# Computing the Union Join and Subset Graph of Acyclic Hypergraphs in Subquadratic Time 

## Hypergraph

## Hypergraph

A hypergraph $H=(V, \mathcal{E})$ is a set of vertices $V$ and a family $\mathcal{E}$ (called hyperedges) of subsets of $V$.


It is a generalisation of a graph; hyperedges can contain an arbitrary positive number of vertices.

## Representation: Incidence Graph

Representation as bipartite graph $\mathcal{I}(H)$, called incidence graph.

$n=|V|$

$$
m=|\mathcal{E}| \quad N=\sum_{E \in \mathcal{E}}|E|
$$

Total input size: $O(N)$

## Representation: Incidence Matrix

Representation as binary matrix $\mathcal{M}(H)$, called incidence matrix.


## Acyclic Hypergraphs

## Acyclic Hypergraph

A hypergraph $H=(V, \mathcal{E})$ is acyclic if its hyperedges $\mathcal{E}$ form a tree $T$ such that, for each vertex $v \in V$, the hyperedges containing $v$ induce a subtree of $T$. $T$ is called the join tree of $H$.


Acyclicity can be checked in linear time (also computes $T$ ) [Tarjan, Yannak 1984].

## Acyclic Hypergraphs

Hierarchy (all subsets are proper subsets)


## Applications

- Relational Databases
- Tree-Decompositions (e.g. Tree-Breadth, Tree-Width)
- Atoms of graphs
- Closely related to Chordal graphs and Dually Chordal graphs

Subset Graph and Union Join Graph

## Sperner Family Problem

## Sperner Family Problem

Input: A family $\mathcal{F}$ of sets.
Question: Does $\mathcal{F}$ contains two distinct sets $S_{i}$ and $S_{j}$ such that $S_{i} \subseteq S_{j}$ ?

## Strong Exponential Time Hypothesis (SETH)

There is no algorithm that solves the Boolean satisfiability problem (without limiting clause sizes) in $O\left(2^{n-\varepsilon}\right)$ time for some $\varepsilon>0$.

## Strong Exponential Time Hypothesis (SETH)

There is no algorithm that solves the Boolean satisfiability problem (without limiting clause sizes) in $O\left(2^{n-\varepsilon}\right)$ time for some $\varepsilon>0$.

A chain of reductions then allows to state the following:

## Theorem

[Borassi, Crescenzi, Habib 2016]
If SETH is true, then there is no algorithm that solves the Sperner Family problem for an arbitrary family $\mathcal{F}$ (i. e., for an arbitrary hypergraph) in $O\left(N^{2-\varepsilon}\right)$ time.

Note that all subfamilies $\mathcal{F}_{S}=\left\{S^{\prime} \mid S=S^{\prime}\right\}$ can be determined in linear time.

## Subset Graph Problem

## Subset Graph Problem

Input: A family $\mathcal{F}=\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$ of sets.
Output: The subset graph $G=(\mathcal{F}, E)$ with $S_{i} S_{j} \in E$ if and only if $S_{i} \subseteq S_{j}$ and $i \neq j$.

If SETH is true, then there is no algorithm to compute the subset graph of an arbitrary hypergraph in $O\left(N^{2-\varepsilon}\right)$ time, even if the output is sparse.

Follows directly from hardness of Sperner Family Problem.

## Theorem

There is an $O\left(N^{2} / \log N\right)$-time algorithm which computes the subset graph for a given family of sets.

## Union Join Graph

## Union Join Graph

The union join graph of an acyclic hypergraph is the union of all its join trees. That is, for an acyclic hypergraph $H=(V, \mathcal{E})$, the union join graph is a the graph $G=(\mathcal{E}, X)$ with $X=\left\{E_{i} E_{j} \mid\right.$ There exist a join tree for $H$ with the edge $E_{i} E_{j}$. $\}$.

[Berry, Simonet 2016] gave $O(\mathrm{Nm})$-time algorithm for acyclic hypergraphs.

Hardness of Union Join Graph

## Is Join Tree Unique?

## Join Tree

- Can be computed in linear time.
- Question: Is it unique?


## Is Join Tree Unique?

## Join Tree

- Can be computed in linear time.
- Question: Is it unique?


## Lemma

If SETH is true, then there is no algorithm that determines in $O\left(N^{2-\varepsilon}\right)$ time whether a given acyclic hypergraph has a unique join tree.

## Proof

- Linear-time reduction from Sperner Family Problem.


## Is Join Tree Unique? - Reduction

## Reduction

- Given family $\mathcal{F}=\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$.
- Create hypergraph $H=(V, \mathcal{E})$ with $V=\bigcup_{S_{i} \in \mathscr{F}} S_{i}$ and $\mathcal{E}=\mathcal{F} \cup\{V\}$.



## Observation

- There is no pair $S_{i} \subseteq S_{j}$ if and only if the join tree for $H$ is unique.


