Efficient Dominating and Edge Dominating Sets for Graphs and Hypergraphs

Andreas Brandstädt, Arne Leitert, Dieter Rautenbach

University of Rostock University of Ulm

The Problem

Domination

$$D \subseteq V$$
 with $\bigcup_{d \in D} N[d] = V$

Domination

 $D \subseteq V$ with $\bigcup_{d \in D} N[d] = V$

3 / 22

Domination

 $D \subseteq V$ with $\bigcup_{d \in D} N[d] = V$

Exactly one $d \in D$ for each $v \in V$

```
\forall v \in V : \exists ! d \in D : v \in N[d]
```

Exact cover of the closed neighbourhoods

Exactly one $d \in D$ for each $v \in V$ $\forall v \in V : \exists ! d \in D : v \in N[d]$

Exact cover of the closed neighbourhoods

< 67 ►

Exactly one $d \in D$ for each $v \in V$

 $\forall v \in V : \exists ! d \in D : v \in N[d]$

Exact cover of the closed neighbourhoods

packing and covering problem

< 67 ►

packing and covering problem

packing and covering problem

packing and covering problem

Does not always exist

< 🗗 🕨

Does not always exist

Does not always exist

< 🗇 >

Does not always exist

Efficient Edge Domination

the same with edges

Efficient Edge Domination

the same with edges

Efficient Edge Domination

the same with edges

Independent Perfect Domination

Efficient Edge Domination

Dominating Induced Matching

ED

co-comparability planar bipartite, chordal bipartite chordal

EED

P₇-free planar bipartite chordal and more... linear Chang et al 1995 NP-c. Lu, Tang 2002 NP-c. Yenn, Lee 1996

linear	ISAAC 2011
NP-c.	Lu, Ko, Tang 2002
linear	Lu, Ko, Tang 2002

< 67 ►

Our Solution

By Definition

The following are equivalent for any D:

- (i) D is EED in G
- (ii) D is ED in L(G)
- (iii) D is dominating set in L(G) and independent set in $L(G)^2$

What is known

What is known

What is known

Vertex weight function $\omega : V \to \mathbb{N}$ with $\omega(v) = |N[v]|$

Vertex weight function $\omega: V \to \mathbb{N}$ with $\omega(v) = |N[v]|$

Theorem The following are equivalent for any $D \subseteq V$: (i) D is ED in G(ii) D is min. w. dominating set in G with $\omega(D) = |V|$ (iii) D is max. w. independent set in G^2 with $\omega(D) = |V|$

Vertex weight function $\omega: V \to \mathbb{N}$ with $\omega(v) = |N[v]|$

(i) \Leftrightarrow (iii) was also found by MARTIN MILANIČ.

13 / 22

-

... for EED

- min. w. (perfect, independent) edge domination
- min. w. dominating matching
- max. w. induced matching

... for EED

- min. w. (perfect, independent) edge domination
- min. w. dominating matching
- max. w. induced matching

... for ED

- min. w. perfect domination
- min. w. independent domination

< A >

dually chordal

- ED: linear using independent set for G²
- ► EED: linear *G* has EED \Rightarrow dually chordal \leftrightarrow chordal

This includes strongly chordal graphs.

AT-free

 ED: polynomial using independent set for G² (G² is AT-free)

 EED: polynomial using independent set for L(G)² (L(G)² is AT-free)

< (7) >

interval bigraphs

 ED: polynomial using domination for G

interval-filament

 EED: polynomial using independent set for L(G)² (L(G)² is interval-filament)

weakly chordal

 EED: polynomial using independent set for L(G)² (L(G)² is weakly chordal)

	ED	EED
dually chordal	linear	linear
AT-free	polynomial	polynomial
interval bigraphs	polynomial	
interval-filament		polynomial
weakly chordal		polynomial

A View on Hypergraphs

Hypergraph: $H = (V, \mathcal{E})$ with $\mathcal{E} \subseteq \wp(V) \setminus \emptyset$

Hypergraph: $H = (V, \mathcal{E})$ with $\mathcal{E} \subseteq \wp(V) \setminus \emptyset$

Hypergraph: $H = (V, \mathcal{E})$ with $\mathcal{E} \subseteq \wp(V) \setminus \emptyset$

Hypergraph: $H = (V, \mathcal{E})$ with $\mathcal{E} \subseteq \wp(V) \setminus \emptyset$

incidence graph of $H - \mathcal{I}(H)$

<*∎* >

 $H = (O, \triangle)$

 $H = (O, \triangle)$

Dual Hypergraph $H^* = (\triangle, \bigcirc)$

line graph $L(H) = \mathcal{I}(H)^2[\mathcal{E}]$

line graph $L(H) = \mathcal{I}(H)^2[\mathcal{E}]$

2-Section graph $2Sec(H) = \mathcal{I}(H)^2[V]$

< 🗗 >

Definition on Hypergraphs

D is ED in $H \Leftrightarrow D$ is ED in 2Sec(H). *D* is EED in $H \Leftrightarrow D$ is ED in L(H).

Definition on Hypergraphs

D is ED in $H \Leftrightarrow D$ is ED in 2Sec(H). *D* is EED in $H \Leftrightarrow D$ is ED in L(H).

Theorem

H has an ED \Leftrightarrow *H*^{*} has an EED.

	ED	EED
lpha-acyclic	NP-complete	polynomial
hypertree	polynomial	NP-complete

Thank you for your attention!