# Line-Distortion, Bandwidth and Path-Length of a Graph 

Feodor F. Dragan, Ekkehard Köhler, and Arne Leitert
Authors

Arne Leitert<br>Presenter

## Line-Distortion and Bandwidth

## Bandwidth and Line-Distortion

Given a graph $G=(V, E)$


## Bandwidth and Line-Distortion

Find an injective function $f: V \rightarrow \mathbb{N}$.


## Bandwidth and Line-Distortion

Optimize $f$ such that $\max _{u v \in E}|f(u)-f(v)|$ is minimal.


## Bandwidth and Line-Distortion

$$
\operatorname{bw}(G)=\min _{f} \max _{u v \in E}|f(u)-f(v)|
$$



## Bandwidth and Line-Distortion

Additional for line-distortion $\operatorname{ld}(G): d_{G}(u, v) \leq|f(u)-f(v)|$ for all $u, v \in V$.


## Bandwidth and Line-Distortion

Both problems are very hard.

| Graph Class | Solution Quality | Time | Source |
| :--- | ---: | ---: | ---: |
| Trees | $\mathcal{O}(1)$-approx. | NP-hard | Blache et al. 1997 |
| Caterpillars | $\mathcal{O}(1)$-approx. | NP-hard | Dubeya et al. 2011 |
| $\quad$ (hair-length $\leq 2)$ | optimal | $\mathcal{O}(n \log n)$ | Assman et al. 1981 |
| $\quad$ (hair-length $\leq 3)$ | optimal | NP-hard | Monien 1986 |
| Convex Bipartite | optimal | NP-hard | Shrestha et al. 2012 |
| Interval | optimal | $\mathcal{O}\left(n \log ^{2} n\right)$ | Sprague 1994 |
| Chordal | $\mathcal{O}\left(\log ^{2.5} n\right)$-approx. polynomial | Gupta 2001 |  |

## Bandwidth and Line-Distortion

Both problems are very hard.

Graph Class Solution Quality

| General | optimal | $\mathcal{O}\left(n \lambda^{4}(2 \lambda+1)^{2 \lambda}\right)$ | Fellows et al. 2009 |
| :--- | ---: | ---: | ---: |
|  | $\mathcal{O}\left(n^{1 / 2}\right)$-approx. | polynomial | Bǎdoiu et al. 2005 |
| Trees | $\mathcal{O}\left(n^{1 / 3}\right)$-approx. | polynomial | Bǎdoiu et al. 2005 |
| Bipartite | optimal | NP-hard Heggernes et al. 2010 |  |
| Cocomparability | optimal | NP-hard Heggernes et al. 2010 |  |
|  | 6-approx. | $\mathcal{O}\left(n \log ^{2} n+m\right)$ | Heggernes et al. 2010 |
| split | optimal | NP-hard Heggernes et al. 2010 |  |
|  | 6-approx. | linear Heggernes et al. 2010 |  |

Some line-destortion results.

## Our Approach: Path-Length

## Path Decomposition and Path-Length

Sequence of subsets of $V$ called bags

- Each vertex is in a bag.
- Each edge is in a bag.
- Each vertex induces a subpath.



## Path Decomposition and Path-Length

Path-Length $\operatorname{pl}(G)=\lambda$ :

- Smallest maximal diameter of all decompositions is at most $\lambda$



## Dominating Path

If $\mathrm{pl}(G)=\lambda, G$ has $\lambda$-dominating shortest path.

- Vertex $s$ in first bag.
- Vertex $t$ in last bag.
- Path $s$ to $t$ is $\lambda$-dominating.



## Algorithm

## Algorithm

Find a $\lambda$-dominating shortest path $P=\left(x_{0}, x_{1}, \ldots, x_{q}\right)$.


## Algorithm

Partition $V$ into sets $X_{0}, X_{1}, \ldots, X_{q}$ based on a $\operatorname{BFS}(P)$-tree.


## Algorithm

Create an embedding $f$ into a line $\ell$.

- Placing vertices of $X_{i}$ before all vertices of $X_{j}, i<j$.
- Embed $X_{i}$ as described by Bǎdoiu et al. 2005. (Simple linear time algorithm)



## Algorithm

For line-distortion: Leave a space of length $2 k+1$ between $X_{i}$ and $X_{i+1}$.


## Algorithm

Approximation factor for a graph $G$ with $\operatorname{pl}(G)=\lambda$

- Bandwidth: $4 \lambda+2$
- Line-Distortion: $12 \lambda+7$




## Other Results

AT-free Graphs

- path-length at most 2
- 8-approx. for line-distortion in linear time.



## Other Results

AT-free Graphs

- path-length at most 2
- 8-approx. for line-distortion in linear time.

Graphs with path-length $\lambda$

- Finding a decomposition with length $2 \lambda$ in $\mathcal{O}\left(n^{3}\right)$ time.
- Finding a $\lambda$-dominating shortest path in $\mathcal{O}(n m)$ time.
- Finding a $2 \lambda$-dominating shortest path in $\mathcal{O}(n+m)$ time.

Thank You!

