Computing the Union Join and Subset Graph of Acyclic Hypergraphs in Subquadratic Time

Arne Leitert

Hypergraph

Hypergraph

A hypergraph $H = (V, \mathcal{E})$ is a set of vertices V and a family \mathcal{E} (called hyperedges) of subsets of V.

It is a generalisation of a graph; hyperedges can contain an arbitrary positive number of vertices.

Representation: Incidence Graph

Representation as bipartite graph I(H), called *incidence graph*.

$$n = |V|$$
 $m = |\mathcal{E}|$ $N = \sum_{E \in \mathcal{E}} |E|$ Total input size: $O(N)$

Representation: Incidence Matrix

Representation as binary matrix $\mathcal{M}(H)$, called *incidence matrix*.

Acyclic Hypergraphs

Acyclic Hypergraph

A hypergraph $H = (V, \mathcal{E})$ is *acyclic* if its hyperedges \mathcal{E} form a tree T such that, for each vertex $v \in V$, the hyperedges containing v induce a subtree of T. T is called the *join tree* of H.

Acyclicity can be checked in linear time (also computes *T*) [Tarjan, Yannak 1984].

Acyclic Hypergraphs

Hierarchy (all subsets are proper subsets)

Applications

- Relational Databases
- Tree-Decompositions (e.g. Tree-Breadth, Tree-Width)
- Atoms of graphs
- Closely related to Chordal graphs and Dually Chordal graphs

Subset Graph and Union Join Graph

Sperner Family Problem

Input: A family \mathcal{F} of sets.

Question: Does \mathcal{F} contains two distinct sets S_i and S_j such that $S_i \subseteq S_j$?

Strong Exponential Time Hypothesis (SETH)

There is no algorithm that solves the Boolean satisfiability problem (without limiting clause sizes) in $O(2^{n-\varepsilon})$ time for some $\varepsilon > 0$.

Strong Exponential Time Hypothesis (SETH)

There is no algorithm that solves the Boolean satisfiability problem (without limiting clause sizes) in $O(2^{n-\varepsilon})$ time for some $\varepsilon > 0$.

A chain of reductions then allows to state the following:

Theorem

[Borassi, Crescenzi, Habib 2016]

If SETH is true, then there is no algorithm that solves the Sperner Family problem for an arbitrary family \mathcal{F} (i. e., for an arbitrary hypergraph) in $O(N^{2-\varepsilon})$ time.

Note that all subfamilies $\mathcal{F}_{S} = \{ S' \mid S = S' \}$ can be determined in linear time.

Subset Graph Problem

Input: A family $\mathcal{F} = \{S_1, S_2, \dots, S_m\}$ of sets.

Output: The subset graph $G = (\mathcal{F}, E)$ with $S_i S_j \in E$ if and only if $S_i \subseteq S_j$ and $i \neq j$.

Theorem

[Borassi, Crescenzi, Habib 2016]

If SETH is true, then there is no algorithm to compute the subset graph of an arbitrary hypergraph in $O(N^{2-\varepsilon})$ time, even if the output is sparse.

Follows directly from hardness of Sperner Family Problem.

Theorem

[Pritchard 1999]

There is an $O(N^2/\log N)$ -time algorithm which computes the subset graph for a given family of sets.

Union Join Graph

The *union join graph* of an acyclic hypergraph is the union of all its join trees. That is, for an acyclic hypergraph $H = (V, \mathcal{E})$, the *union join graph* is a the graph $G = (\mathcal{E}, X)$ with $X = \{E_i E_j \mid \text{There exist a join tree for } H \text{ with the edge } E_i E_j.\}$.

[Berry, Simonet 2016] gave O(Nm)-time algorithm for acyclic hypergraphs.

Hardness of Union Join Graph

Is Join Tree Unique?

Join Tree

- Can be computed in linear time.
- Question: Is it unique?

Is Join Tree Unique?

Join Tree

- Can be computed in linear time.
- Question: Is it unique?

Lemma

If SETH is true, then there is no algorithm that determines in $O(N^{2-\varepsilon})$ time whether a given acyclic hypergraph has a unique join tree.

Proof

Linear-time reduction from Sperner Family Problem.

