On the Minimum Eccentricity Shortest Path Problem

Feodor Dragan and Arne Leitert

Minimum Eccentricity Shortest Path

Given a graph G.

Minimum Eccentricity Shortest Path

Find a shortest path P with minimum eccentricity,
i. e., minimise $\max _{v \in V} d(v, P)$

Minimum Eccentricity Shortest Path

Find a shortest path P with minimum eccentricity,
i. e., minimise $\max _{v \in V} d(v, P)$

Also called k-Dominating Shortest Path

Motivation

Line-Distortion

Given a graph $G=(V, E)$

Line-Distortion

Find an injective function $f: V \rightarrow \mathbb{N}$ with $d(u, v) \leq|f(u)-f(v)|$.

Line-Distortion

Line-distortion $\operatorname{ld}(G)=\min _{f} \max _{u v \in E}|f(u)-f(v)|$.

Approximating Line-Distortion

Assume G has a shortest path P with eccentricity k.

Approximating Line-Distortion

Build BFS-tree T from P.

Approximating Line-Distortion

Perform preorder traversal on T.

Approximating Line-Distortion

Embed vertices into line ℓ as visited during traversal.

Approximating Line-Distortion

G has shortest path P of eccentricity k and $\operatorname{ld}(G)=\lambda$

- Embedding is $(8 k+2)$-approximation
- In linear time if P is given.
- $k \leq\lfloor\lambda / 2\rfloor$
- In some cases: $\lambda-k \approx n$

Conclusion

- Reproducing existing results if $\lambda \approx k$.
- Stronger result if $\lambda-k \approx n$.
- Fast approximation for MESP leads to fast approximation for LD

General Results

NP-Completeness

NP-Complete

- Reduction from SAT
- also NP-c. if
- s and t are given
- vertex degree is limited to 3 (by V. B. Le, University of Rostock)

2-Approximation

Consider a shortest (s, t)-path with eccentricity k and a $\operatorname{BFS}(s)$-layering

2-Approximation

Observation:

- Each layer has radius at most $2 k$.

2-Approximation

Algorithm:

- Determine layer-wise eccentricity for each vertex v.
- Pick path where max. layer-wise eccentricity is minimal. (modified BFS)

2-Approximation

Runtime:

- $\mathcal{O}\left(n^{3}\right)$ for all s
- $\mathcal{O}(n m)$ if s is given

3-Approximation

Observation:

- Each shortest (s, u)-path with $d(s, t) \leq d(s, u)$ has eccentricity $\leq 3 k$.

3-Approximation

Algorithm:

- Find a shortest path to a vertex u for which $d(s, u)$ is maximal.

Runtime

- $\mathcal{O}(n m)$ for all s
- $\mathcal{O}(m)$ for a given s

Other Results

Approximation

- 8-approximation in linear time

Exact solution

- Check if $k=1$ in $\mathcal{O}\left(n^{3} m\right)$ time.
- Determine k in $\mathcal{O}\left(n^{2 k+2} m\right)$ time.
k-Domination
- If k is known, a k-dominating set can be found in $n^{\mathcal{O}(k)}$ time.

Special Classes

Distant-Hereditary Graphs

If x, y is a diametral pair, then there is a shortest (x, y)-path with eccentricity k.

- Very simple linear time algorithm for trees (two BFS calls)
- Linear time algorithm for distant-hereditary graphs

Chordal Graphs

Not necessarily diameter

- Diameter; s,..., w
- Optimal path: s, \ldots, t, v

For given s, t pair: $\mathcal{O}(n m)$ time algorithm.

Open Questions

How hard is finding s and t ?

- Our approaches often iterate over all s, t-pairs (or at least all s).
- Problem remains NP-complete if s ant t is given.

Other graph classes

- Planar?
- Graphs without tree structure?

