Efficient Dominating and Edge Dominating Sets for Graphs and Hypergraphs

Andreas Brandstädt, Arne Leitert, Dieter Rautenbach
University of Rostock
University of Ulm

The Problem

Domination

$$
D \subseteq V \text { with } \bigcup_{d \in D} N[d]=V
$$

Domination

$$
D \subseteq V \text { with } \bigcup_{d \in D} N[d]=V
$$

Domination

$$
D \subseteq V \text { with } \bigcup_{d \in D} N[d]=V
$$

Efficient Domination

Exactly one $d \in D$ for each $v \in V$
$\forall v \in V: \exists!d \in D: v \in N[d]$
Exact cover of the closed neighbourhoods

Efficient Domination

Exactly one $d \in D$ for each $v \in V$
$\forall v \in V: \exists!d \in D: v \in N[d]$
Exact cover of the closed neighbourhoods

Efficient Domination

Exactly one $d \in D$ for each $v \in V$
$\forall v \in V: \exists!d \in D: v \in N[d]$
Exact cover of the closed neighbourhoods

Efficient Domination

packing and covering problem

Efficient Domination

packing and covering problem
dominating

Efficient Domination

packing and covering problem
dominating
"efficient"

Efficient Domination

packing and covering problem
dominating
ED

Efficient Domination

Does not always exist

Efficient Edge Domination

the same with edges

Efficient Edge Domination

the same with edges

Efficient Edge Domination

the same with edges

Other Names

Efficient Domination

- Independent Perfect Domination

Efficient Edge Domination

- Dominating Induced Matching

Existing Results

ED

co-comparability
planar bipartite, chordal bipartite chordal

EED

P_{7}-free
planar bipartite
chordal
and more...
linear
NP-c.
NP-c. Yenn, Lee 1996
linear ISAAC 2011
NP-c. Lu, Ko, Tang 2002
linear Lu, Ko, Tang 2002

Our Solution

What is known

By Definition

The following are equivalent for any D :
(i) D is EED in G
(ii) D is ED in $L(G)$
(iii) D is dominating set in $L(G)$ and independent set in $L(G)^{2}$

What is known

What is known

What is known

Our Approach

Vertex weight function $\omega: V \rightarrow \mathbb{N}$ with $\omega(v)=|N[v]|$

Our Approach

Vertex weight function $\omega: V \rightarrow \mathbb{N}$ with $\omega(v)=|N[v]|$

Theorem

The following are equivalent for any $D \subseteq V$:
(i) D is ED in G
(ii) D is min. w. dominating set in G with $\omega(D)=|V|$
(iii) D is max. w. independent set in G^{2} with $\omega(D)=|V|$

Our Approach

Vertex weight function $\omega: V \rightarrow \mathbb{N}$ with $\omega(v)=|N[v]|$

Theorem

The following are equivalent for any $D \subseteq V$:
(i) D is ED in G
(ii) D is min. w. dominating set in G with $\omega(D)=|V|$
(iii) D is max. w. independent set in G^{2} with $\omega(D)=|V|$
(i) \Leftrightarrow (iii) was also found by Martin Milanič.

Our Approach

This includes

... for EED

- min. w. (perfect, independent) edge domination
- min. w. dominating matching
- max. w. induced matching

This includes

... for EED

- min. w. (perfect, independent) edge domination
- min. w. dominating matching
- max. w. induced matching
... for ED
- min. w. perfect domination
- min. w. independent domination

Results

dually chordal

- ED: linear using independent set for G^{2}
- EED: linear G has EED \Rightarrow dually chordal \leftrightarrow chordal

This includes strongly chordal graphs.

Results

AT-free

- ED: polynomial
using independent set for G^{2} (G^{2} is AT-free)
- EED: polynomial using independent set for $L(G)^{2}$ $\left(L(G)^{2}\right.$ is AT-free)

Results

interval bigraphs

- ED: polynomial using domination for G

Results

interval-filament

- EED: polynomial
using independent set for $L(G)^{2}$
$\left(L(G)^{2}\right.$ is interval-filament)

Results

weakly chordal

- EED: polynomial using independent set for $L(G)^{2}$ ($L(G)^{2}$ is weakly chordal)

Results

	ED	EED
dually chordal	linear	linear
AT-free	polynomial	polynomial
interval bigraphs	polynomial	
interval-filament weakly chordal		polynomial polynomial

A View on Hypergraphs

Hypergraphs

Hypergraph: $H=(V, \mathcal{E})$ with $\mathcal{E} \subseteq \wp(V) \backslash \emptyset$

Hypergraphs

Hypergraph: $H=(V, \mathcal{E})$ with $\mathcal{E} \subseteq \wp(V) \backslash \emptyset$

Hypergraphs

Hypergraph: $H=(V, \mathcal{E})$ with $\mathcal{E} \subseteq \wp(V) \backslash \emptyset$

Hypergraphs

Hypergraph: $H=(V, \mathcal{E})$ with $\mathcal{E} \subseteq \wp(V) \backslash \emptyset$

incidence graph of $H-\mathcal{I}(H)$

Duality

Hypergraph
$H=(O, \Delta)$

Duality

Hypergraph
$H=(O, \Delta)$

Dual Hypergraph

$$
H^{*}=(\triangle, O)
$$

Line / 2-Section graph

Line / 2-Section graph

Line / 2-Section graph
line graph

$$
L(H)=\mathcal{I}(H)^{2}[\mathcal{E}]
$$

Line / 2-Section graph

line graph
$L(H)=\mathcal{I}(H)^{2}[\mathcal{E}]$

2-Section graph
$2 \operatorname{Sec}(H)=\mathcal{I}(H)^{2}[V]$

$2 \operatorname{Sec}(H)$

Efficient (Edge) Domination

Definition on Hypergraphs
D is ED in $H \Leftrightarrow D$ is ED in $2 \operatorname{Sec}(H)$.
D is EED in $H \Leftrightarrow D$ is ED in $L(H)$.

Efficient (Edge) Domination

Definition on Hypergraphs
D is ED in $H \Leftrightarrow D$ is ED in $2 \operatorname{Sec}(H)$.
D is EED in $H \Leftrightarrow D$ is ED in $L(H)$.

Theorem

H has an ED $\Leftrightarrow H^{*}$ has an EED.

Results on hypergraphs

	ED	EED
α-acyclic	NP-complete	polynomial
hypertree	polynomial	NP-complete

Thank you for your attention!