Is Join Tree Unique? - Reduction

Reduction

• Given family
$$\mathcal{F} = \{S_1, S_2, \ldots, S_m\}.$$

• Create hypergraph $H = (V, \mathcal{E})$ with $V = \bigcup_{S_i \in \mathcal{F}} S_i$ and $\mathcal{E} = \mathcal{F} \cup \{V\}$.

Observation

• There is no pair $S_i \subseteq S_j$ if and only if the join tree for *H* is unique.

Implication for Union Join Graph

Observation

▶ Join tree for *H* is unique if and only if union join graph is a tree.

Theorem

If SETH is true, then there is no algorithm that computes the union join graph of an α -acyclic hypergraph in $O(N^{2-\varepsilon})$ time.

Union Join Graph via Subset Graph

Separator Hypergraph

Let *T* be join tree of $H = (V, \mathcal{E})$ rooted in some hyperedge *R*.

Up-Separator $S^{\uparrow}(E_i)$ of hyperedge E_i is intersection with parent E_j , i. e.,

$$S^{\uparrow}(E_i) := E_i \cap E_j.$$

Separator Hypergraph

Separator Hypergraph $\mathcal{S}(H)$ for H is the hypergraph formed from the set

 $\mathcal{E}_S = \left\{ S^{\uparrow}(E_i) \mid E_i \in \mathcal{E}, E_i \neq R \right\}.$

Separators and Union Join Graph

Lemma

For any distinct $E_i, E_j \in \mathcal{E}$, the following are equivalent.

- *H* has a join tree *T* with the edge $E_i E_j$.
- ▶ *T* has a separator *S* on the path from E_i to E_j with $S \subseteq S_i$ and $S \subseteq S_j$.

Algorithm

- 1. Compute subset graph $G_{\mathcal{S}}$ of separator hypergraph $\mathcal{S}(H)$
- 2. For some $S \in \mathcal{S}(H)$, use $G_{\mathcal{S}}$ to find all hyperedges E_i with $S \subseteq S_i$.

Algorithm

3. Partition hyperedges based on which side of *S* in *T* they are.(Determine if *E* is descendants of *S* or not in rooted tree, constant time after preand post-order on tree.)

Algorithm

- 4. Make all "left" hyperedges adjacent to all "right" hyperedges.
- 5. Repeat for all $S \in \mathcal{S}(H)$.

Theorem

The algorithm computes the union join graph *G* of a given acyclic hypergraph *H* in $O(T_{\mathcal{A}}(H) + N + |G|)$ time where $T_{\mathcal{A}}(H)$ is the runtime of a given algorithm \mathcal{A} with the separator hypergraph of *H* as input.

Recall, subset graph can be computed in $O(N^2/\log N)$ time. Therefore:

Theorem

There is an algorithm that computes the union join graph *G* of an acyclic hypergraph in $O(N^2/\log N + |G|)$ time.

 β -Acyclic Hypergraphs

β -Acyclic Hypergraph

A hypergraph $H = (V, \mathcal{E})$ is β -acyclic if each $\mathcal{E}' \subseteq \mathcal{E}$ forms an acyclic hypergraph.

β -Acyclic Hypergraphs

- Closely related to Strongly Chordal graphs and Chordal Bipartite graphs.
- Also called Totally Balanced hypergraphs.

Doubly Lexically Ordered Matrix

A matrix is *doubly lexically ordered* if rows and columns are permuted in such a way that row- and column-vectors are in non-decreasing lexicographic order. Priorities in rows decrease from right to left and in columns from bottom to top.

A doubly lexically ordering of vertices and hyperedges can be found in $O(N \log(n + m))$ time (full matrix is not required) [Piage, Tarjan 1987].

Doubly Lexically Ordered Matrix

Finding Subset Graph

Preparation

Find double lexicographical ordering of vertices and hyperedges.

Lemma

Let v be the vertex highest in E_i . Then, $E_i \subseteq E_j$ if and only if $E_i \leq E_j$ and $v \in E_j$.

$$v \begin{bmatrix} \vdots & \vdots \\ \bullet & \bullet \end{bmatrix}$$

Finding Subset Graph

Approach

- lterate (backwards) over hyperedges of v until E_i is found. E_i is subset of all found hyperedges.
- Runtime is number of edges in output created.

Theorem

There is an algorithm that computes the subset graph *G* of a given β -acyclic hypergraph in $O(N \log(n + m) + |G|)$ time.