## Implication for Union Join Graph

## Observation

- Join tree for $H$ is unique if and only if union join graph is a tree.


## Theorem

If SETH is true, then there is no algorithm that computes the union join graph of an $\alpha$-acyclic hypergraph in $O\left(N^{2-\varepsilon}\right)$ time.

## Union Join Graph via Subset Graph

## Separator Hypergraph

Let $T$ be join tree of $H=(V, \mathcal{E})$ rooted in some hyperedge $R$.


Up-Separator $S^{\uparrow}\left(E_{i}\right)$ of hyperedge $E_{i}$ is intersection with parent $E_{j}$, i. e.,

$$
S^{\uparrow}\left(E_{i}\right):=E_{i} \cap E_{j} .
$$

## Separator Hypergraph

Separator Hypergraph $\boldsymbol{S}(\boldsymbol{H})$ for $H$ is the hypergraph formed from the set

$$
\mathcal{E}_{S}=\left\{S^{\uparrow}\left(E_{i}\right) \mid E_{i} \in \mathcal{E}, E_{i} \neq R\right\} .
$$



## Separators and Union Join Graph

## Lemma

For any distinct $E_{i}, E_{j} \in \mathcal{E}$, the following are equivalent.

- $H$ has a join tree $T$ with the edge $E_{i} E_{j}$.
- $T$ has a separator $S$ on the path from $E_{i}$ to $E_{j}$ with $S \subseteq S_{i}$ and $S \subseteq S_{j}$.



## Finding Union Join Graph

## Algorithm

1. Compute subset graph $G_{\mathcal{S}}$ of separator hypergraph $\mathcal{S}(H)$
2. For some $S \in \mathcal{S}(H)$, use $G_{\mathcal{S}}$ to find all hyperedges $E_{i}$ with $S \subseteq S_{i}$.
$\qquad$


## Finding Union Join Graph

## Algorithm

3. Partition hyperedges based on which side of $S$ in $T$ they are.
(Determine if $E$ is descendants of $S$ or not in rooted tree, constant time after preand post-order on tree.)


## Finding Union Join Graph

## Algorithm

4. Make all "left" hyperedges adjacent to all "right" hyperedges.
5. Repeat for all $S \in \mathcal{S}(H)$.


## Finding Union Join Graph

## Theorem

The algorithm computes the union join graph $G$ of a given acyclic hypergraph $H$ in $O\left(T_{\mathcal{A}}(H)+N+|G|\right)$ time where $T_{\mathcal{A}}(H)$ is the runtime of a given algorithm $\mathcal{A}$ with the separator hypergraph of $H$ as input.

## Finding Union Join Graph

Recall, subset graph can be computed in $O\left(N^{2} / \log N\right)$ time. Therefore:

## Theorem

There is an algorithm that computes the union join graph $G$ of an acyclic hypergraph in $O\left(N^{2} / \log N+|G|\right)$ time.
$\beta$-Acyclic Hypergraphs

## $\beta$-Acyclic Hypergraphs

## $\beta$-Acyclic Hypergraph

A hypergraph $H=(V, \mathcal{E})$ is $\beta$-acyclic if each $\mathcal{E}^{\prime} \subseteq \mathcal{E}$ forms an acyclic hypergraph.
$\beta$-Acyclic Hypergraphs

- Closely related to Strongly Chordal graphs and Chordal Bipartite graphs.
- Also called Totally Balanced hypergraphs.


## Doubly Lexically Ordered Matrix

## Doubly Lexically Ordered Matrix

A matrix is doubly lexically ordered if rows and columns are permuted in such a way that row- and column-vectors are in non-decreasing lexicographic order. Priorities in rows decrease from right to left and in columns from bottom to top.


A doubly lexically ordering of vertices and hyperedges can be found in $O(N \log (n+m))$ time (full matrix is not required) [Piage, Tarjan 1987].

## Doubly Lexically Ordered Matrix



## Finding Subset Graph

## Preparation

- Find double lexicographical ordering of vertices and hyperedges.


## Lemma

Let $v$ be the vertex highest in $E_{i}$. Then, $E_{i} \subseteq E_{j}$ if and only if $E_{i} \leq E_{j}$ and $v \in E_{j}$.


## Finding Subset Graph

## Approach

- Iterate (backwards) over hyperedges of $v$ until $E_{i}$ is found. $E_{i}$ is subset of all found hyperedges.
- Runtime is number of edges in output created.



## Finding Subset Graph

## Theorem

There is an algorithm that computes the subset graph $G$ of a given $\beta$-acyclic hypergraph in $O(N \log (n+m)+|G|)$ time.

## Lemma

If a hypergraph is $\beta$-acyclic, then its separator hypergraph is $\beta$-acyclic, too.

