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Abstract

The tree-breadth of a graph is a recently introduced variant of the well known idea
of decomposing a graph into a tree of bags. It is a parameter which adds a metric
constraint to tree-decompositions limiting the radius of each bag. In this dissertation, we
further investigate the tree-breadth of graphs. We present approaches to compute a tree-
decomposition with small breadth for a given graph including approximation algorithms
for general graphs as well as optimal solutions for special graph classes. Additionally, we
introduce a variant of tree-breadth called strong tree-breadth. Next, we present various
algorithms to approach the (Connected) r-Domination problem for graphs with bounded
tree-breadth. One variant, called path-breadth, requires the decomposition to be a path
instead of a tree. We use graphs with bounded path-breadth to construct efficient
constant-factor approximation algorithms for the bandwidth and line-distortion problems.
Motivated by these results, we introduce and investigate the new Minimum Eccentricity
Shortest Path problem. We analyse the hardness of the problem, show algorithms to
compute an optimal solution, and present approximation algorithms differing in quality
and runtime.
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Chapter 1

Introduction

Decomposing a graph into a tree is an old concept. It is introduced already by Halin [59].
However, a more popular introduction is given by Robertson and Seymour [79, 80].
The idea is to decompose a graph into multiple induced subgraphs, usually called bags,
where each vertex can be in multiple bags. These bags are combined to a tree or path in
such a way that the following requirements are fulfilled: Each vertex is in at least one
bag, each edge is in at least one bag, and, for each vertex, the bags containing it induce a
subtree. We give formal definitions in Section 2.2 (page 5).

For a given graph, there can be up-to exponentially many different tree- or path-
decompositions. The easiest is to have only one bag containing the whole graph. To
make the concept more interesting, it is necessary to add additional restrictions. The
most known is called tree-width. A decomposition has width ω if each bag contains at
most ω+ 1 vertices. Then, a graph G has tree-width ω (written as tw(G) = ω) if there is
a tree-decomposition for G which has width ω and there is no tree-decomposition with
smaller width.

Tree-width is well studied. Determining the minimal width ω for a given graph G is
NP-complete [3]. However, if ω is fixed, it can be checked in linear time if tw(G) ≤ ω [12].
The algorithm in [12] also creates a tree decomposition for G. For a graph class with
bounded tree-with, many NP-complete problems can be solved in polynomial or even
linear time.

In the last years, a new perspective on tree-decompositions was invested. Instead of
limiting the number of vertices in each bag, the distance between vertices inside a bag is
limited. There are two major variants: breadth and length.

The breadth of a decomposition is ρ, if, for each bag B, there is a vertex v such that
each vertex in B has distance at most ρ to v. Accordingly, we say the tree-breadth of a
graph G is ρ (written as tb(G) = ρ) if there is a tree-decomposition for G with breadth ρ
and there is no tree-decomposition with smaller breadth.

The length of a decomposition is λ, if the maximal distance of two vertices in each bag
is at most λ. Accordingly, we say the tree-length of a graph G is λ (written as tl(G) = λ)
if there is a tree-decomposition for G with length λ and there is no tree-decomposition
with smaller length.
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Chapter 1. Introduction

1.1 Existing and Recent Results

The first results on tree-breadth and -length were motivated by tree spanners. A tree
spanner T of a graph G is a spanning tree for G such that the distance of two vertices in T
approximates their distance in G. A natural applications for tree spanners is routing in
networks. Routing messages directly over a tree can be done very efficiently [90]. Another
option is to use the tree as orientation as shown in [44]. Next to routing, tree spanners
are used for a protocol locating mobile objects in networks [78]. Other applications can
be found for example in biology [5] and in approximating bandwidth [91].

To approximate tree spanners for general graphs, Dragan and Köhler introduce
tree-breadth in [37]. As additional result, they show a simple algorithm for approximating
tree-breadth. Later, Abu-Ata and Dragan [36] use tree-breadth to construct collective
tree spanners for general graphs. In [2], they also analyse the tree-breadth of real world
graph showing that many real world graphs have a small tree-breadth. The hardness of
computing the tree-breadth of a graph is investigated by Ducoffe et al. [48]. They show
that it is NP-complete to determine, for a given graph G and any given integer ρ ≥ 1, if
tb(G) ≤ ρ. Additionally, they present a polynomial-time algorithms to decide if tb(G) = 1
for the case that G is a bipartite or a planar graph.

Tree-length is first introduced by Dourisboure and Gavoille [33]. They investigate
the connection to k-chordal graphs and present first approximation results. Later,
Dourisboure et al. [32] use tree-length to investigate additive spanners. Additionally,
Dourisboure [31] shows how to compute efficient routing schemes for graphs with
bounded tree-length. An other application of tree-length is the Metric Dimension
problem. It asks for the smallest set of vertices such that each vertex in a given graph
can be identified by its distances to the vertices in such a set. Belmonte et al. [7]
show that the Metric Dimension problem is Fixed Parameter Tractable for graphs with
bounded tree-length. In [72], Lokshtanov investigates the hardness of computing the
tree-length of a given graph and shows that it is NP-complete to do so, even for length 2.
A connection between tree-width and tree-length is presented by Coudert et al. [26].
They show that, for a given graph G, tl(G) ≤ ⌊ℓ(G)/2⌋ · (tw(G) − 1) where ℓ(G) is the
length of a longest isometric cycle in G.

1.2 Outline

In this dissertation, we further investigate tree-breadth. In Chapter 3, we present
approaches to compute a tree-decomposition with small breadth for a given graph. This
includes approximation algorithms for general graphs as well as optimal solutions for
special graph classes. We also introduce a variant of tree-breadth called strong tree-breadth.
Next, in Chapter 4, we present algorithms to approach the (Connected) r-Domination
problem for graphs with bounded tree-breadth. Our results include (almost) linear
time algorithms for the case that no tree-decomposition is given and polynomial time
algorithms (with a better solution quality) for the case that a tree-decomposition is given.
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Chapter 1. Introduction

In Chapter 5, we use graphs with bounded path-breadth and -length to construct efficient
constant-factor approximation algorithms for the bandwidth and line-distortion problems.
Motivated by these results, we introduce and investigate the new Minimum Eccentricity
Shortest Path problem in Chapter 6. We analyse the hardness of the problem, show
algorithms to compute an optimal solution, and present various approximation algorithms
differing in quality and runtime. This is done for general graphs as well as for special
graph classes.

Note. Some of the results in this dissertation were obtained in collaborative work with
Feodor F. Dragan1 and Ekkehard Köhler2. Results have been published partially
at SWAT 2014, Copenhagen, Denmark [38], at WADS 2015, Victoria, Canada [41],
at WG 2015, Munich, Germany [40], at COCOA 2016, Hong Kong, China [71], in the
Journal of Graph Algorithms and Applications [42], and in Algorithmica [39].

1Kent State University, USA
2Brandenburgische Technische Universität Cottbus, Germany
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Chapter 2

Preliminaries

2.1 General Definitions

If not stated or constructed otherwise, all graphs occurring in this dissertation are
connected, finite, unweighted, undirected, without loops, and without multiple edges. For
a graph G = (V,E), we use n = |V | and m = |E| to denote the cardinality of the vertex
set and the edge set of G.

The length of a path from a vertex v to a vertex u is the number of edges in the path.
The distance dG(u, v) in a graph G of two vertices u and v is the length of a shortest
path connecting u and v. The distance between a vertex v and a set S ⊆ V is defined
as dG(v, S) = minu∈S dG(u, v). Let x and y be two vertices in a graph G such that x is
most distant from some arbitrary vertex and y is most distant from x. Such a vertex
pair x, y is called spread pair and a shortest path from x to y is called spread path.

The eccentricity eccG(v) of a vertex v is maxu∈V dG(u, v). For a set S ⊆ V , its
eccentricity is eccG(S) = maxu∈V dG(u, S). For a vertex pair s, t, a shortest (s, t)-path P
has minimal eccentricity, if there is no shortest (s, t)-path Q with eccG(Q) < eccG(P ).
Two vertices x and y are called mutually furthest if dG(x, y) = eccG(x) = eccG(y). A
vertex u is k-dominated by a vertex v (by a set S ⊆ V ), if dG(u, v) ≤ k (dG(u, S) ≤ k,
respectively).

The diameter of a graph G is diam(G) = maxu,v∈V dG(u, v). The diameter diamG(S)
of a set S ⊆ V is defined as maxu,v∈S dG(u, v). The radius of a set S ⊆ V is defined
as minu∈V maxv∈S dG(u, v). A pair of vertices x, y of G is called a diametral pair if
dG(x, y) = diam(G). In this case, every shortest path connecting x and y is called a
diametral path.

For a vertex v of G, NG(v) = {u ∈ V | uv ∈ E } is called the open neighbourhood
of v and NG[v] = NG(v) ∩ {v} is called the closed neighbourhood of v. Similarly, for
a set S ⊆ V , we define NG(S) =

{
u ∈ V | dG(u, S) = 1

}
. The l-neighbourhood of a

vertex v in G is N l
G[v] =

{
u | dG(u, v) ≤ l

}
. The l-neighbourhood of a vertex v is also

called l-disk of v. Two vertices u and v are true twins if NG[u] = NG[v] and are false
twins if they are non-adjacent and NG(u) = NG(v).

The degree of a vertex v is the number of vertices adjacent to it. If a vertex has
degree 1, it is called a pendant vertex. A graph G is called sparse, if the sum of all vertex
degrees is in O(n).

For some vertex v, L(v)
i =

{
u ∈ V | dG(u, v) = i

}
denotes the vertices with distance i

from v. We will also refer to L(v)
i as the i-th layer. For two vertices u and v, IG(u, v) =
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Chapter 2. Preliminaries

{w | dG(u, v) = dG(u,w) + dG(w, v) } is the interval between u and v. The set Si(s, t) =
L

(s)
i ∩ IG(u, v) is called a slice of the interval from u to v. For any set S ⊆ V and a

vertex v, PrG(v, S) =
{
u ∈ S | dG(u, v) = dG(v, S)

}
denotes the projection of v on S

in G.
For a vertex set S, let G[S] denote the subgraph of G induced by S. With G− S, we

denote the graph G[V \ S]. A vertex set S is a separator for two vertices u and v in G if
each path from u to v contains a vertex s ∈ S; in this case we say S separates u from v.
If a separator S contains only one vertex s, i. e., S = {s}, then s is an articulation point.
A block is a maximal subgraph without articulation points.

A chord in a cycle is an edge connecting two non-consecutive vertices of the cycle. A
cycle is called induced if it has no chords. For each k ≥ 3, an induced cycle of length k

is called as Ck. A subgraph is called clique if all its vertices are pairwise adjacent. A
maximal clique is a clique that cannot be extended by including any additional vertex.

If clear from context, graph identifying indices of notations may be omitted. For
example, we may write N [v] instead of NG[v].

One-Sided Binary Search. Consider a sorted sequence ⟨x1, x2, . . . , xn⟩ in which we
search for a value xp. We say the value xi is at position i. For a one-sided binary search,
instead of starting in the middle at position n/2, we start at position 1. We then processes
position 2, then position 4, then position 8, and so on until we reach position j = 2i and,
next, position k = 2i+1 with xj < xp ≤ xk. Then, we perform a classical binary search on
the sequence ⟨xj+1, . . . , xk⟩. Note that, because xj < xp ≤ xk, 2i < p ≤ 2i+1 and, hence,
j < p ≤ k < 2p. Therefore, a one-sided binary search requires at most O(log p) iterations
to find xp.

2.2 Tree-Decompositions
A tree-decomposition for a graph G = (V,E) is a family T = {B1, B2, . . .} of subsets of V ,
called bags, such that T forms a tree with the bags in T as nodes which satisfies the
following conditions:

(i) Each vertex is contained in a bag, i. e., V = ⋃
B∈B B,

(ii) for each edge uv ∈ E, T contains a bag B with u, v ∈ B, and
(iii) for each vertex v ∈ V , the bags containing v induce a subtree of T .

A path-decomposition of graph is a tree-decomposition with the restriction that the bags
form a path instead of a tree with multiple branches.

Lemma 2.1 (Tarjan and Yannakakis [88]). Let F be a set of bags for some graph G.
Determining if F forms a tree-decomposition for G and, if this is the case, computing
the corresponding tree can be done in linear time.

It follows from Lemma 2.1 that we can consider a tree-decomposition interchangeably
either as family of bags or as structured tree of bags with defined edges and neighbour-
hoods.
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Chapter 2. Preliminaries

Lemma 2.2 (Diestel [29]). Let K be a maximal clique in some graph G. Then, each
tree-decomposition for G contains a bag B such that K ⊆ B.

Lemma 2.3. Let B be a bag of a tree-decomposition T for a graph G and let C be
a connected component in G − B. Then, T contains a bag BC with BC ⊇ NG(C)
and BC ∩ C ̸= ∅.

Proof. Let BC be the bag in T for which BC ∩C ̸= ∅ and the distance between B and BC

in T is minimal. Additionally, let B′ be the bag in T adjacent to BC which is closest to B
and let S = BC ∩ B′. Note that S ∩ C = ∅ and, by properties of tree-decompositions,
S separates C from all vertices in B \ S. Assume that there is a vertex u ∈ NG(C) \ S.
Because u ∈ NG(C), there is a vertex v ∈ C which is adjacent to u. This contradicts
with S being a separator for u and v. Therefore, NG(C) ⊆ S ⊆ BC . □

A tree-decomposition T of G has breadth ρ if, for each bag B of T , there is a vertex v
in G with B ⊆ Nρ

G[v]. The tree-breadth of a graph G is ρ, written as tb(G) = ρ, if ρ is
the minimal breadth of all tree-decomposition for G. Similarly, path-breadth of a graph G
is ρ, written as pb(G) = ρ, if ρ is the minimal breadth of all path-decomposition for G.

