximate range of *r*.
- Goal: Find $(r + \phi)$ -dominating set not larger than the optimal set.
- An $(r + \phi)$ -dominating set gives an $+\phi$ -approximation for the *p*-Center problem.

Existing Result

• $(r + 2\delta)$ -dominating set in polynomial time for δ -hyperbolic graphs [Chepoi, Estellon 2007]

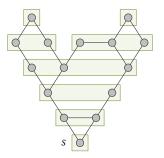
Layering Partition

Layering Partition

Layering Partition

[Brandstädt et al. 1999; Chepoi, Dragan 2000]

- Distance layers for a given vertex s
- Partition each layer: u and v are in the same cluster if they are connected by a path only using the same or upper layers
- Computable in linear time



 Δ denotes max. distance (in *G*) of two vertices in a cluster.

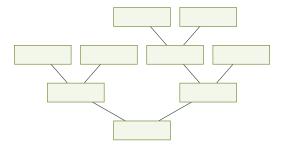
Graph	Δ
PPI	5
Yeast	4
DutchElite	6
EPA	4
EVA	5
California	4
Erdös	2
Routeview	4
Homo release 3.2.99	3
AS_Caida_20071105	3
Dimes 3/2010	2
Aqualab 12/2007- 09/2008	3
AS_Caida_20120601	3
itdk0304	6
DBLB-coauth	7
Amazon	12

Algorithm

General Approach

Idea

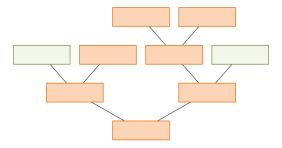
• Compute layering partition \mathcal{T} for graph G.



General Approach

Idea

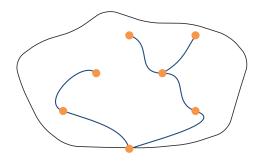
- Compute layering partition \mathcal{T} for graph G.
- Solve problem for \mathcal{T} .



General Approach

Idea

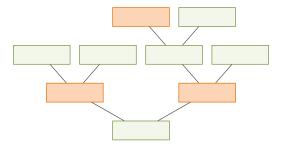
- Compute layering partition \mathcal{T} for graph G.
- Solve problem for \mathcal{T} .
- Use solution for T to compute solution for underlying graph G.



r-Domination (non-connected)

Solving r-Domination for ${\mathcal T}$

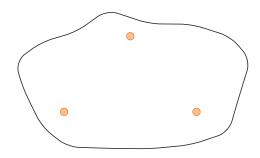
- Set $r(C) = \min_{v \in C} r(v)$ for each cluster C of \mathcal{T} .
- Find minimum *r*-dominating set S for T.



r-Domination (non-connected)

Compute solution for G

- For each cluster $C \in S$, pick a vertex $v \in C$ and add v into a set D.
- *D* is an $(r + \Delta)$ -dominating set for *G*.
- Total runtime: linear

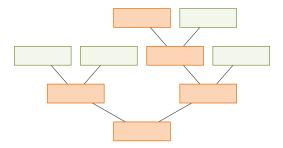


Connected *r*-Domination

Solving Connected r-Domination for ${\mathcal T}$

- Set $r(C) = \min_{v \in C} r(v)$ for each cluster C of \mathcal{T} .
- Find minimum connected *r*-dominating set (i. e., a subtree) T_r for \mathcal{T} .
- Useful: $|T_r| \le |D_r|$

 $(D_r \text{ is } unknown \text{ optimal con. } r\text{-dom. set for } G)$



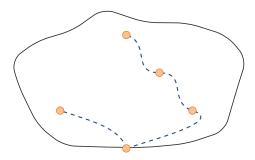
Connected *r*-Domination

Compute solution for G?

For each cluster $C \in S$, pick a vertex $v \in C$ and add v into a set D.

Problems

- How to ensure connectedness?
- How do we ensure cardinality constraints?

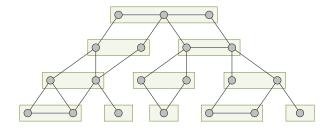


Connected *r*-Domination

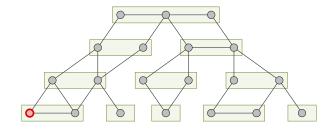
Idea

- Construct $(r + \delta)$ -dominating subtree T_{δ} of \mathcal{T} for some $\delta \in \mathbb{N}$.
- Construct small enough vertex set S_{δ} of *G* intersecting all clusters of T_{δ}
- ► Try different values for δ until $|S_{\delta}| \leq |T_r|$ and, thus, $|S_{\delta}| \leq |D_r|$.