Lemma

If a hypergraph is β -acyclic, then its separator hypergraph is β -acyclic, too.

Using the algorithm for general acyclic hypergraphs and for subset graphs of β -acyclic hypergaphs then gives the following:

Theorem

There is an algorithm that computes the union join graph *G* of a given β -acyclic hypergraph in $O(N \log(n + m) + |G|)$ time. γ -Acyclic Hypergraphs

γ-Acyclic Hypergraph

A hypergraph is γ -acyclic if, for all distinct hyperedges E_i and E_j ,

 $S = E_i \cap E_j \neq \emptyset$ implies *S* separates $E_i \setminus E_j$ from $E_j \setminus E_i$.

Lemma

For an acyclic hypergraph with join tree *T*, the following are equivalent:

- *H* has a join tree *T* with the edge $E_i E_j$.
- $S = E_i \cap E_j \neq \emptyset$ and S separates $E_i \setminus E_j$ from $E_j \setminus E_i$.

Follows from definition of join trees.

Line Graph

The *line graph* $L(H) = (\mathcal{E}, \mathcal{E}_L)$ of a hypergraph $H = (V, \mathcal{E})$ is the intersection graph of its hyperedges. That is,

 $\mathcal{E}_L = \{ E_i E_j \mid E_i, E_j \in \mathcal{E}; E_i \cap E_j \neq \emptyset \}.$

Theorem

An acyclic hypergraph is γ -acyclic if and only if its linegraph is isomorphic to its union join graph.

Theorem

There is an algorithm that computes the union join graph *G* of a given γ -acyclic hypergraph in O(N + |G|) time.

Bachman Diagram

For $H = (V, \mathcal{E})$, let X be the set of non-empty intersections \mathfrak{X} of subsets of \mathcal{E} , i. e.,

$$\mathcal{X} = \bigcup_{\mathcal{E}' \subseteq \mathcal{E}} \left\{ \mathfrak{X} \mid \mathfrak{X} = \bigcap_{E \in \mathcal{E}'} E, \mathfrak{X} \neq \emptyset \right\}$$

Bachman Diagram

The *Bachman diagram* $\mathcal{B}(H)$ of H is a directed graph with the node set \mathcal{X} such that there is an edge from \mathfrak{X} to \mathfrak{Y} if $\mathfrak{X} \supset \mathfrak{Y}$ and there is no \mathfrak{Z} with $\mathfrak{X} \supset \mathfrak{Z} \supset \mathfrak{Y}$.

Lemma

[Fagin 1983]

A hypergraph is γ -acyclic if and only if its Bachman diagram forms a tree.

Finding Subset Graph

Observation

• $E_i \subseteq E_j$ if and only if there is a path from E_j to E_i in $\mathcal{B}(H)$.

Finding Subset Graph

Algorithm Idea

- Compute a simplified Bachman diagram *B* for *H* in O(N) time.
- For each E_i , determine all distinct E_j such that there is path from E_j to E_i in B.
- For all such E_i, E_j , add edge (E_i, E_j) to subset graph G.

Theorem

There is an algorithm that computes the subset graph *G* of a given γ -acyclic hypergraph in O(N + |G|) time.

Interval Hypergraphs

Interval Hypergraphs

Interval Hypergraphs

An acyclic hypergraph is an *interval hypergraph* if it admits a join tree that forms a path.

Recognition and computing order $\sigma = \langle E_1, E_2, \dots, E_m \rangle$ in O(N) time [Habib et al. 2000].

Interval Hypergraphs

 $\phi(v)$ Index of right-most hyperedge containing v.

 $\phi(S_i) = \min_{v \in S_i} \phi(v)$ (index of right-most hyperedge containing all of S_i)

Lemma

For all E_i , E_j with i < j, $E_i \subseteq E_j$ if and only if $|E_i| = |S_i|$ and $\phi(S_i) \ge j$.

Symmetry allows to also determine all $E_i \supseteq E_j$.

Theorem

There is an algorithm that computes the subset graph *G* of a given interval hypergraph in O(N + |G|) time.

Using the algorithm from earlier:

Theorem

There is an algorithm that computes the union join graph *G* of a given interval hypergraph in O(N + |G|) time.

Thank You!