A tree-decomposition T of G has length λ if, for each bag B of T , the diameter of B
is at most λ, i. e., for all vertices u, v ∈ B, dG(u, v) ≤ λ. Accordingly, the tree-length of a
graph G is λ, written as tl(G) = λ, if λ is the minimal breadth of all tree-decomposition
for G. Similarly, path-length of a graph G is λ, written as pl(G) = λ, if λ is the minimal
breadth of all path-decomposition for G.

Clearly, it follows from their definitions that, for any graphG, tb(G) ≤ tl(G) ≤ 2 tb(G),
pb(G) ≤ pl(G) ≤ 2 pb(G), tb(G) ≤ pb(G), and tl(G) ≤ pl(G). Additionally, as shown in
Lemma 2.4 below, non of these parameter increases when an edge of a graph is contracted.

Lemma 2.4 (Dragan and Köhler [37]). Let G be a graph and H be a graph created
by contracting an edge of G. Then, for each ϕ ∈ {tb, tl, pb,pl}, ϕ(H) ≤ ϕ(G).

2.3 Layering Partitions

Brandstädt et al. [15] and Chepoi, Dragan [19] introduced a method called layering
partition. The idea is the following. First, partition the vertices of a given graph G in
distance layers for a given vertex s. Second, partition each layer L(s)

i into clusters in such
a way that two vertices u and v are in the same cluster if and only if they are connected
by a path only using vertices in the same or upper layers. That is, u and v are in the
same cluster if and only if, for some i, {u, v} ⊆ L

(s)
i and there is a path P from u to v

in G such that, for all j < i, P ∩ L
(s)
j = ∅. Note that each cluster C is a set of vertices

of G, i. e., C ⊆ V , and all clusters are pairwise disjoint. The created clusters form a
rooted tree T with the cluster {s} as root where each cluster is a node of T and two
clusters C and C ′ are adjacent in T if and only if G contains an edge uv with u ∈ C

and v ∈ C ′. Figure 2.1 gives an example for such a partition.
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Chapter 2. Preliminaries

s

(a) A graphG.

s

(b) A layering partition T forG.

Figure 2.1. Example of a layering partition. A given graph G (a) and the layering partition of G
generated when starting at vertex s (b). Example taken from [19].

Lemma 2.5 (Chepoi and Dragan [19]). A layering partition of a given graph can be
computed in linear time.

For a given graph G = (V,E), let T be a layering partition of G and let ∆ be the
maximum cluster diameter of T . For two vertices u and v of G contained in the clusters
Cu and Cv of T , respectively, we define dT (u, v) := dT (Cu, Cv).

Lemma 2.6. For all vertices u and v of G, dT (u, v) ≤ dG(u, v) ≤ dT (u, v) + ∆.

Proof. Clearly, by construction of a layering partition, dT (u, v) ≤ dG(u, v) for all vertices
u and v of G.

Next, let Cu and Cv be the clusters containing u and v, respectively. Note that T is a
rooted tree. Let C ′ be the lowest common ancestor of Cu and Cv. Therefore, dT (u, v) =
dT (u,C ′) +dT (C ′, v). By construction of a layering partition, C ′ contains a vertex u′ and
vertex v′ such that dG(u, u′) = dT (u, u′) and dG(v, v′) = dT (v, v′). Since the diameter of
each cluster is at most ∆, dG(u, v) ≤ dT (u, u′) + ∆ + dT (v, v′) = dT (u, v) + ∆. □

2.4 Special Graph Classes

Chordal Graphs. A graph is chordal if every cycle with at least four vertices has a
chord. The class of chordal graphs is a well known class which can be recognised in linear
time [88]. Due to the strong tree structure of chordal graphs, they have the following
property known as m-convexity:

Lemma 2.7 (Faber and Jamison [49]). Let G be a chordal graph. If, for two distinct
vertices u, v in a disk N r[x], there is a path P connecting them with P ∩N r[x] = {u, v},
then u and v are adjacent.

7



Chapter 2. Preliminaries

It is well known [55] that a graph G is chordal if it admits a so-called clique tree. That
is, G admits a tree-decomposition T such that each bag of T induces a clique. Such a
tree-decomposition can be found in linear time [86].

Theorem 2.1 (Gavril [55]). A graph G is chordal if and only if tl(G) ≤ 1.

A subclass of chordal graphs are interval graph. A graph is an interval graph if it
is the intersection graphs of intervals on a line. It is known [56] that a graph G is an
interval graph if and only if G admits a path-decomposition P such that each bag of P
induces a clique. Such a decomposition P can be computed in linear time.

Theorem 2.2 (Gilmore and Hoffman [56]). A graph G is an interval graph if and
only if pl(G) ≤ 1.

Dually Chordal Graphs. A graph is dually chordal if it is the intersection graph of
maximal cliques of a chordal graph. In [16], Brandstädt et al. introduce dually chordal
graphs and show that they can be recognised in linear time. It follows from Theorem 2.3
below that dually chordal graphs have tree-breadth 1.

Theorem 2.3 (Brandstädt et al. [16]). A graph G = (V,E) is dually chordal if and
only if the set

{
N [v] | v ∈ V

}
forms a valid tree-decomposition for G.

Distance-Hereditary Graphs. A graph G is distance-hereditary if the distances in
any connected induced subgraph of G are the same as in G.

Lemma 2.8 (Bandelt and Mulder [6]). Let G be a distance-hereditary graph, let x
be an arbitrary vertex of G, and let u, v ∈ L

(x)
k be in the same connected component of

the graph G− L
(x)
k−1. Then, N(v) ∩ L

(x)
k−1 = N(u) ∩ L

(x)
k−1.

Let σ = ⟨v1, v2, . . . , vn⟩ be an ordering for the vertices of some graph G, let Vi =
{v1, v2, . . . , vi}, and let Gi denote the graph G[Vi]. An ordering σ is called a pruning
sequence for G if, for 1 ≤ j < i ≤ n, each vi satisfies one of the following conditions in Gi:

(i) vi is a pendant vertex,
(ii) vi is a true twin of some vertex vj , or
(iii) vi is a false twin of some vertex vj .

Lemma 2.9 (Bandelt and Mulder [6]). A graph G is distance-hereditary if and only
if there is a pruning sequence for G.
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δ-Hyperbolic Graphs. A graph has hyperbolicity δ if, for any four vertices u, v, w,
and x, the two larger of the sums d(u, v) + d(w, x), d(u,w) + d(v, x), and d(u, x) + d(v, w)
differ by at most 2δ.

Lemma 2.10 (Chepoi et al. [20]). Let u, v, w, and x be four vertices in a δ-hyperbolic
graph. If d(u,w) > max

{
d(u, v), d(v, w)

}
+ 2δ, then d(v, x) < max

{
d(x, u), d(x,w)

}
.

Theorem 2.4 (Chepoi et al. [20]). If a graph G has hyperbolicity δ, then δ ≤ tl(G)
and tl(G) ∈ O(δ logn).

AT-Free Graphs. An asteroidal triple (AT for short) in a graph is a set of three vertices
where every two of them are connected by a path avoiding the neighbourhood of the
third. A graph is called AT-free if it does not contain an asteroidal triple.

A Lexicographic Breadth-First Search (LexBFS for short) is a refinement of a standard
BFS which produces a vertex ordering σ : V → {1, . . . , n}. A LexBFS starts at some start
vertex s, orders the vertices of a graph G by assigning numbers from n to 1 to the vertices
in the order as they are discovered by the following search process. Each vertex v has a
label consisting of a (reverse) ordered list of the numbers of those neighbours of v that
were already visited by the LexBFS; initially this label is empty. The LexBFS starts with
some vertex s, assigns the number n to s, and adds this number to the end of the label of
all unnumbered neighbours of s. Then, in each step, the LexBFS selects the unnumbered
vertex v with the lexicographically largest label, assigns the next available number k to v,
and adds this number to the end of the labels of all unnumbered neighbours of v. An
ordering σ of the vertex set of a graph generated by a LexBFS is called LexBFS-ordering.
Note that the closer a vertex is to the start vertex s in G, the larger its number is in σ.
It is known that a LexBFS-ordering of an arbitrary graph can be generated in linear
time [81].

For the two lemmas below, assume that we are given an AT-free graph G = (V,E), let
s be an arbitrary vertex of G, let x be the vertex last visited (numbered 1) by a LexBFS
starting at s, and let σ be the ordering obtained by a LexBFS starting at x. Additionally,
for some vertex v ∈ L

(x)
i , let N↓

G(v) = NG(v) ∩ L
(x)
i−1.

Lemma 2.11 (Corneil et al. [25]). Let y be a vertex of G and let P be a shortest path
from x to y. For each vertex z with σ(y) ≤ σ(z) ≤ σ(x) = n, dG(z, P ) ≤ 1.

Lemma 2.12. For every integer i ≥ 1 and every two non-adjacent vertices u, v ∈ L
(x)
i

of G, σ(v) < σ(u) implies N↓
G(v) ⊆ N↓

G(u). In particular, dG(v, u) ≤ 2 holds for
every u, v ∈ L

(x)
i and every i.

Proof. Consider an arbitrary neighbour w ∈ L
(x)
i−1 of v and a shortest path P from v to x

in G containing w. Since σ(v) < σ(u), by Lemma 2.11, path P must dominate vertex u.
Since u and v are not adjacent, u is in Li, and all vertices of P \ {v, w} belong to layers
L

(x)
j with j < i − 1, vertex u must be adjacent to w. Otherwise, u, v, and x form an

asteroidal triple. □
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Chapter 3

Computing Decompositions with Small
Breadth⋆

For each graph class C, a central problem is its recognition. That is, given a graph G, is
G a member of C? In case of tree- and path-decompositions, we can define recognition
as decision problem or as optimization problem. Using tree-breadth as example, the
decision problem asks, for a given graph G and a given integer ρ ≥ 1, if tb(G) ≤ ρ. The
corresponding optimisation problem asks for a decomposition of G such that the breadth
of this decomposition is minimal. In this chapter, we show approaches to determine a
tree- or path-decomposition with small breadth (or length) for a given graph. We show
results for general graphs as well as for special graph classes.

We know from Lokshtanov [72] and Ducoffe et al. [48] that it is NP-hard to
determine any of the parameters tree-breadth, tree-length, path-breadth, and path-length
for a given graph.

Theorem 3.1 (Lokshtanov [72]). For a given graph G and a fixed λ ≥ 2, it is NP-
complete to decide if tl(G) ≤ λ.

Theorem 3.2 (Ducoffe et al. [48]). Given a graph G and an integer k, it is NP-
complete to decide any of the following: Is tb(G) ≤ k? Is pb(G) ≤ k? Is pl(G) ≤ k?

3.1 Approximation Algorithms

In this section, we present approaches to compute a decomposition for a given graph
which approximates the graph’s tree-breadth, tree-length, path-breadth, or path-length.
Additionally to showing that it is hard to compute any of these parameters optimally,
Lokshtanov [72] and Ducoffe et al. [48] show that a certain approximation quality is
hard, too.

Theorem 3.3 (Lokshtanov [72]). If P ̸= NP, then there is no polynomial time
algorithm to calculate a tree-decomposition, for a given graph G, of length smaller
than 3

2 tl(G).

Theorem 3.4 (Ducoffe et al. [48]). For any ϵ > 0, it is NP-hard to approximate the
tree-breadth of a given graph by a factor of (2 − ϵ).

⋆ Results from this chapter have been published partially at SWAT 2014, Copenhagen, Denmark [38],
at COCOA 2016, Hong Kong, China [71], and in Algorithmica [39].
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Chapter 3. Computing Decompositions with Small Breadth

3.1.1 Layering Based Approaches

One approach for computing a tree-decomposition for a given graph is to use a layering
partition. Lemma 3.1 shows that the radius and diameter of the clusters of a layering
partition are bounded by the tree-breadth and tree-length of the underlying graph.

Lemma 3.1 (Dourisboure et al. [32], Dragan and Köhler [37]). In a graph G

with tb(G) = ρ and tl(G) = λ, let C be a cluster of an arbitrary layering partition
for G. There is a vertex w with dG(w, u) ≤ 3ρ for each u ∈ C. Also, dG(u, v) ≤ 3λ for
all u, v ∈ C.

Recall that the clusters created by a layering partition form a rooted tree. This tree
can be transformed into a tree-decomposition by expanding its clusters as follows. For
a cluster C, add all vertices from the parent of C which are adjacent to a vertex in C.
That is, for each cluster C ⊆ L

(s)
i , create a bag BC = C ∪

(
NG(C) ∩ L

(s)
i−1

)
. As shown in

Lemma 3.1, the radius and diameter of a cluster are at most three times larger than the
tree-breadth and -length of G, respectively. Therefore, the created tree-decomposition
has length at most 3λ + 1 and breadth at most 3ρ + 1. Abu-Ata and Dragan [2]
slightly improve this observation and show that the breadth of such a tree-decomposition
is indeed at most 3ρ.

Corollary 3.1 (Dourisboure et al. [32], Abu-Ata and Dragan [2]). For a given
graph G, a tree-decomposition with breadth 3 tb(G) and length 3 tl(G)+1 can be computed
in linear time.

A similar strategy as above can be used to approximate the path-breadth and -length
of a graph. However, there are two major differences. First, a layering partition creates a
tree and, second, can start at any vertex. The first difference can be addressed by using
a simple BFS-layering. For the second, however, we need to find the right start vertex.

Consider a given start vertex s and the layers L(s)
i . We define an extended layer L(s)

i

as follows:
L(s)

i = L
(s)
i ∪

{
u

∣∣∣ uv ∈ E, u ∈ L
(s)
i−1, v ∈ L

(s)
i

}
Lemma 3.2. Let P = {X1, X2, . . . , Xp} be a path-decomposition for G with length λ,
breadth ρ, and s ∈ X1. Then each extended layer L(s)

i has diameter at most 2λ and radius
at most 3ρ.

