Line-Distortion, Bandwidth and Path-Length of a Graph

Feodor F. Dragan, Ekkehard Köhler, and Arne Leitert

Authors

Arne Leitert

Presenter

Line-Distortion and Bandwidth

Given a graph G = (V, E)

< @ ►

Find an injective function $f \colon V \to \mathbb{N}$.

< 47 ►

Optimize f such that $\max_{uv\in E}|f(u)-f(v)|$ is minimal.

 $bw(G) = \min_{f} \max_{uv \in E} |f(u) - f(v)|$

Additional for line-distortion $\mathrm{ld}(G)$: $d_G(u, v) \leq |f(u) - f(v)|$ for all $u, v \in V$.

Both problems are very hard.

Graph Class	Solution Quality	Time	Source		
Trees	$\mathcal{O}(1)$ -approx.	NP-hard	Blache et al. 1997		
Caterpillars	$\mathcal{O}(1)$ -approx.	NP-hard	Dubeya et al. 2011		
(hair-length ≤ 2)	optimal	$\mathcal{O}(n\log n)$	Assman et al. 1981		
(hair-length \leq 3)	optimal	NP-hard	Monien 1986		
Convex Bipartite	optimal	NP-hard	Shrestha et al. 2012		
Interval	optimal	$\mathcal{O}(n\log^2 n)$	Sprague 1994		
Chordal	$\mathcal{O}(\log^{2.5} n)$ -approx.	polynomial	Gupta 2001		
Some bandwidth results.					

< @ >

Both problems are very hard.

Graph Class	Solution Quality	Time	Source
General	optimal	$\mathcal{O}(n\lambda^4(2\lambda+1)^{2\lambda})$	Fellows et al. 2009
	$\mathcal{O}(n^{1/2})$ -approx.	polynomial	Bădoiu et al. 2005
Trees	$\mathcal{O}(n^{1/3})$ -approx.	polynomial	Bădoiu et al. 2005
Bipartite	optimal	NP-hard	Heggernes et al. 2010
Cocomparability	optimal	NP-hard	Heggernes et al. 2010
	6-approx.	$\mathcal{O}(n\log^2 n + m)$	Heggernes et al. 2010
split	optimal	NP-hard	Heggernes et al. 2010
	6-approx.	linear	Heggernes et al. 2010

Some line-destortion results.

Our Approach: Path-Length

Path Decomposition and Path-Length

Sequence of subsets of V called bags

- Each vertex is in a bag.
- Each edge is in a bag.
- Each vertex induces a subpath.

Path Decomposition and Path-Length

Path-Length $pl(G) = \lambda$:

 $\blacktriangleright\,$ Smallest maximal diameter of all decompositions is at most $\lambda\,$

Dominating Path

If $pl(G) = \lambda$, G has λ -dominating shortest path.

- ► Vertex *s* in first bag.
- ▶ Vertex *t* in last bag.
- Path *s* to *t* is λ -dominating.

Find a λ -dominating shortest path $P = (x_0, x_1, \dots, x_q)$.

Partition V into sets X_0, X_1, \ldots, X_q based on a BFS(P)-tree.

Create an embedding f into a line ℓ .

- ▶ Placing vertices of X_i before all vertices of X_j , i < j.
- Embed X_i as described by Bădoiu et al. 2005. (Simple linear time algorithm)

For line-distortion: Leave a space of length 2k + 1 between X_i and X_{i+1} .

< **11** →

Approximation factor for a graph G with $\operatorname{pl}(G)=\lambda$

- ► Bandwidth: $4\lambda + 2$
- Line-Distortion: $12\lambda + 7$

< **11** →

Other Results

AT-free Graphs

- path-length at most 2
- ▶ 8-approx. for line-distortion in linear time.

Other Results

AT-free Graphs

- path-length at most 2
- ▶ 8-approx. for line-distortion in linear time.

Graphs with path-length λ

- Finding a decomposition with length 2λ in $\mathcal{O}(n^3)$ time.
- Finding a λ -dominating shortest path in $\mathcal{O}(nm)$ time.
- Finding a 2λ -dominating shortest path in $\mathcal{O}(n+m)$ time.

Thank You!