Using the algorithm for general acyclic hypergraphs and for subset graphs of $\beta$-acyclic hypergaphs then gives the following:

## Theorem

There is an algorithm that computes the union join graph $G$ of a given $\beta$-acyclic hypergraph in $O(N \log (n+m)+|G|)$ time.

## $\gamma$-Acyclic Hypergraphs

## $\gamma$-Acyclic Hypergraphs

## $\gamma$-Acyclic Hypergraph

A hypergraph is $\gamma$-acyclic if, for all distinct hyperedges $E_{i}$ and $E_{j}$,

$$
S=E_{i} \cap E_{j} \neq \emptyset \quad \text { implies } \quad S \text { separates } E_{i} \backslash E_{j} \text { from } E_{j} \backslash E_{i} .
$$

## Lemma

For an acyclic hypergraph with join tree $T$, the following are equivalent:

- $H$ has a join tree $T$ with the edge $E_{i} E_{j}$.
- $S=E_{i} \cap E_{j} \neq \emptyset$ and $S$ separates $E_{i} \backslash E_{j}$ from $E_{j} \backslash E_{i}$.

Follows from definition of join trees.

## Line Graph

The line graph $L(H)=\left(\mathcal{E}, \mathcal{E}_{L}\right)$ of a hypergraph $H=(V, \mathcal{E})$ is the intersection graph of its hyperedges. That is,

$$
\mathcal{E}_{L}=\left\{E_{i} E_{j} \mid E_{i}, E_{j} \in \mathcal{E} ; E_{i} \cap E_{j} \neq \emptyset\right\} .
$$

## Finding Union Join Graph

## Theorem

An acyclic hypergraph is $\gamma$-acyclic if and only if its linegraph is isomorphic to its union join graph.

## Theorem

There is an algorithm that computes the union join graph $G$ of a given $\gamma$-acyclic hypergraph in $O(N+|G|)$ time.

## Bachman Diagram

For $H=(V, \mathcal{E})$, let $\mathcal{X}$ be the set of non-empty intersections $\mathfrak{X}$ of subsets of $\mathcal{E}$, i. e.,

$$
X=\bigcup_{\mathcal{E}^{\prime} \subseteq \mathcal{E}}\left\{\mathfrak{X} \mid \mathfrak{X}=\bigcap_{E \in \mathcal{E}^{\prime}} E, \mathfrak{X} \neq \emptyset\right\}
$$

## Bachman Diagram

The Bachman diagram $\mathcal{B}(H)$ of $H$ is a directed graph with the node set $\mathcal{X}$ such that there is an edge from $\mathfrak{X}$ to $\mathfrak{Y}$ if $\mathfrak{X} \supset \mathfrak{Y}$ and there is no $\mathfrak{Z}$ with $\mathfrak{X} \supset \mathfrak{Z} \supset \mathfrak{Y}$.

## Bachman Diagram

## Lemma

A hypergraph is $\gamma$-acyclic if and only if its Bachman diagram forms a tree.


## Finding Subset Graph

## Observation

- $E_{i} \subseteq E_{j}$ if and only if there is a path from $E_{j}$ to $E_{i}$ in $\mathcal{B}(H)$.



## Finding Subset Graph

## Algorithm Idea

- Compute a simplified Bachman diagram $B$ for $H$ in $O(N)$ time.
- For each $E_{i}$, determine all distinct $E_{j}$ such that there is path from $E_{j}$ to $E_{i}$ in $B$.
- For all such $E_{i}, E_{j}$, add edge $\left(E_{i}, E_{j}\right)$ to subset graph $G$.


## Theorem

There is an algorithm that computes the subset graph $G$ of a given $\gamma$-acyclic hypergraph in $O(N+|G|)$ time.

Interval Hypergraphs

## Interval Hypergraphs

## Interval Hypergraphs

An acyclic hypergraph is an interval hypergraph if it admits a join tree that forms a path.


Recognition and computing order $\sigma=\left\langle E_{1}, E_{2}, \ldots, E_{m}\right\rangle$ in $O(N)$ time [Habib et al. 2000].

## Interval Hypergraphs

$\phi(v)$ Index of right-most hyperedge containing $v$.
$\phi\left(S_{i}\right)=\min _{v \in S_{i}} \phi(v) \quad$ (index of right-most hyperedge containing all of $S_{i}$ )


## Lemma

For all $E_{i}, E_{j}$ with $i<j, E_{i} \subseteq E_{j}$ if and only if $\left|E_{i}\right|=\left|S_{i}\right|$ and $\phi\left(S_{i}\right) \geq j$.

Symmetry allows to also determine all $E_{i} \supseteq E_{j}$.

## Interval Hypergraphs

## Theorem

There is an algorithm that computes the subset graph $G$ of a given interval hypergraph in $O(N+|G|)$ time.

Using the algorithm from earlier:

## Theorem

There is an algorithm that computes the union join graph $G$ of a given interval hypergraph in $O(N+|G|)$ time.

Thank You!