Proof. Let x and y be two arbitrary vertices in L
(s)
i . Also let x′ and y′ be arbitrary

vertices in L
(s)
i−1 with xx′, yy′ ∈ E.

First, we show that max
{
dG(x, y), dG(x, y′), dG(x′, y)

}
≤ 2λ. By induction on i, we

may assume that dG(y′, x′) ≤ 2λ as x′, y′ ∈ L
(s)
i−1. If there is a bag in P containing

both vertices x and y, then dG(x, y) ≤ λ and, therefore, dG(x, y′) ≤ λ + 1 ≤ 2λ and
dG(y, x′) ≤ λ + 1 ≤ 2λ. Assume now that all bags containing x are earlier in P =

11



Chapter 3. Computing Decompositions with Small Breadth

{X1, X2, . . . , Xp} than the bags containing y. Let B be a bag of P containing both ends
of edge xx′. By the position of this bag B in P and the fact that s ∈ X1, any shortest
path connecting s with y must have a vertex in B. Let w be a vertex of B that is on a
shortest path of G connecting vertices s and y and containing edge yy′. Such a shortest
path must exist because of the structure of the layering that starts at s and puts y′

and y in consecutive layers. Since x, x′, w ∈ B, we have max
{
dG(x,w), dG(x′, w)

}
≤ λ.

If w = y′, we are done; max
{
dG(x, y), dG(x, y′), dG(x′, y)

}
≤ λ+ 1 ≤ 2λ. So, assume that

w ̸= y′. Since dG(x, s) = dG(s, y) = i (by the layering) and dG(x,w) ≤ λ, we must have
dG(w, y′) + 1 = dG(w, y) = dG(s, y) − dG(s, w) = dG(s, x) − dG(s, w) ≤ dG(w, x) ≤ λ.
Hence, dG(y, x) ≤ dG(y, w) + dG(w, x) ≤ 2λ, dG(y, x′) ≤ dG(y, w) + dG(w, x′) ≤ 2λ, and
dG(y′, x) ≤ dG(y′, w) + dG(w, x) ≤ 2λ − 1. Therefore, we conclude that the distance
between any two vertices in L(s)

i is at most 2λ.
As shown above, the radius of each extended layer L(s)

i is at most 4ρ (because λ ≤ 2ρ).
Consider an extended layer L(s)

i and a family F =
{
N2ρ

G [u]
∣∣∣ u ∈ L(s)

i

}
of disks of G.

Since dG(u, v) ≤ 4ρ for every pair u, v ∈ L(s)
i , the disks of F pairwise intersect. Note that

each disk N2ρ
G [u] ∈ F induces a subpath of P. If subtrees of a tree T pairwise intersect,

they have a common node in T [9]. Therefore, there is a bag Xj ∈ P such that each disk
in F intersects Xj . Let w be the center of Xj , i. e. Xj ⊆ Nρ

G[w]. Hence, for each vertex u
with N2ρ

G [u] ∈ F , dG(w, u) ≤ 3ρ. Thus, for each i ∈ {1, . . . , ecc(s)} there is a vertex wi

with L(s)
i ⊆ N3ρ

G [wi]. □

Using Lemma 3.2, Algorithm 3.1 below computes a 3-approximation for the path-
breadth and a 2-approximation for the path-length of a given graph.

Algorithm 3.1: A 2-approximation algorithm for computing the path-length of a
graph (respectively, 3-approximation for path-breadth).
Input: A graph G = (V,E).
Output: A path-decomposition for G.

1 Compute the pairwise distances of all vertices in G.
2 For Each s ∈ V

3 Calculate a decomposition L(s) =
{
L(s)

i

∣∣∣ 1 ≤ i ≤ ecc(s)
}

.
4 Determine the length l(s) of L(s) (breadth b(s), respectively).
5 Output a decomposition L(s) for which l(s) (b(s), respectively) is minimal.

Theorem 3.5. Algorithm 3.1 computes a path-decomposition with length 2 pl(G) (with
breadth 3 pb(G), respectively) of a given graph G in O

(
n3)

time.

Proof. Let pb(G) = ρ and pl(G) = λ. By Lemma 3.2, there is a vertex s for which each
extended layer L(s)

i has diameter at most 2λ (radius at most 3ρ, respectively). Thus, the
algorithm creates and outputs a decomposition L(s) with length at most 2λ (breadth at
most 3ρ, respectively).

12



Chapter 3. Computing Decompositions with Small Breadth

Determining pairwise distances and creating the decomposition L(s) for each vertex s
can be done in O(nm) total time. Then, for a single vertex s, the length and breadth of
the decomposition L(s) can be calculated in O

(
n2)

time. Thus, Algorithm 3.1 runs in
O

(
n3)

total time. □

3.1.2 Neighbourhood Based Approaches

In the previous subsection, we use distance layerings to construct a decomposition for a
given graph. While this approach is simple, it has limitations. Consider the graph G in
Figure 3.1. G has tree-breadth 1 and -length 2. However, a layering partition starting
at s creates a cluster C with radius 3 and diameter 6. Now, one can create a graph H

containing two copies of G such that the s-vertices are connected by a path. Therefore,
any layering partition of H creates such a cluster C.

C

s

x y

a

b

c

Figure 3.1. A graph G where a layering partition creates a cluster C with radius 3 tb(G) and di-
ameter 3 tl(G). The family of disks {

N [a], N [b], N [c], N [x], N [y]
} gives a tree-decomposition with

breadth 1 and length 2. The cluster C has radius 3 (for all v ∈ C , d(s, v) = 3) and diameter 6
(d(x, y) = 6).

An alternative approach to distance layers is to carfully create a bag from the
neighbourhood of a vertex. Then add the bag to the tree-decomposition, pick a new
vertex, and repeat the process. This approach is clearly more complicated. However, it
has a better chance to determine a good decomposition for a given graph.

In [33], Dourisboure and Gavoille present such an algorithm to compute a tree-
decomposition which approximates the tree-length of a given graph. They show that,
for a given graph G, their algorithm successfully computes a tree-decomposition with
length at most 6 tl(G) − 4. Additionally, they conjecture that their algorithm can also
find a tree-decomposition with length at most 2 tl(G). However, Yancey [93] is able to
construct a counter example for this conjecture.

In what follows, we present an algorithm which computes a tree-decomposition with
breadth at most 3 tb(G) − 1 for a given graph G. To do so, assume for the remainder of
this subsection that we are given a graph G with tb(G) = ρ.

For some vertex u and some positive integer ϕ, let Cϕ
G[u] denote the set of connected

components in G−Nϕ
G[u]. We say that a vertex v is a ϕ-partner of u for some C ∈ Cϕ

G[u]
if Nϕ

G[v] ⊇ NG(C) and Nϕ
G[v] ∩ C ̸= ∅.

13



Chapter 3. Computing Decompositions with Small Breadth

Lemma 3.3. Let u be an arbitrary vertex of G. If ϕ ≥ 3ρ − 1, then G contains, for
each connected component C ∈ Cϕ

G[u], a vertex v such that v is a ϕ-partner of u for C.

Proof. Let T be a tree-decomposition for G with breadth ρ and let Bu be a bag of T
containing u. Without loss of generality, let T be rooted in Bu. Now, let BC be the bag
of T for which BC ∩ C ̸= ∅ and which is closest to Bu in T . Additionally, let B′

C be the
parent of BC and let S = BC ∩B′

C . Note that, by definition of BC , S ⊆ Nϕ
G[u] and BC

contains a vertex x with dG(u, x) > ϕ. Recall that the distance between two vertices in
a bag is at most 2ρ. Thus, dG(u, s) < ρ implies that dG(u, x) < 3ρ ≤ ϕ. Therefore, for
all s ∈ S, dG(u, s) ≥ ρ.

Let v be the center of BC . Because BC intersects C and T has breadth ρ, clearly,
dG(v, C) ≤ ρ < ϕ and, hence, C ∩ Nϕ

G[v] ̸= ∅. Let x be a vertex of G in NG(C). By
properties of tree-decompositions, each path from u to x intersect S. Thus, there is
a vertex s ∈ S with dG(u, x) = dG(u, s) + dG(s, x). Because dG(u, s) ≥ ρ ≥ dG(v, s),
it follows that dG(v, x) ≤ dG(u, x) ≤ ϕ and, thus, N(C) ⊆ Nϕ

G[v]. Therefore, v is a
ϕ-partner of u for C. □

Lemma 3.4. Let C be a connected component in G − Bu for some Bu ⊆ Nϕ
G[u] and

some positive ϕ. Also, let C ∈ Cϕ
G[u] and let v be a ϕ-partner of u for C. Then, for all

connected components Cv in G[C] −Nϕ
G[v], Cv ∈ Cϕ

G[v].

Proof. Consider a connected component Cv in G[C] −Nϕ
G[v]. Clearly, Cv ⊆ C and there

is a connected component C ′ ∈ Cϕ
G[v] such that C ′ ⊇ Cv.

Let x be an arbitrary vertex in C ′. Then, there is a path P ⊆ C ′ from x to Cv.
Because NG(C) ⊆ Bu and v is a ϕ-partner of u for C, NG(C) ⊆ Bu ∩ Nϕ

G[v]. Also,
NG(C) separates all vertices in C from all other vertices in G. Therefore, x ∈ C and
C ′ ⊆ C; otherwise, P would intersect Nϕ

G[v]. It follows that each vertex in P is in the
same connected component of G[C] −Nϕ

G[v] and, thus, Cv = C ′. □

Based on Lemma 3.3 and Lemma 3.4, we can compute, for a given ϕ ≥ 3ρ − 1, a
tree-decomposition with breadth ϕ as follows. Pick a vertex u and make it center of a
bag Bu = Nϕ

G. By Lemma 3.3, u has a ϕ-partner v for each connected component Cu ∈
Cϕ

G[u]. Then, Nϕ
G[v] splits Cu in more connected components Cv. Due to Lemma 3.4,

any of these components Cv is in Cϕ
G[v]. Thus, v has a ϕ-partner w for Cv. Hence,

create a bag Bv = Nϕ
G[v] ∩ (Bu ∪ Cu) and continue this until the whole graph is covered.

Algorithm 3.2 below implements this approach.

Theorem 3.6. Algorithm 3.2 successfully constructs, for a given graph G and a positive
integer ϕ, a tree-decomposition T with breadth ϕ in O

(
n3)

time if ϕ ≥ 3 tb(G) − 1.

Proof (Correctness). To show the correctness of the algorithm, we have to show that
the created tree-decomposition T is a valid tree-decomposition for G if ϕ ≥ 3 tb(G) − 1.
To do so, we show the following invariant for the loop starting in line 4: (i) T is a valid

14
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Algorithm 3.2: Constructs, for a given graph G = (V,E) and a given positive
integer ϕ, a tree-decomposition T with breadth ϕ.
Input: A graph G = (V,E) and a positive integer ϕ.
Output: A tree-decomposition T for G if ϕ ≥ 3 tb(G) − 1.

1 Determine the pairwise distances of all vertices and create an empty
tree-decomposition T .

2 Initialise an empty queue Q of triples (v,B,C) where v is a vertex of G and B is a
bag and C is a connected component, i. e., B and C are vertex sets.

3 Pick an arbitrary vertex u and insert (u, ∅, V ) into Q.
4 While Q is non-empty.
5 Remove a triple (v,Bu, Cu) from Q.
6 Create a bag Bv := Nϕ

G[v] ∩ (Bu ∪ Cu) and add Bv into T .
7 For Each connected component Cv in G[Cu] −Bv

8 Find a ϕ-partner w of v for Cv.
9 If no such w exists, Stop. ϕ < 3 tb(G) − 1.

10 Insert (w,Bv, Cv) into Q.

11 Output T .

tree-decomposition with breadth ϕ for the subgraph covered by T , (ii) for each connected
component C in G− T , Q contains a triple (v,B,C), and (iii) for each triple (v,Bu, Cu)
in Q, Bu is in T , NG(Cu) ⊆ Bu, Cu ∈ CG[u], and v is a ϕ-partner of u for Cu.

Let u be the vertex of G selected in line 3. In the first iteration of the loop, the
triple (u, ∅, V ) is removed from Q. Then, the algorithm creates the bag Bu = Nϕ

G[u] ∩
(∅ ∪ V ) = Nϕ

G[u] (line 6) and adds it into T . Clearly, since Bu is the only bag of T at
this point, condition (i) is satisfied. Additionally, each connected component C in G− T

is also in C[u]. Next, the algorithms determines a ϕ-partner v of u for each Cu ∈ C[u]
(line 8). Due to Lemma 3.3, such a v can be found for each such component Cu. Therefore,
after inserting the triples (v,Bu, Cu) into Q (line 10), condition (ii) and condition (iii)
are satisfied after the first iteration of the loop.

Now, assume by induction that the invariant holds each time line 4 is checked. If
Q is empty, it follows from condition (ii) that T covers the whole graph and, thus, by
condition (i), T is a valid tree-decomposition for G. If Q is not empty, it contains a
triple (v,Bu, Cu) which is then removed by the algorithm. Because of condition (iii),
it follows that Bv as created in line 6 contains NG(Cu) and, thus, NG(Cu) ⊆ Bu ∩ Bv.
Therefore, because Cu is not covered by T , T remains a valid tree-decomposition after
adding Bv, i. e., condition (i) is satisfied. The bag Bv splits Cu in a set C′

v of connected
components such that, for each C ′ ∈ C′

v, NG(C ′) ⊆ Bv and, by Lemma 3.4, C ′ ∈ C[v].
Therefore, due to Lemma 3.3, v has a ϕ-partner w for each C ′ ∈ C′

v. Thus, finding such a
ϕ-partner (line 8) is successful and, after inserting the triples (w,Bv, Cv) into Q (line 10),
condition (ii) and condition (iii) are satisfied. □
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Proof (Complexity). Determining the pairwise distances of all vertices, initialising Q

and T , as well as inserting the first triple (u, ∅, V ) into Q (line 1 to line 3) can be clearly
done in O(nm) time.