Construct T_{δ}



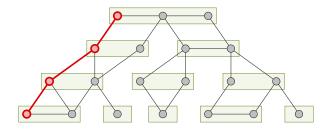
Pick a vertex v in an unmarked leaf C (excluding the root) of T_{δ}



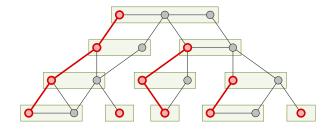
Find the highest unmarked ancestor C' of C and a shortest path P from v to a vertex $v' \in C'$.

Add *P* to a set of paths \mathcal{P} .

Mark all clusters intersected by P.



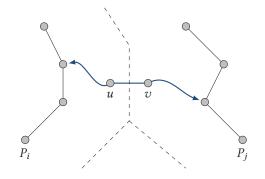
Repeat for each leaf of T_{δ} .



Constructing S_{δ} – Connect Paths in \mathcal{P}

Run BFS starting simultanisly from all $P \in \mathcal{P}$. Gives a partition $\mathcal{V} = \{V_1, V_2, \ldots\}$ of V.

Connect paths in \mathcal{P} similar to KRUSKAL'S MST algorithm based on edges uv with $u \in V_i$ and $v \in V_j$.



Connected r-Domination – Finding best δ

One-Sided Binary Search

- Start with $\delta = 0$. Then, $\delta = 1$, $\delta = 2$, $\delta = 4$, $\delta = 8$, ... until $|S_{\delta}| \le |T_r|$.
- Next, classical binary search between last values of δ .
- ► If $|S_{\delta}| \le |T_r|$, decrease δ . Otherwise, increase δ .

Result

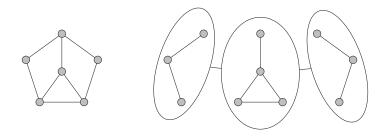
- ► Connected $(r + \Delta + \delta)$ -dominating set S_{δ} with $\delta \leq \Delta$ (i. e., $(r + 2\Delta)$ -dom. set)
- +2 Δ -Approximation for Connected *p*-Center problem
- Runtime: $O(m \alpha(n) \log \Delta)$

Using Tree-Decompositions

Tree-Decomposition of a Graph

A family $\mathcal{T} = \{B_1, B_2, \dots, B_k\}$ of subsets of *V* (called bags) which form a tree such that

- each vertex is in a bag,
- each edge is in a bag, and
- the bags containing a vertex induce a subtree.



Tree-Breadth and Tree-Length

Tree-Breadth (tb(G) $\leq \rho$)

• Each bag *B* has a center v such that $d(u, v) \le \rho$ for each vertex $u \in B$.

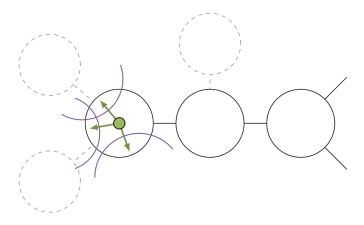
Tree-Length $(tl(G) \le \lambda)$

► Each bag *B* has a diameter at most λ , i. e., for all $u, v \in B$, $d(u, v) \leq \lambda$.

Approximation for *r*-Domination

Idea

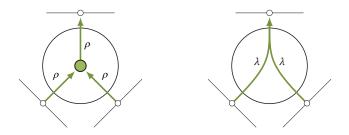
- Find smallest subtree T of decomposition that intersects all *r*-disks.
- ▶ Pick center *c* of leaf of *T* and add it to set.
- Removes all *r*-disks in distance ρ to *c*. Repeat.



Approximation for Connected *r*-Domination

Idea

- Find smallest subtree T of decomposition that intersects all *r*-disks.
- ▶ Pick center *c* of leaf of *T* and add it to set.
- Find small (enough) set connecting all bags.



Using Tree-Decompositions – Results

Assumption: Decomposition is given and ρ , λ are known.

r-Domination

• $(r + \rho)$ in O(nm) time

Connected *r*-Domination

- $(r + 3\lambda)$ in O(nm) time
- $(r + 5\rho)$ in O(nm) time

Open Question

Same result possible without known tree decomposition?

Implications for *p*-Center Problem

Implications for *p*-Center Problem

Theorem

If an O(T(G)) time algorithm computing a (connected) $(r + \phi)$ dominating set is given, one can compute a $+\phi$ -approximation for the (connected) *p*-Center problem in $O(T(G) \log n)$ time.

Approach	Approx.	Time
Layering Partition	$+2\Delta$	$O(m\alpha(n)\log\Delta\log n)$
Tree-Decomposition	$+\min(5\rho,3\lambda)$	$O(nm\log n)$

Thank you!