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The Problem



Domination

D ⊆ V with
⋃
d∈D

N[d ] = V

3 / 22



Domination

D ⊆ V with
⋃
d∈D

N[d ] = V

3 / 22



Domination

D ⊆ V with
⋃
d∈D

N[d ] = V

3 / 22



Efficient Domination

Exactly one d ∈ D for each v ∈ V

∀ v ∈ V : ∃! d ∈ D : v ∈ N[d ]

Exact cover of the closed neighbourhoods
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Efficient Domination

Does not always exist
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Efficient Edge Domination

the same with edges
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Other Names

Efficient Domination

I Independent Perfect Domination

Efficient Edge Domination

I Dominating Induced Matching
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Existing Results

ED
co-comparability linear Chang et al 1995
planar bipartite, chordal bipartite NP-c. Lu, Tang 2002
chordal NP-c. Yenn, Lee 1996

EED
P7-free linear ISAAC 2011
planar bipartite NP-c. Lu, Ko, Tang 2002
chordal linear Lu, Ko, Tang 2002

and more...
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Our Solution



What is known

By Definition

The following are equivalent for any D:

(i) D is EED in G

(ii) D is ED in L(G )

(iii) D is dominating set in L(G ) and independent set in L(G )2
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Our Approach

Vertex weight function ω : V → N with ω(v) = |N[v ]|

Theorem

The following are equivalent for any D ⊆ V :

(i) D is ED in G

(ii) D is min. w. dominating set in G with ω(D) = |V |
(iii) D is max. w. independent set in G 2 with ω(D) = |V |

(i) ⇔ (iii) was also found by Martin Milanič.
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This includes ...

... for EED

I min. w. (perfect, independent) edge domination

I min. w. dominating matching

I max. w. induced matching

... for ED

I min. w. perfect domination

I min. w. independent domination
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Results

dually chordal

I ED: linear
using independent set for G 2

I EED: linear
G has EED ⇒ dually chordal ↔ chordal

This includes strongly chordal graphs.
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Results

AT-free

I ED: polynomial
using independent set for G 2

(G 2 is AT-free)
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Results

interval bigraphs

I ED: polynomial
using domination for G
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Results

interval-filament

I EED: polynomial
using independent set for L(G )2

(L(G )2 is interval-filament)
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Results

weakly chordal

I EED: polynomial
using independent set for L(G )2

(L(G )2 is weakly chordal)
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Results

ED EED

dually chordal linear linear

AT-free polynomial polynomial

interval bigraphs polynomial

interval-filament polynomial

weakly chordal polynomial
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A View on Hypergraphs



Hypergraphs

Hypergraph: H = (V , E) with E ⊆ ℘(V ) \ ∅

incidence graph of H — I(H)
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Duality

Hypergraph

H = ( , )

I(H)
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Duality

Hypergraph

H = ( , )

Dual Hypergraph

H∗ = ( , )

I(H) = I(H∗)
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Line / 2-Section graph

I(H)
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Line / 2-Section graph

I(H)2
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Line / 2-Section graph

line graph

L(H) = I(H)2[E ]

L(H)
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Line / 2-Section graph

line graph

L(H) = I(H)2[E ]

2-Section graph

2Sec(H) = I(H)2[V ]

2Sec(H)
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Efficient (Edge) Domination

Definition on Hypergraphs

D is ED in H ⇔ D is ED in 2Sec(H).
D is EED in H ⇔ D is ED in L(H).

Theorem

H has an ED ⇔ H∗ has an EED.
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Results on hypergraphs

ED EED

α-acyclic NP-complete polynomial

hypertree polynomial NP-complete
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Thank you for your attention!
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