In each iteration of the loop starting in line 4, the algorithm splits a connected
component Cu into a set of connected components Cv. Because v is a ϕ-partner of u, it
follows that Bv ∩Cv ̸= ∅ and, hence, Cv ⊂ Cu. Note that the created components Cv are
pairwise disjoint. Therefore, the algorithm creates at most n connected components Cv,
the set of vertices covered by T strictly grows, and, thus, there are at most n iterations
of the loop.

Because the pairwise distances are known, it takes at most O(n) time to crate
the bag Bv and to add it into T (line 6). Determining the connected components Cv

of G[Cu] −Bv and determining NG(Cv) for each such Cv can be easily done in O(m) time.
Therefore, when excluding line 8, a single iteration of the loop starting in line 4 takes at
most O(m) time.

Let C be the set of all connected components created by the algorithm. Clearly, for
each connected component C ∈ C, |NG(C)| ≤ n. Therefore, because at most n connected
component Cv are created, ∑

C∈C |NG(C)| ≤ n2. Because distances can be checked in
constant time, it follows that, for a single vertex w, it takes at most O

(
n2)

total time to
determine, for all C ∈ C, if w is a ϕ-partner for C. Therefore, line 8 requires at most
O

(
n3)

total time over all iterations.
Hence, Algorithm 3.2 runs in total O

(
n3)

time. □

If we want to use Algorithm 3.2 to find a decomposition with small breadth for a
given graph G, we have to try different values of ϕ. One way is to perform a one-sided
binary search over ϕ: If Algorithm 3.2 creates a valid tree-decomposition, decrease ϕ.
Otherwise, increase ϕ. Therefore:

Corollary 3.2. For a given graph G with tree-breadth ρ, one can compute a tree-
decomposition with breadth 3ρ− 1 in O

(
n3 log ρ

)
time.

3.2 Strong Tree-Breadth

By definition, a tree-decomposition has breadth ρ if each bag B is the subset of the
ρ-neighbourhood of some vertex v, i. e., the set of bags is the set of subsets of the ρ-
neighbourhoods of some vertices. Recall that tree-breadth 1 graphs contain the class
of dually chordal graphs which can be defined as follows: A graph G is dually chordal
if it admits a tree-decomposition T such that, for each vertex v in G, T contains a
bag B = NG[v] (see Theorem 2.3, page 8). That is, the set of bags in T is the set of
complete neighbourhoods of all vertices.

In this chapter, we investigate the case which lays between dually chordal graphs and
general tree-breadth ρ graphs. In particular, tree-decompositions are considered where
the set of bags are the complete ρ-neighbourhoods of some vertices. We call this strong
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tree-breadth. The strong breadth of a tree-decomposition is ρ, if, for each bag B, there is
a vertex v such that B = Nρ

G[v]. Accordingly, a graph G has strong tree-breadth smaller
than or equal to ρ (written as stb(G) ≤ ρ) if there is a tree-decomposition for G with
strong breadth at most ρ.

3.2.1 NP-Completeness

In this section, we show that it is NP-complete to determine if a given graph has strong
tree-breadth ρ even if ρ = 1. To do so, we show first that, for some small graphs, the
choice of possible centers is restricted. Then, we use these small graphs to construct a
reduction.

Lemma 3.5. Let C = {v1, v2, v3, v4} be an induced C4 in a graph G with the edge
set {v1v2, v2v3, v3v4, v4v1}. If there is no vertex w /∈ C with NG[w] ⊇ C, then NG[v1]
and NG[v2] cannot both be bags in the same tree-decomposition with strong breadth 1.

Proof. Assume that there is a decomposition T with strong breadth 1 containing the
bags B1 = NG[v1] and B2 = NG[v2]. Because v3 and v4 are adjacent, there is a bag B3 ⊇
{v3, v4}. Consider the subtrees T1, T2, T3, and T4 of T induced by v1, v2, v3, and v4,
respectively. These subtrees pairwise intersect in the bags B1, B2, and B3. Because
pairwise intersecting subtrees of a tree have a common vertex, T contains a bag NG[w] ⊇ C.
Note that there is no vi ∈ C with NG[vi] ⊇ C. Thus, w /∈ C. This contradicts with the
condition that there is no vertex w /∈ C with NG[w] ⊇ C. □

Let C = {v1, . . . , v5} be a C5 with the edges E5 = {v1v2, v2v3, . . . , v5v1}. We call
the graph H =

(
C ∪ {u}, E5 ∪ {uv1, uv3, uv4}

)
, with u /∈ C, an extended C5 of degree 1

and refer to the vertices u, v1, v2, and v5 as middle, top, right, and left vertex of H,
respectively. Based on H = (VH , EH), we construct an extended C5 of degree ρ (with
ρ > 1) as follows. First, replace each edge xy ∈ EH by a path of length ρ. Second, for
each vertex w on the shortest path from v3 to v4, connect u with w using a path of
length ρ. Figure 3.2 gives an illustration.

u

v1

v2

v3v4

v5

(a) Degree 1.

u

v1

v2

v3v4

v5

(b) Degree 3.

Figure 3.2. Two extended C5 of (a) degree 1 and (b) degree 3. We refer to the vertices u, v1, v2, and v5
as middle, top, right, and left vertex, respectively.
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Lemma 3.6. Let H be an extended C5 of degree ρ in a graph G as defined above.
Additionally, let H be a block of G and its top vertex v1 be the only articulation point
of G in H. Then, there is no vertex w in G with dG(w, v1) < ρ which is the center of a
bag in a tree-decomposition for G with strong breadth ρ.

Proof. Let T be a tree-decomposition for G with strong breadth ρ. Assume that T
contains a bag Bw = Nρ

G[w] with dG(w, v1) < ρ. Note that the distance from v1 to
any vertex on the shortest path from v3 to v4 is 2ρ. Hence, G − Bw has a connected
component C containing the vertices v3 and v4. Then, by Lemma 2.3 (page 6), there has
to be a vertex w′ ̸= w in G and a bag B′

w = Nρ
G[w′] in T such that (i) B′

w ⊇ NG(C) and
(ii) B′

w ∩ C ̸= ∅. Thus, if we can show, for a given w, that there is no such w′, then w

cannot be center of a bag.
First, consider the case that w is in H. We construct a set X = {x, y} ⊆ NG(C) such

that there is a unique shortest path from x to y in G passing w. If w = v1, let x = v2
and y = v5. If w is on the shortest path from v1 to u, let x and y be on the shortest
path from v1 to v2 and from v4 to u, respectively. If w is on the shortest path from v1
to v2, let x and y be on the shortest path from v1 to v5 and from v2 to v3, respectively.
In each case, there is a unique shortest path from x to y passing w. Note that, for all
three cases, dG(v1, y) ≥ ρ. Thus, each w′ with dG(w′, y) ≤ ρ is in H. Therefore, w is the
only vertex in G with X ⊆ Nρ

G[w], i. e., there is no vertex w′ ̸= w satisfying condition (i).
This implies that w cannot be center of a bag in T .

Next, consider the case that w is not in H. Without loss of generality, let w be a
center for which dG(v1, w) is minimal. As shown above, there is no vertex w′ in H with
dG(v1, w

′) < ρ which is center of a bag. Hence, w′ is not in H either. However, because
v1 is an articulation point, w′ has to be closer to v1 than w to satisfy condition (ii). This
contradicts with dG(v1, w) being minimal. Therefore, there is no vertex w′ satisfying
condition (ii) and w cannot be center of a bag in T . □

Theorem 3.7. It is NP-complete to decide, for a given graph G, if stb(G) = 1.

Proof. Clearly, the problem is in NP: Select non-deterministically a set S of vertices such
that their neighbourhoods cover each vertex and each edge. Then, check deterministically
if the neighbourhoods of the vertices in S give a valid tree-decomposition. This can be
done in linear time (see Lemma 2.1, page 2.1).

To show that the problem is NP-hard, we make a reduction from 1-in-3-SAT [83].
That is, you are given a boolean formula in CNF with at most three literals per clause;
find a satisfying assignment such that, in each clause, only one literal becomes true.

Let I be an instance of 1-in-3-SAT with the literals L = {p1, . . . , pn}, the clauses C =
{c1, . . . , cm}, and, for each c ∈ C, c ⊆ L. We create a graph G = (V,E) as follows. Create
a vertex for each literal p ∈ L and, for all literals pi and pj with pi ≡ ¬pj , create an
induced C4 = {pi, pj , qi, qj} with the edges pipj , qiqj , piqi, and pjqj . For each clause c ∈ C
with c = {pi, pj , pk}, create an extended C5 with c as top vertex, connect c with an edge
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to all literals it contains, and make all literals in c pairwise adjacent, i. e., the vertex set
{c, pi, pj , pk} induces a maximal clique in G. Additionally, create a vertex v and make v
adjacent to all literals. Figure 3.3a gives an illustration for the construction so far.

v

c

pi pj pk

qi

ql

pl

(a)

pi pj

pk

r(ij|k)

r(jk|i)

r(ki|j)

s(ij|k)

s(jk|i)

s(ki|j)

(b)

Figure 3.3. Illustration to the proof of Theorem 3.7. The graphs shown are subgraphs ofG as created
by a clause c = {pi, pj , pk} and a literal pl with pi ≡ ¬pl.

Next, for each clause {pi, pj , pk} and for each (xy|z) ∈
{
(ij|k), (jk|i), (ki|j)

}
, create

the vertices r(xy|z) and s(xy|z), make r(xy|z) adjacent to s(xy|z) and px, and make s(xy|z)
adjacent to py and pz. See Figure 3.3b for an illustration. Note that r(ij|k) and s(ij|k) are
specific for the clause {pi, pj , pk}. Thus, if pi and pj are additionally in a clause with pl,
then we also create the vertices r(ij|l) and s(ij|l). For the case that a clause only contains
two literals pi and pj , create the vertices r(ij) and s(ij), make r(ij) adjacent to pi and s(ij),
and make s(ij) adjacent to pj , i. e., {pi, pj , r(ij), s(ij)} induces a C4 in G.

For the reduction, first, consider the case that I is a yes-instance for 1-in-3-SAT. Let
f : P → {T, F} be a satisfying assignment such that each clause contains only one literal pi

with f(pi) = T . Select the following vertices as centers of bags: v, the middle, left and
right vertex of each extended C5, pi if f(pi) = T , and qj if f(pj) = F . Additionally, for
each clause {pi, pj , pk} with f(pi) = T , select the vertices s(ij|k), r(jk|i), and r(ki|j). The
neighbourhoods of the selected vertices give a valid tree-decomposition for G. Therefore,
stb(G) = 1.

Next, assume that stb(G) = 1. Recall that, for a clause c = {pi, pj , pk}, the vertex set
{c, pi, pj , pk} induces a maximal clique Kc in G. Because each maximal clique is contained
completely in some bag (Lemma 2.2, page 6), some vertex in Kc is center of such a bag.
By Lemma 3.6, c cannot be center of a bag because it is top of an extended C5. Therefore,
at least one vertex in {pi, pj , pk} must be center of a bag. Without loss of generality,
let pi be a center of a bag. By construction, pi is adjacent to all p ∈ {pj , pk, pl}, where
pl ≡ ¬pi. Additionally, p and pi are vertices in an induced C4, say C, and there is no
vertex w in G with NG[w] ⊇ C. Thus, by Lemma 3.5, at most one vertex in {pi, pj , pk}
can be center of a bag. Therefore, the function f : L → {T, F} defined as

f(pi) =

T if pi is center of a bag,
F else
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is a satisfying assignment for I. □

In [48], Ducoffe et al. show how to construct a graph G′
ρ based on a given graph G

such that tb(G′
ρ) = 1 if and only if tb(G) ≤ ρ. We slightly extend their construction to

achieve a similar result for strong tree-breadth.
Consider a given graph G = (V,E) with stb(G) = ρ. We construct G′

ρ as follows.
Let V = {v1, v2, . . . , vn}. Add the vertices U = {u1, u2, . . . , un} and make them pairwise
adjacent. Additionally, make each vertex ui, with 1 ≤ i ≤ n, adjacent to all vertices
in Nρ

G[vi]. Last, for each vi ∈ V , add an extended C5 of degree 1 with vi as top vertex.

Lemma 3.7. stb(G) ≤ ρ if and only if stb(G′
ρ) = 1.

Proof. First, consider a tree-decomposition T for G with strong breadth ρ. Let T ′
ρ be a

tree-decomposition for G′
ρ created from T by adding all vertices in U into each bag of T

and by making the center, left, and right vertices of each extended C5 centers of bags.
Because the set U induces a clique in G′

ρ and Nρ
G[vi] = NG′

ρ
[ui] ∩ V , each bag of T ′

ρ is the
complete neighbourhood of some vertex.

Next, consider a tree-decomposition T ′
ρ for G′

ρ with strong breadth 1. Note that each
vertex vi is top vertex of some extended C5. Thus, vi cannot be center of a bag. Therefore,
each edge vivj is in a bag Bk = NG′

ρ
[uk]. By construction of G′

ρ, Bk ∩ V = Nρ
G[vk]. Thus,

we can construct a tree-decomposition T for G with strong breadth ρ by creating a
bag Bi = Nρ

G[vi] for each bag NG′
ρ
[ui] of T ′

ρ. □

Next, consider a given graph G = (V,E) with V = {v1, v2, . . . , vn} and stb(G) = 1.
For a given ρ > 1, we obtain the graph G+

ρ by doing the following for each vi ∈ V :
• Add the vertices ui,1, . . . , ui,5, xi, and yi.
• Add an extended C5 of degree ρ with the top vertex zi.
• Connect

– ui,1 and xi with a path of length ⌊ρ/2⌋ − 1,
– ui,2 and yi with a path of length ⌊ρ/2⌋,
– ui,3 and vi with a path of length ⌈ρ/2⌉ − 1,
– ui,4 and vi with a path of length ⌊ρ/2⌋, and
– ui,4 and zi with a path of length ⌈ρ/2⌉ − 1.

• Add the edges ui,1ui,2, ui,1ui,3, ui,2ui,3, ui,2ui,4, and ui,3ui,4.
Note that, for small ρ, it can happen that vi = ui,4, xi = ui,1, yi = ui,2, or zi = ui,5.
Figure 3.4 gives an illustration.

Lemma 3.8. stb(G) = 1 if and only if stb(G+
ρ ) = ρ.

Proof. First, assume that stb(G) = 1. Then, there is a tree-decomposition T for G with
strong breadth 1. We construct a tree-decomposition T+

ρ for G+
ρ with strong breadth ρ.

Make the middle, left, and right vertex of each extended C5 center of a bag. For each
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vi

xi yi

zi

ui,1 ui,2

ui,3
ui,4

⌊ ρ
2 ⌋ − 1 ⌊ ρ

2 ⌋

⌈ ρ
2 ⌉ − 1

⌊ ρ
2 ⌋⌈ ρ

2 ⌉ − 1

Figure 3.4. Illustration for the graph G+
ρ . The graph shown is a subgraph of G+

ρ as constructed for
each vi inG.

vi ∈ V , if vi is center of a bag of T , make xi a center of a bag of T+
ρ . Otherwise, make

yi center of a bag of T+
ρ . The distance in G+

ρ from vi to xi is ρ − 1. The distances
from vi to yi, from xi to zi, and from yi to zi are ρ. Thus, Nρ

G+
ρ

[xi] ∩ V = NG[vi],
Nρ

G+
ρ

[yi] ∩ V = {vi}, and there is no conflict with Lemma 3.6. Therefore, the constructed
T+

ρ is a valid tree-decomposition with strong breadth ρ for G+
ρ .

Next, assume that stb(G+
ρ ) = ρ and there is a tree-decomposition T+

ρ with strong
breadth ρ for G+

ρ . By Lemma 3.6, no vertex in distance less than ρ to any zi can be a
center of a bag in T+

ρ . Therefore, because the distance from vi to zi in G+
ρ is ρ− 1, no

vi ∈ V can be a center of a bag in T+
ρ . The only vertices with a large enough distance

to zi to be a center of a bag are xi and yi. Therefore, either xi or yi is selected as
center. To construct a tree-decomposition T with strong breadth 1 for G, select vi as
center if and only if xi is a center of a bag in T+

ρ . Because Nρ

G+
ρ

[xi] ∩ V = NG[vi] and
Nρ

G+
ρ

[yi]∩V = {vi}, the constructed T is a valid tree-decomposition with strong breadth 1
for G. □

Constructing G′
ρ can be done in O

(
n2)

time and constructing G+
ρ can be done in

O(ρ · n+m) time. Thus, combining Lemma 3.7 and Lemma 3.8 allows us, for a given
graph G, some given ρ, and some given ρ′, to construct a graph H in O

(
ρ · n2)

time such
that stb(G) ≤ ρ if and only if stb(H) ≤ ρ′. Additionally, by combining Theorem 3.7 and
Lemma 3.4, we get:

Theorem 3.8. It is NP-complete to decide, for a graph G and a given ρ, if stb(G) = ρ.

3.2.2 Polynomial Time Cases

In the previous section, we have shown that, in general, it is NP-complete to determine
the strong tree-breadth of a graph. In this section, we investigate cases for which a
decomposition can be found in polynomial time.

Let G be a graph with strong tree-breadth ρ and let T be a corresponding tree-
decomposition. For a given vertex u in G, we denote the set of connected components in
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G−Nρ
G[u] as CG[u]. We say that a vertex v is a potential partner of u for some C ∈ CG[u]

if Nρ
G[v] ⊇ NG(C) and Nρ

G[v] ∩ C ̸= ∅.

Lemma 3.9. Let C be a connected component in G−Bu for some Bu ⊆ Nρ
G[u]. Also, let

C ∈ CG[u] and v be a potential partner of u for C. Then, for all connected components Cv

in G[C] −Nρ
G[v], Cv ∈ CG[v].

Proof. Consider a connected component Cv in G[C] −Nρ
G[v]. Clearly, Cv ⊆ C and there

is a connected component C ′ ∈ CG[v] such that C ′ ⊇ Cv.
Let x be an arbitrary vertex in C ′. Then, there is a path P ⊆ C ′ from x to Cv.

Because NG(C) ⊆ Bu and v is a potential partner of u for C, NG(C) ⊆ Bu ∩Nρ
G[v]. Also,

NG(C) separates all vertices in C from all other vertices in G. Therefore, x ∈ C and
C ′ ⊆ C; otherwise, P would intersect Nρ

G[v]. It follows that each vertex in P is in the
same connected component of G[C] −Nρ

G[v] and, thus, Cv = C ′. □

From Lemma 2.3 (page 6), it directly follows:

Corollary 3.3. If Nρ
G[u] is a bag in T , then T contains a bag Nρ

G[v] for each C ∈ CG[u]
such that v is a potential partner of u for C.

Because of Corollary 3.3, there is a vertex set U such that each u ∈ U has a potential
partner v ∈ U for each connected component C ∈ CG[u]. With such a set, we can construct
a tree-decomposition for G with the following approach: Pick a vertex u ∈ U and make it
center of a bag Bu. For each connected component C ∈ CG[u], u has a potential partner v.
Nρ

G[v] splits C in more connected components and, because v ∈ U , v has a potential
partner w ∈ U for each of these components. Hence, create a bag Bv = Nρ

G[v] ∩ (Bu ∪C)
and continue this until the whole graph is covered. Algorithm 3.3 below determines
such a set of vertices with their potential partners (represented as a graph H) and then
constructs a decomposition as described above.

Theorem 3.9. Algorithm 3.3 constructs, for a given graph G with strong tree-breadth ρ,
a tree-decomposition T with breadth ρ in O(n2m) time.

Proof (Correctness). Algorithm 3.3 works in two parts. First, it creates a graph H with
potential centers (line 1 to line 6). Second, it uses H to create a tree-decomposition for G
(line 9 to line 15). To show the correctness of the algorithm, we show first that the centers
of a tree-decomposition for G are vertices in H and, then, show that a tree-decomposition
created based on H is a valid tree-decomposition for G.

A vertex u is added to H (line 4) if, for at least one connected component C ∈ CG[u],
u has a potential partner v. Later, u is kept in H (line 5 and line 6) if it has a potential
partner v for all connected components in C ∈ CG[u]. By Corollary 3.3, each center of a
bag in a tree-decomposition T with strong breadth ρ satisfies these conditions. Therefore,
after line 6, H contains all centers of bags in T , i. e., if G has strong tree-breadth ρ, H is
non-empty.
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Algorithm 3.3: Constructs, for a given graphG = (V,E) with strong tree-breadth ρ,
a tree-decomposition T with breadth ρ.
1 Create an empty directed graph H = (VH , EH). Let ϕ be a function that maps

each edge (u, v) ∈ EH to a connected component C ∈ CG[u].
2 For Each u, v ∈ V and all C ∈ CG[u]
3 If v is a potential parter of u for C Then
4 Add the directed edge (u, v) to H and set ϕ(u, v) := C. (Add u and v to H

if necessary.)

5 While there is a vertex u ∈ VH and some C ∈ CG[u] such that there is
no (u, v) ∈ EH with ϕ(u, v) = C

6 Remove u from H.
7 If H is empty Then
8 Stop. stb(G) > ρ.
9 Create an empty tree-decomposition T .

10 Let G− T be the subgraph of G that is not covered by T and let ψ be a function
that maps each connected component in G− T to a bag Bu ⊆ Nρ

G[u].
11 Pick an arbitrary vertex u ∈ VH , add Bu = Nρ

G[u] as bag to T , and set ψ(C) := Bu

for each connect component C in G− T .
12 While G− T is non-empty
13 Pick a connected component C in G− T , determine the bag Bv := ψ(C) and

find an edge (v, w) ∈ EH with ϕ(v, w) = C.
14 Add Bw = Nρ

G[w] ∩ (Bv ∪ C) to T , and make Bv and Bw adjacent in T .
15 For each new connected component C ′ in G− T with C ′ ⊆ C, set ψ(Cw) := Bw.
16 Output T .

Next, we show that T created in the second part of the algorithm (line 9 to line 15)
is a valid tree-decomposition for G with breadth ρ. To do so, we show the following
invariant for the loop starting in line 12: (i) T is a valid tree-decomposition with breadth ρ
for the subgraph covered by T and (ii) for each connected component C in G− T , the
bag Bv = ψ(C) is in T , NG(C) ⊆ Bv, and C ∈ CG[v]. After line 11, the invariant clearly
holds. Assume by induction that the invariant holds each time line 12 is checked. If
T covers the whole graph, the check fails and the algorithm outputs T . If T does not
cover G completely, there is a connected component C in G − T . By condition (ii),
the bag Bv = ψ(C) is in T , NG(C) ⊆ Bv, and C ∈ CG[v]. Because of the way H is
constructed and C ∈ CG[v], there is an edge (v, w) ∈ EH with ϕ(v, w) = C, i. e., w is a
potential partner of v for C. Thus, line 13 is successful and the algorithm adds a new
bag Bw = Nρ

G[w] ∩ (Bv ∪ C) to T (line 14). Because w is a potential partner of v for C,
i. e., NG(C) ⊆ Nρ

G[w], and because NG(C) ⊆ Bv, it follows that Bw ⊇ NG(C). Therefore,
after adding Bw to T , T still satisfies condition (i). Additionally, Bw splits C in a set C′
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of connected components such that, for each C ′ ∈ C′, NG(C ′) ⊆ Bw and, by Lemma 3.9,
C ′ ∈ CG[w]. Thus, condition (ii) is also satisfied. □

Proof (Complexity). First, determine the pairwise distance of all vertices. This can be
done in O(nm) time and allows to check the distance between vertices in constant time.

For a vertex u, let N [u] = {NG(C) | C ∈ CG[u] }. Note that, for some C ∈ CG[u]
and each vertex x ∈ NG(C), there is an edge xy with y ∈ C. Therefore, |N [u]| :=∑

C∈CG[u] |NG(C)| ≤ m. To determine, for some vertex u, all its potential partners v,
first, compute N [u]. This can be done in O(m) time. Then, check, for each vertex v

and each NG(C) ∈ N [u], if NG(C) ⊆ Nρ
G[v] and add the edge (u, v) to H if successful.

For a single vertex v this requires O(m) time because |N [u]| ≤ m and distances can be
determined in constant time. Therefore, the total runtime for creating H (line 1 to line 4)
is O

(
n(m+ nm)

)
= O

(
n2m

)
.

Assume that, for each ϕ(u, v) = C, C is represented buy two values: (i) a characteristic
vertex x ∈ C (for example the vertex with the lowest index) and (ii) the index of C
in CG[u]. While creating H, count and store, for each vertex u and each connected
component C ∈ CG[u], the number of edges (u, v) ∈ EH with ϕ(u, v) = C. Note that
there is a different counter for each C ∈ CG[u]. With this information, we can implement
line 5 and line 6 as follows. First check, for every vertex v in H, if one of its counters is 0.
In this case, remove v from H and update the counters for all vertices u with (u, v) ∈ EH

using value (ii) of ϕ(u, v). If this sets a counter for u to 0, add u to a queue Q of vertices
to process. Continue this until each vertex is checked. Then, for each vertex u in Q,
remove u form H and add its neighbours into Q if necessary until Q is empty. This
way, a vertex is processed at most twice. A single iteration runs in at most O(n) time.
Therefore, line 5 and line 6 can be implemented in O

(
n2)

time.
Assume that ψ uses the characteristic vertex x to represent a connected component,

i. e., value (i) of ϕ. Then, finding an edge (v, w) ∈ EH (line 13) can be done in O(m) time.
Creating Bw (line 14), splitting C into new connected components C ′, finding their
characteristic vertex, and setting ψ(C ′) (line 15) takes O(m) time, too. In each iteration,
at least one more vertex of G is covered by T . Hence, there are at most n iterations and,
thus, the loop starting in line 12 runs in O(mn) time.

Therefore, Algorithm 3.3 runs in total O
(
n2m

)
time. □

Algorithm 3.3 creates, for each graph G with stb(G) ≤ ρ, a tree-decomposition T

with breadth ρ. Next, we invest a case where we can construct a tree-decomposition
for G with strong breadth ρ.

We say that two vertices u and v are perfect partners if (i) u and v are potential
partners of each other for some Cu ∈ CG[u] and some Cv ∈ CG[v], (ii) Cu is the only
connected component in CG[u] which is intersected by Nρ

G[v], and (iii) Cv is the only
connected component in CG[v] which is intersected by Nρ

G[u]. Accordingly, we say that a
tree-decomposition T has perfect strong breadth ρ if it has strong breadth ρ and, for each
center u of some bag and each connected component C ∈ CG[u], there is a center v such
that v is a perfect partner of u for C.
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Theorem 3.10. A tree-decomposition with perfect strong breadth ρ can be constructed
in polynomial time.

Proof. To construct such a tree-decomposition, we can modify Algorithm 3.3. Instead of
checking if u has a potential partner v (line 3), check if u and v are perfect partners.

Assume by induction that, for each bag Bv in T , Bv = Nρ
G[v]. By definition of perfect

partners v and w, Nρ
G[w] intersects only one C ∈ CG[v], i. e., Nρ

G[w] ⊆ Nρ
G[v] ∪ C. Thus,

when creating the bagBw (line 14), Bw = Nρ
G[w]∩(Bv∪C) = Nρ

G[w]∩
(
Nρ

G[v]∪C
)

= Nρ
G[w].

Therefore, the created tree-decomposition T has perfect strong tree-breadth ρ. □

We conjecture that there are weaker cases than perfect strong breadth which allow
to construct a tree-decomposition with strong-breadth ρ. For example, if the centers of
two adjacent bags are perfect partners, but a center u does not need to have a perfect
partner for each C ∈ CG[u]. However, when using a similar approach as in Algorithm 3.3,
this would require a more complex way of constructing H.

3.3 Computing Decompositions for Special Graph Classes

In this section, we show how to find good decompositions for some special graph classes.

Theorem 3.11. Chordal graphs have strong tree-breadth 1. An according decomposition
can be computed in linear time.

Proof. Let σ = ⟨v1, v2, . . . , vn⟩ be an ordering for the vertices of a graph G, Vi =
{v1, v2, . . . , vi}, Gi denote the graph G[Vi], Ni[v] = NG[v] ∩ Vi, and Ni(v) = NG(v) ∩ Vi.
The reverse of such an ordering σ is called a perfect elimination ordering for G if, for
each i, Ni[vi] induces a clique. It is well known that a graph is chordal if and only if it
admits a perfect elimination ordering [30].

Assume that we are given such an ordering σ, i. e., the reverse of a perfect elim-
ination ordering. Additionally, assume by induction over i that Gi−1 admits a tree-
decomposition Ti−1 with strong breadth 1 such that centers of bags are pairwise non-
adjacent. This is clearly the case for G1. We now show how to construct Ti from Ti−1.

First, consider the case that vi has a neighbour u in Gi which is center of some
bag B in Ti−1. Because u ∈ Ni[vi] and Ni[vi] induces a clique, Ni[vi] ⊆ Ni[u] and, hence,
Ni[vi] does not contain a center of any bag. Thus, adding vi into B creates a valid
tree-decomposition Ti for Gi with strong breadth 1 and pairwise non-adjacent centers.

Next, consider the case that vi has no neighbour u in Gi that is center of some bag
in Ti−1. Note that Ni(vi) induces a clique in Gi−1. It is well known that, for each
tree-decomposition T and for each clique K of graph, T contains a bag B with K ⊆ B.
Thus, there is a bag B in Ti−1 with Ni(vi) ⊆ B. Therefore, we can create Ti by adding
the bag B′ = Ni[vi] to Ti−1 and making B′ adjacent to B. This creates a valid tree-
decomposition with strong breadth 1 and pairwise non-adjacent centers.
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Based on the approach described above, we can construct a tree-decomposition with
strong breadth 1 for a given chordal graph G as follows. First, compute the reverse of a
perfect elimination ordering of G. Such an ordering can be computed in linear time [81].
Observe that we can simplify the approach above with the following rule: If vi has no
neighbour in Gi which is center of a bag, make vi center of a bag. Otherwise, proceed
with vi+1. Therefore, by using a simple binary flag for each vertex, one can compute a
tree-decomposition with strong breadth 1 for a given chordal graph G in linear time. □

Theorem 3.12. Distance-hereditary graphs have strong tree-breadth 1. An according
decomposition can be computed in linear time.

Proof. Recall that a graph is distance-hereditary if and only if it admits a pruning
sequence σ (see Lemma 2.9, page 8). That is, a sequence σ = ⟨v1, v2, . . . , vn⟩ such that,
for each vertex vi and some j < i, vi is a pendant vertex, vi is a true twin of vj , or vi is a
false twin of vj .

Assume that we are given such a pruning sequence. Additionally, assume by induction
over i that Gi has a tree-decomposition Ti with strong breadth 1 where the centers of
bags are pairwise non-adjacent. Then, there are three cases:

(i) vi+1 is a pendant vertex in Gi+1. If the neighbour u of vi+1 is a center of a bag Bu,
add vi+1 to Bu. Thus, Ti+1 is a valid decomposition for Gi+1. Otherwise, if u
is not a center, make vi+1 center of a bag. Because u is an articulation point,
Ti+1 = Ti +NG[v] is a valid decomposition for Gi+1.

(ii) vi+1 is a true twin of a vertex u in Gi+1. Simply add vi+1 into any bag containing u.
The resulting decomposition is a valid decomposition for Gi+1.

(iii) vi+1 is a false twin of a vertex u in Gi+1. If u is not center of a bag, add vi+1 into
any bag u is in. Otherwise, make a new bag Bi+1 = NG[vi+1] and make it adjacent
to the bag NG[u]. Because no vertex in NG(u) is center of a bag, the resulting
decomposition is a valid decomposition for Gi+1.

Therefore, distance-hereditary graphs have strong tree-breadth 1.
Next, we show how to compute an according tree-decomposition in linear time. The

argument above already gives an algorithmic approach. First, we compute a pruning
sequence for G. This can be done in linear time with an algorithm by Damiand et al. [27].
Then, we determine which vertex becomes a center of a bag. Note that we can simplify
the three cases above with the following rule: If vi has no neighbour in Gi which is center
of a bag, make vi center of a bag. Otherwise, proceed with vi+1. This can be easily
implemented in linear time with a binary flag for each vertex. □

Algorithm 3.4 formalizes the method described in the proof of Theorem 3.12.

Theorem 3.13. If G is an AT-free graph, then pl(G) ≤ 2. Furthermore, a path-
decomposition of G with length at most 2 can be computed in O

(
n2)

time.
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Algorithm 3.4: Computes, for a given distance-hereditary graph G, a tree-
decomposition T with strong breadth 1.
1 Compute a pruning sequence ⟨v1, v2, . . . , vn⟩ (see [27]).
2 Create a set C := ∅.
3 For i := 1 To n
4 If NG[vi] ∩ Vi ∩ C = ∅ Then
5 Add vi to C.

6 Create a tree-decomposition T with the vertices in C as centers of its bags.

Proof. Let s be an arbitrary vertex of G, let x be the vertex last visited (numbered 1)
by a LexBFS starting at s, and let σ be the ordering obtained by a LexBFS starting at x.
Clearly, σ can be generated in linear time. Note that the LexBFS which computes σ also
computes all distance layers L(x)

i of G with 0 ≤ i ≤ ecc(x). For some vertex v ∈ L
(x)
i , let

N↓
G(v) = NG(v) ∩ L

(x)
i−1.

We can transform an AT-free graph G = (V,E) into an interval graph G+ =
(
V,E+)

by applying the following two operations:
(1) Make layers complete graphs. In each layer L(x)

i , make every two vertices u, v ∈ L
(x)
i

adjacent to each other in G+.
(2) Make down-neighbourhoods of adjacent vertices of a layer comparable. For each i

and every edge uv of G with u, v ∈ L
(x)
i and σ(v) < σ(u), make every w ∈ N↓

G(v)
adjacent to u in G+.

Claim 1. G+ is a subgraph of G2.

Proof (Claim). Clearly, for every edge uw of G+ added by operation (2), dG(u,w) ≤ 2
holds. Also, for every edge uv of G+ added by operation (1), dG(u, v) ≤ 2 holds by
Lemma 2.12 (page 9). ♢

Claim 2. G+ is an interval graph.

Proof (Claim). It is known [77] that a graph is an interval graph if and only if its vertices
admit an interval ordering. That is, an ordering τ : V → {1, . . . , n} such that, for any
three vertices a, b, and c with τ(a) < τ(b) < τ(c), ac ∈ E implies bc ∈ E. We show
here that the LexBFS-ordering σ of G is an interval ordering of G+. Recall that, for
each v ∈ L

(x)
i and every u ∈ L

(x)
j with i > j, it holds that σ(v) < σ(u) since σ is a

LexBFS-ordering. Consider three arbitrary vertices a, b, and c of G and assume that
σ(a) < σ(b) < σ(c) and ac ∈ E+. Assume also that a ∈ L

(x)
i for some i. If c belongs

to L(x)
i , then b must be in L

(x)
i as well. Hence, bc ∈ E+ due to operation (1). If both b

and c are in L(x)
i−1, then again bc ∈ E+ due to operation (1). Consider now the remaining

case that a, b ∈ L
(x)
i and c ∈ L

(x)
i−1. If ac ∈ E, then bc ∈ E+ because either ab ∈ E and,

thus, operation (2) applies, or ab /∈ E and, thus, Lemma 2.12 (page 9) implies bc ∈ E+.
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Chapter 3. Computing Decompositions with Small Breadth

If ac ∈ E+ \ E then, according to operation (2), edge ac was created in G+ because
some vertex a′ ∈ L

(x)
i existed such that σ(a′) < σ(a) and a′a, a′c ∈ E. Since a′c ∈ E and

σ(a′) < σ(b) < σ(c), as before, bc ∈ E+ must hold. ♢

To complete the proof, we recall that a graph is an interval graph if and only if it has
a path-decomposition with each bag being a maximal clique (see Theorem 2.2, page 8).
Furthermore, such a path-decomposition of an interval graph can easily be computed in
linear time. Let P+ =

{
X1, . . . , Xq

}
be a path-decomposition of our interval graph G+.

Then, P := P+ =
{
X1, . . . , Xq

}
is a path-decomposition of G with length at most 2 since,

for every edge uv of G+, the distance in G between u and v is at most 2, as shown in
Claim 1. □

Algorithm 3.5 formalizes the steps described in the previous proof.

Algorithm 3.5: Computes a path-decomposition of length at most 2 for a given
AT-free graph.
Input: An AT-free graph G = (V,E).
Output: A path-decomposition of G.

1 Calculate a LexBFS-ordering σ of G with an arbitrary start vertex s ∈ V . Let x be
the last visited vertex, i. e., σ(x) = 1.

2 Calculate a LexBFS-ordering σ′ of G starting at x.
3 Set E+ := E.
4 For Each vertex pair u, v with dG(x, u) = dG(x, v) and σ′(u) < σ′(v)
5 Add uv to E+.
6 For each w ∈ NG(u) with σ′(v) < σ′(w), add vw to E+.
7 Calculate a path-decomposition P of the interval graph G+ = (V,E+) by

determining the maximal cliques of G+.
8 Output P.

Because the class of cocomparability graphs is a proper subclass of AT-free graphs,
we obtain the following corollary.

Corollary 3.4. If G is a cocomparability graph, then pl(G) ≤ 2. Furthermore, a path-
decomposition of G with length at most 2 can be computed in O

(
n2)

time.

Note that the complement of an induced cycle on six vertices has path-breadth 2
(see [39] for details). Thus, the bound 2 on the path-breadth of cocomparability graphs
(and therefore, of AT-free graphs) is sharp.

Consider two parallel lines (upper and lower) in the plane. Assume that each line
contains n points, labelled 1 to n. Each two points with the same label define a segment
with that label. The intersection graph of such a set of segments between two parallel
lines is called a permutation graph.
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Assume now that each of the two parallel lines contains n intervals, labelled 1 to n, and
each two intervals with the same label define a trapezoid with that label (a trapezoid can
degenerate to a triangle or to a segment). The intersection graph of such a set of trapezoids
between two parallel lines is called a trapezoid graph. Clearly, every permutation graph is
a trapezoid graph, but not vice versa.

Theorem 3.14. If G is a permutation graph, then spb(G) = 1. Furthermore, a path-
decomposition of G with optimal breadth can be computed in linear time.

Proof. We assume that a permutation model of G is given in advance (if not, we can
compute one for G in linear time [74]). That is, each vertex v of G is associated with a
segment s(v) such that uv ∈ E if and only if segments s(v) and s(u) intersect. In what
follows, “u. p.” and “l. p.” refer to a vertex’s point on the upper and lower, respectively,
line of the permutation model.

First, we compute an (inclusion) maximal independent set M of G in linear time as
follows. Put in M (which is initially empty) a vertex x1 whose u. p. is leftmost. For each
i ≥ 2, select a vertex xi whose u. p. is leftmost among all vertices whose segments do not
intersect s(x1), . . . , s(xi−1). In fact, it is enough to check intersection with s(xi−1) only. If
such a vertex exists, put it in M and continue. If no such vertex exists, M = {x1, . . . , xk}
has been constructed.

Now, we claim that
{
NG[x1], . . . , NG[xk]

}
is a path-decomposition of G with strong

breadth 1 and, hence, with length at most 2. Clearly, each vertex of G is in some bag since
every vertex not in M is adjacent to a vertex in M , by the maximality of M . Consider
an arbitrary edge uv of G. Assume that neither u nor v is in M and that the u. p. of u is
to the left of the u. p. of v. Necessarily, the l. p. of v is to the left of the l. p. of u, since
the segments s(v) and s(u) intersect. Assume that the u. p. of u is between the u. p.s of
xi and xi+1. From the construction of M , s(u) and s(xi) must intersect, i. e., the l. p.
of u is to the left of the l. p. of xi. But then, since the l. p. of v is to the left of the l. p.
of xi, segments s(v) and s(xi) must intersect, too. Thus, edge uv is in the bag NG[xi].

To show that all bags containing any particular vertex form a contiguous subsequence
of the sequence

〈
NG[x1], . . . , NG[xk]

〉
, consider an arbitrary vertex v of G and let v ∈

NG[xi] ∩ NG[xj ] for i < j. Consider an arbitrary bag NG[xl] with i < l < j. We know
that the vertices xi, xl, xj ∈ M are pairwise non-adjacent. Furthermore, the segment s(v)
intersects the segments s(xi) and s(xj). As segment s(xl) is between s(xi) and s(xj),
necessarily, s(v) intersects s(xl) as well. □

Theorem 3.15. If G is a trapezoid graph, then pb(G) = 1. Furthermore, a path-
decomposition of G with breadth 1 can be computed in O(n2) time.

Proof. We show that every trapezoid graph G is a minor of a permutation graph.
First, we compute in O(n2) time a trapezoid model for G [73]. Then, we replace each

trapezoid Ti in this model with its two diagonals obtaining a permutation model with 2n
vertices. Let H be the permutation graph of this permutation model. It is easy to see
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that two trapezoids T1 and T2 intersect if and only if a diagonal of T1 and a diagonal
of T2 intersect.

Now, G can be obtained back from H by a series of n edge contractions. For each
trapezoid Ti, contract the edge of H that corresponds to two diagonals of Ti.

Since contracting edges does not increase the path-breadth (Lemma 2.3, page 6), we
get pb(G) = pb(H) = 1 by Theorem 3.14. Any path-decomposition of H with breadth 1
is a path-decomposition of G with breadth 1. □

A bipartite graph is chordal bipartite if each cycle of length at least 6 has a chord.
To the best of our knowledge, there is no linear time algorithm known to recognise
chordal bipartite graphs. However, in [43], Dragan and Lomonosov show that any
chordal bipartite graph G = (X,Y,E) admits a tree-decomposition with the set of bags
B =

{
B1, B2, . . . , B|X|

}
, where Bi = NG[xi], xi ∈ X. Therefore, we can still compute a

tree-decomposition in linear time with three steps. First, compute a 2-colouring. Second,
select a colour and make the neighbourhood of all vertices with this colour bags. Third,
use the algorithm in [88] to check if the selected bags give a valid tree-decomposition.
Thus, it follows:

Theorem 3.16 (Dragan and Lomonosov [43]). Each chordal bipartite graph has
strong tree-breadth 1. An according tree-decomposition can be found in linear time.
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Connected r-Domination

The Domination problem is a classical problem in computer science. It is a variant of the
Set Covering problem, one of Karp’s 21 NP-complete problems [65]. A generalisation
of it is the r-Domination problem. Assume that we are given a graph G = (V,E) and
a function r : V → N. Then, we say a vertex set D is an r-dominating set for G if, for
each vertex u ∈ V , d(u,D) ≤ r(u). The r-Domination problem asks for the smallest
r-dominating set D.

Clearly, the problem is NP-complete in general. Although it can be solved for dually
chordal graphs in linear time [14], it remains NP-complete for chordal graphs [13]. Even
more, under reasonable assumptions, the r-Domination problem cannot be approximated
within a factor of (1 − ε) lnn in polynomial time for chordal graphs [22] and, thus, for
graphs with bounded tree-breadth.

In this chapter, we use an approach presented by Chepoi and Estellon [21]. Assume
that Dr is a minimum r-dominating set for some graph G. Instead of finding an r-
dominating set which is slightly larger than Dr, we investigate how to determine a set D
such that, for some factor ϕ ∈ O

(
tb(G)

)
, D is an (r + ϕ)-dominating set for G with

|D| ≤ |Dr|. That is, for each vertex v of G, d(v,D) ≤ r(v) + ϕ.
Chepoi and Estellon [21] present a polynomial time algorithm to compute an

(r + 2δ)-dominating set for δ-hyperbolic graphs. Due to Theorem 2.4 (page 2.4), their
algorithm gives an (r + 2λ)-dominating set for graphs with tree-length λ. We slightly
improve their result by constructing an (r + ρ)-dominating set for a graph G under the
assumption that a tree-decomposition for G with breadth ρ is given. Additionally, we
present algorithms to compute connected (r+ ϕ)-dominating sets for different values of ϕ
and with different runtimes.

For this chapter, let |T | denote the number of nodes and Λ(T ) denote the number of
leaves of a tree T . If T contains only one node, let Λ(T ) := 0. With α, we denote the
inverse Ackermann function (see, e. g., [23]).

4.1 Using a Layering Partition

For the remainder of this section, assume that we are given a graph G = (V,E) and a
layering partition T of G for an arbitrary start vertex. We denote the largest diameter of
all clusters of T as ∆, i. e., ∆ := max

{
dG(x, y) | x, y are in a cluster C of T

}
.

Theorem 4.1 below shows that we can use the layering partition T to compute an
(r + ∆)-dominating set for G in linear time which is not larger than a minimum r-
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dominating set for G. This is done by finding a minimum r-dominating set of T where,
for each cluster C of T , r(C) is defined as minv∈C r(v).

Theorem 4.1. Let D be a minimum r-dominating set for a given graph G. An (r+ ∆)-
dominating set D′ for G with |D′| ≤ |D| can be computed in linear time.

Proof. First, create a layering partition T of G and, for each cluster C of T , set
r(C) := minv∈C r(v). Second, find a minimum r-dominating set S for T , i. e., a set S of
clusters such that, for each cluster C of T , dT (C,S) ≤ r(C). Third, create a set D′ by
picking an arbitrary vertex of G from each cluster in S. All three steps can be performed
in linear time, including the computation of S (see [14]).

Next, we show that D′ is an (r + ∆)-dominating set for G. By construction of S,
each cluster C of T has distance at most r(C) to S in T . Thus, for each vertex u

of G, S contains a cluster CS with dT (u,CS) ≤ r(u). Additionally, by Lemma 2.6
(page 7), dG(u, v) ≤ r(u) + ∆ for any vertex v ∈ CS . Therefore, for any vertex u,
dG(u,D′) ≤ r(u) + ∆, i. e., D′ is an (r + ∆)-dominating set for G.

It remains to show that |D′| ≤ |D|. Let D be the set of clusters of T that contain
a vertex of D. Because D is an r-dominating set for G, it follows from Lemma 2.6
(page 7) that D is an r-dominating set for T . Clearly, since clusters are pairwise disjoint,
|D| ≤ |D|. By minimality of S, |S| ≤ |D| and, by construction of D′, |D′| = |S|. Therefore,
|D′| ≤ |D|. □

We now show how to construct a connected (r+ 2∆)-dominating set for G using T in
such a way that the set created is not larger than a minimum connected r-dominating set
for G. For the remainder of this section, let Dr be a minimum connected r-dominating
set of G and let, for each cluster C of T , r(C) be defined as above. Additionally, we say
that a subtree T ′ of some tree T is an r-dominating subtree of T if the nodes (clusters in
case of a layering partition) of T ′ form a connected r-dominating set for T .

The first step of our approach is to construct a minimum r-dominating subtree Tr

of T . Such a subtree Tr can be computed in linear time [35]. Lemma 4.1 below shows
that Tr gives a lower bound for the cardinality of Dr.

Lemma 4.1. If Tr contains more than one cluster, each connected r-dominating set
of G intersects all clusters of Tr. Therefore, |Tr| ≤ |Dr|.

Proof. Let D be an arbitrary connected r-dominating set of G. Assume that Tr has a
cluster C such that C ∩ D = ∅. Because D is connected, the subtree of T induced by
the clusters intersecting D is connected, too. Thus, if D intersects all leafs of Tr, then it
intersects all clusters of Tr. Hence, we can assume, without loss of generality, that C is a
leaf of Tr. Because Tr has at least two clusters and by minimality of Tr, T contains a
cluster C ′ such that dT (C ′, C) = dT (C ′, Tr) = r(C ′). Note that each path in G from a
vertex in C ′ to a vertex in D intersects C. Therefore, by Lemma 2.6 (page 7), there is
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a vertex u ∈ C ′ with r(u) = dT (u,C) < dT (u,D) ≤ dG(u,D). That contradicts with D

being an r-dominating set.
Because any r-dominating set of G intersects each cluster of Tr and because these

clusters are pairwise disjoint, it follows that |Tr| ≤ |Dr|. □

As we show later in Corollary 4.1, each connected vertex set S ⊆ V that intersects
each cluster of Tr gives an (r + ∆)-dominating set for G. It follows from Lemma 4.1
that, if such a set S has minimum cardinality, |S| ≤ |Dr|. However, finding a minimum
cardinality connected set intersecting each cluster of a layering partition (or of a subtree
of it) is as hard as finding a minimum Steiner tree.

The main idea of our approach is to construct a minimum (r+δ)-dominating subtree Tδ

of T for some integer δ. We then compute a small enough connected set Sδ that intersects
all cluster of Tδ. By trying different values of δ, we eventually construct a connected
set Sδ such that |Sδ| ≤ |Tr| and, thus, |Sδ| ≤ |Dr|. Additionally, we show that Sδ is a
connected (r + 2∆)-dominating set of G.

For some non-negative integer δ, let Tδ be a minimum (r + δ)-dominating subtree
of T . Clearly, T0 = Tr. The following two lemmas set an upper bound for the maximum
distance of a vertex of G to a vertex in a cluster of Tδ and for the size of Tδ compared to
the size of Tr.

Lemma 4.2. For each vertex v of G, dT (v, Tδ) ≤ r(v) + δ.

Proof. Let Cv be the cluster of T containing v and let C be the cluster of Tδ closest
to Cv in T . By construction of Tδ, dT (v, C) = dT (Cv, C) ≤ r(Cv) + δ ≤ r(v) + δ. □

Because the diameter of each cluster is at most ∆, Lemma 2.6 (page 7) and Lemma 4.2
imply the following.

Corollary 4.1. If a vertex set intersects all clusters of Tδ, it is an
(
r + (δ + ∆)

)
-

dominating set of G.

Lemma 4.3. |Tδ| ≤ |Tr| − δ · Λ(Tδ).

Proof. First, consider the case when Tδ contains only one cluster, i. e., |Tδ| = 1. Then,
Λ(Tδ) = 0 and, thus, the statement clearly holds. Next, let Tδ contain more than one
cluster, let Cu be an arbitrary leaf of Tδ, and let Cv be a cluster of Tr with maximum
distance to Cu such that Cu is the only cluster on the shortest path from Cu to Cv

in Tr, i. e., Cv is not in Tδ. Due to the minimality of Tδ, dTr (Cu, Cv) = δ. Thus, the
shortest path from Cu to Cv in Tr contains δ clusters (including Cv) which are not in Tδ.
Therefore, |Tδ| ≤ |Tr| − δ · Λ(Tδ). □

Now that we have constructed and analysed Tδ, we show how to construct Sδ. First,
we construct a set of shortest paths such that each cluster of Tδ is intersected by exactly
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one path. Second, we connect these paths with each other to form a connected set using
an approach which is similar to Kruskal’s algorithm for minimum spanning trees.

Let L =
{
C1, C2, . . . , Cλ

}
be the leaf clusters of Tδ (excluding the root) with either

λ = Λ(Tδ) − 1 if the root of Tδ is a leaf, or with λ = Λ(Tδ) otherwise. We construct a
set P =

{
P1, P2, . . . , Pλ

}
of paths as follows. Initially, P is empty. For each cluster Ci ∈ L,

in turn, find the ancestor C ′
i of Ci which is closest to the root of Tδ and does not intersect

any path in P yet. If we assume that the indices of the clusters in L represent the order
in which they are processed, then C ′

1 is the root of Tδ. Then, select an arbitrary vertex v
in Ci and find a shortest path Pi in G from v to C ′

i. Add Pi to P and continue with the
next cluster in L. Figure 4.1 gives an example.

C1 C2 = C ′
2 C3 C4 C5 = C ′

5

C ′
1

C ′
3

C ′
4

Figure 4.1. Example for the set P for a subtree of a layering partition. Paths are shown in red. Each
path Pi, with 1 ≤ i ≤ 5, starts in the leafCi and ends in the clusterC ′

i. For i = 2 and i = 5, Pi contains
only one vertex.

Lemma 4.4. For each cluster C of Tδ, there is exactly one path Pi ∈ P intersecting C.
Additionally, C and Pi share exactly one vertex, i. e., |C ∩ Pi| = 1.

Proof. Observe that, by construction of a layering partition, each vertex in a cluster C
is adjacent to some vertex in the parent cluster of C. Therefore, a shortest path P in G

from C to any of its ancestors C ′ only intersects clusters on the path from C to C ′ in T
and each cluster shares only one vertex with P . It remains to show that each cluster
intersects exactly one path.

Without loss of generality, assume that the indices of clusters in L and paths in P
represent the order in which they are processed and created, i. e., assume that the
algorithms first creates P1 which starts in C1, then P2 which starts in C2, and so on.
Additionally, let Li = {C1, C2, . . . , Ci} and Pi = {P1, P2, . . . , Pi}.

To prove that each cluster intersects exactly one path, we show by induction over i
that, if a cluster Ci of Tδ satisfies the statement, then all ancestors of Ci satisfy it, too.
Thus, if Cλ satisfies the statement, each cluster satisfies it.

First, consider i = 1. Clearly, since P1 is the first path, P1 connects the leaf C1 with
the root of Tδ and no cluster intersects more than one path at this point. Therefore, the
statement is true for C1 and each of its ancestors.

Next, assume that i > 1 and that the statement is true for each cluster in Li−1 and
their respective ancestors. Then, the algorithm creates Pi which connects the leaf Ci
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with the cluster C ′
i. Assume that there is a cluster C on the path from Ci to C ′

i in T
such that C intersects a path Pj with j < i. Clearly, C ′

i is an ancestor of C. Thus, by
induction hypothesis, C ′

i is also intersected by some path P ̸= Pi. This contradicts with
the way C ′

i is selected by the algorithm. Therefore, each cluster on the path from Ci

to C ′
i in T only intersects Pi and Pi does not intersect any other clusters.

Because i > 1, C ′
i has a parent cluster C ′′ in Tδ that is intersected by a path Pj with

j < i. By induction hypothesis, each ancestor of C ′′ is intersected by a path in Pi−1.
Therefore, each ancestor of Ci is intersected by exactly one path in Pi. □

Next, we use the paths in P to create the set Sδ. As first step, let Sδ := ⋃
Pi∈P Pi.

Later, we add more vertices into Sδ to ensure it is a connected set.
Now, create a partition V =

{
V1, V2, . . . , Vλ

}
of V such that, for each i, Pi ⊆ Vi, Vi is

connected, and dG(v, Pi) = minP ∈P dG(v, P ) for each vertex v ∈ Vi. That is, Vi contains
the vertices of G which are not more distant to Pi in G than to any other path in P.
Additionally, for each vertex v ∈ V , set P (v) := Pi if and only if v ∈ Vi (i. e., P (v) is the
path in P which is closest to v) and set d(v) := dG

(
v, P (v)

)
. Such a partition as well as

P (v) and d(v) can be computed by performing a BFS on G starting at all paths Pi ∈ P
simultaneously. Later, the BFS also allows us to easily determine the shortest path from
v to P (v) for each vertex v.

To manage the subsets of V, we use a Union-Find data structure such that, for two
vertices u and v, Find(u) = Find(v) if and only if u and v are in the same set of V. A
Union-Find data structure additionally allows us to easily join two set of V into one by
performing a single Union operation. Note that, whenever we join two sets of V into one,
P (v) and d(v) remain unchanged for each vertex v.

Next, create an edge set E′ = {uv | Find(u) ̸= Find(v) }, i. e., the set of edges uv such
that u and v are in different sets of V. Sort E′ in such a way that an edge uv precedes
an edge xy only if d(u) + d(v) ≤ d(x) + d(y).

The last step to create Sδ is similar to Kruskal’s minimum spanning tree algorithm.
Iterate over the edges in E′ in increasing order. If, for an edge uv, Find(u) ̸= Find(v),
i. e., if u and v are in different sets of V, then join these sets into one by performing
Union(u, v), add the vertices on the shortest path from u to P (u) to Sδ, and add the
vertices on the shortest path from v to P (v) to Sδ. Repeat this, until V contains only
one set, i. e., until V = {V }.

Algorithm 4.1 below summarises the steps to create a set Sδ for a given subtree of a
layering partition subtree Tδ.

Lemma 4.5. For a given graph G and a given subtree Tδ of some layering partition of G,
Algorithm 4.1 constructs, in O

(
mα(n)

)
time, a connected set Sδ with |Sδ| ≤ |Tδ|+∆·Λ(Tδ)

which intersects each cluster of Tδ.

Proof (Correctness). First, we show that Sδ is connected at the end of the algorithm.
To do so, we show by induction that, at any time, Sδ ∩ V ′ is a connected set for each
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Algorithm 4.1: Computes a connected vertex set that intersects each cluster of a
given layering partition.
Input: A graph G = (V,E) and a subtree Tδ of some layering partition of G.
Output: A connected set Sδ ⊆ V that intersects each cluster of Tδ and contains at

most |Tδ| +
(
Λ(Tδ) − 1

)
· ∆ vertices.

1 Let L =
{
C1, C2, . . . , Cλ

}
be the set of clusters excluding the root that are leaves

of Tδ.
2 Create an empty set P.
3 For Each cluster Ci ∈ L
4 Select an arbitrary vertex v ∈ Ci.
5 Find the highest ancestor C ′

i of Ci (i. e., the ancestor which is closest to the root
of Tδ) that is not flagged.

6 Find a shortest path Pi from v to an ancestor of v in C ′
i (i. e., a shortest path

from Ci to C ′
i in G that contains exactly one vertex of each cluster of the

corresponding path in Tδ).
7 Add Pi to P.
8 Flag each cluster intersected by Pi.
9 Create a set Sδ := ⋃

Pi∈P Pi.
10 Perform a BFS on G starting at all paths Pi ∈ P simultaneously. This results in a

partition V =
{
V1, V2, . . . , Vλ

}
of V with Pi ⊆ Vi for each Pi ∈ P. For each

vertex v, set P (v) := Pi if and only if v ∈ Vi and let d(v) := dG(v, P (v)).
11 Create a Union-Find data structure and add all vertices of G such that Find(v) = i

if and only if v ∈ Vi.
12 Determine the edge set E′ = {uv | Find(u) ̸= Find(v) }.
13 Sort E′ such that uv ≤ xy if and only if d(u) + d(v) ≤ d(x) + d(y). Let

⟨e1, e2, . . . , e|E′|⟩ be the resulting sequence.
14 For i := 1 To |E′|
15 Let uv = ei.
16 If Find(u) ̸= Find(v) Then
17 Add the shortest path from u to P (u) to Sδ.
18 Add the shortest path from v to P (v) to Sδ.
19 Union(u, v)

20 Output Sδ.

set V ′ ∈ V. Clearly, when V is created, for each set Vi ∈ V, Sδ ∩ Vi = Pi. Now, assume
that the algorithm joins the set Vu and Vv in V into one set based on the edge uv with
u ∈ Vu and v ∈ Vv. Let Su = Sδ ∩ Vu and Sv = Sδ ∩ Vv. Note that P (u) ⊆ Su and
P (v) ⊆ Sv. The algorithm now adds all vertices to Sδ which are on a path from P (u)
to P (v). Therefore, Sδ ∩ (Vu ∪ Vv) is a connected set. Because V = {V } at the end of
the algorithm, Sδ is connected eventually. Additionally, since Pi ⊆ Sδ for each Pi ∈ P , it
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follows that Sδ intersects each cluster of Tδ.
Next, we show that the cardinality of Sδ is at most |Tδ| + ∆ · Λ(Tδ). When first

created, the set Sδ contains all vertices of all paths in P. Therefore, by Lemma 4.4,
|Sδ| = ∑

Pi∈P |Pi| = |Tδ|. Then, each time two sets of V are joined into one set based on
an edge uv, Sδ is extended by the vertices on the shortest paths from u to P (u) and from
v to P (v). Therefore, the size of Sδ increases by d(u)+d(v), i. e., |Sδ| := |Sδ|+d(u)+d(v).
Let X denote the set of all edges used to join two sets of V into one at some point during
the algorithm. Note that |X| = |P| − 1 ≤ Λ(Tδ). Therefore, at the end of the algorithm,

|Sδ| =
∑

Pi∈P
|Pi| +

∑
uv∈X

(
d(u) + d(v)

)
≤ |Tδ| + Λ(Tδ) · max

uv∈X

(
d(u) + d(v)

)
.

Claim 1. For each edge uv ∈ X, d(u) + d(v) ≤ ∆.

Proof (Claim). To represent the relations between paths in P and vertex sets in V, we
define a function f : P → V such that f(Pi) = Vj if and only if Pi ⊆ Vj . Directly after
constructing V, f is a bijection with f(Pi) = Vi. At the end of the algorithm, after all
sets of V are joined into one, f(Pi) = V for all Pi ∈ P.

Recall the construction of P and assume that the indices of the paths in P represent
the order in which they are created. Assume that i > 1. By construction, the path Pi ∈ P
connects the leaf Ci with the cluster C ′

i in Tδ. Because i > 1, C ′
i has a parent cluster in Tδ

that is intersected by a path Pj ∈ P with j < i. We define Pj as the parent of Pi. By
Lemma 4.4, this parent Pj is unique for each Pi ∈ P with i > 1. Based on this relation
between paths in P, we can construct a rooted tree T with the node set {xi | Pi ∈ P }
such that each node xi represents the path Pi and xj is the parent of xi if and only if Pj

is the parent of Pi.
Because each node of T represents a path in P, f defines a colouring for the nodes

of T such that xi and xj have different colours if and only if f(Pi) ̸= f(Pj). As long as
|V| > 1, T contains two adjacent nodes with different colours. Let xi and xj be these
nodes with j < i and let Pi and Pj be the corresponding paths in P. Note that xj is the
parent of xi in T and, hence, Pj is the parent of Pi. Therefore, Pi ends in a cluster C ′

i

which has a parent cluster C that intersects Pj . By properties of layering partitions, it
follows that dG(Pi, Pj) ≤ ∆ + 1. Recall that, by construction, d(v) = minP ∈P dG(v, P )
for each vertex v. Thus, for each edge uv on a shortest path from Pi to Pj in G (with
u being closer to Pi than to Pj), d(u) + d(v) ≤ dG(u, Pi) + dG(v, Pj) ≤ ∆. Therefore,
because f(Pi) ̸= f(Pj), there is an edge uv on a shortest path from Pi to Pj such that
f

(
P (u)

)
̸= f

(
P (v)

)
and d(u) + d(v) ≤ ∆. ♢

From the claim above, it follows that, as long as V contains multiple sets, there
is an edge uv ∈ E′ such that d(u) + d(v) ≤ ∆ and Find(u) ̸= Find(v). Therefore,
maxuv∈X

(
d(u) + d(v)

)
≤ ∆ and, hence, |Sδ| ≤ |Tδ| + ∆ · Λ(Tδ). □

Proof (Complexity). First, the algorithm computes P (line 2 to line 8). If the parent of
each vertex from the original BFS that was used to construct T is still known, P can be

37



Chapter 4. Connected r-Domination

constructed in O(n) total time. After picking a vertex v in Ci, simply follow the parent
pointers until a vertex in C ′

i is reached. Computing V as well as P (v) and d(v) for each
vertex v of G (line 10) can be done with single BFS and, thus, requires at most O(n+m)
time.

Recall that, for a Union-Find data structure storing n elements, each operation
requires at most O

(
α(n)

)
amortised time. Therefore, initialising such a data structure

to store all vertices (line 11) and computing E′ (line 12) requires at most O
(
mα(n)

)
time. Note that, for each vertex v, d(v) ≤ |V |. Thus, sorting E′ (line 13) can be done
in linear time using counting sort. When iterating over E′ (line 14 to line 19), for each
edge uv ∈ E′, the Find-operation is called twice and the Union-operation is called at
most once. Thus, the total runtime for all these operations is at most O

(
mα(n)

)
.

Let Pu = {u, . . . , x, y, . . . , p} be the shortest path in G from a vertex u to P (u).
Assume that y has been added to Sδ in a previous iteration. Thus, {y, . . . , p} ⊆ Sδ and,
when adding Pu to Sδ, the algorithm only needs to add {u, . . . , x}. Therefore, by using
a simple binary flag to determine if a vertex is contained in Sδ, constructing Sδ (line 9,
line 17, and line 18) requires at most O(n) time.

In total, Algorithm 4.1 runs in O
(
mα(n)

)
time. □

Because, for each integer δ ≥ 0, |Sδ| ≤ |Tδ| + ∆ · Λ(Tδ) (Lemma 4.5) and |Tδ| ≤
|Tr| − δ · Λ(Tδ) (Lemma 4.3), we have the following.

Corollary 4.2. For each δ ≥ ∆, |Sδ| ≤ |Tr| and, thus, |Sδ| ≤ |Dr|.

To the best of our knowledge, there is no algorithm known that computes ∆ in less
than O(nm) time. Additionally, under reasonable assumptions, computing the diameter
or radius of a general graph requires Ω

(
n2)

time [1]. We conjecture that the runtime for
computing ∆ for a given graph has a similar lower bound.

To avoid the runtime required for computing ∆, we use the following approach shown
in Algorithm 4.2 below. First, compute a layering partition T and the subtree Tr. Second,
for a certain value of δ, compute Tδ and perform Algorithm 4.1 on it. If the resulting
set Sδ is larger than Tr (i. e., |Sδ| > |Tr|), increase δ; otherwise, if |Sδ| ≤ |Tr|, decrease δ.
Repeat the second step with the new value of δ.

One strategy to select values for δ is a classical binary search over the number of
vertices of G. In this case, Algorithm 4.1 is called up-to O(logn) times. Empirical
analysis [2], however, have shown that ∆ is usually very small. Therefore, we use a
one-sided binary search instead.

Because of Corollary 4.2, using a one-sided binary search allows us to find a value δ ≤ ∆
for which |Sδ| ≤ |Tr| by calling Algorithm 4.1 at most O(log ∆) times. Algorithm 4.2
below implements this approach.

Theorem 4.2. For a given graph G, Algorithm 4.2 computes a connected (r + 2∆)-
dominating set D with |D| ≤ |Dr| in O

(
mα(n) log ∆

)
time.
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Algorithm 4.2: Computes a connected (r+2∆)-dominating set for a given graph G.
Input: A graph G = (V,E) and a function r : V → N.
Output: A connected (r + 2∆)-dominating set D for G with |D| ≤ |Dr|.

1 Create a layering partition T of G.
2 For each cluster C of T , set r(C) := minv∈C r(v).
3 Compute a minimum r-dominating subtree Tr for T (see [35]).
4 One-Sided Binary Search over δ, starting with δ = 0
5 Create a minimum δ-dominating subtree Tδ of Tr (i. e., Tδ is a minimum

(r + δ)-dominating subtree for T ).
6 Run Algorithm 4.1 on Tδ and let the set Sδ be the corresponding output.
7 If |Sδ| ≤ |Tr| Then
8 Decrease δ.
9 Else

10 Increase δ.

11 Output Sδ with the smallest δ for which |Sδ| ≤ |Tr|.

Proof. Clearly, the set D is connected because D = Sδ for some δ and, by Lemma 4.5,
the set Sδ is connected. By Corollary 4.2, for each δ ≥ ∆, |Sδ| ≤ |Tr|. Thus, for each
δ ≥ ∆, the binary search decreases δ and, eventually, finds some δ such that δ ≤ ∆
and |Sδ| ≤ |Tr|. Therefore, the algorithm finds a set D with |D| ≤ |Dr|. Note that,
because D = Sδ for some δ ≤ ∆ and because Sδ intersects each cluster of Tδ (Lemma 4.5),
it follows from Lemma 4.2 that, for each vertex v of G, dT (v,D) ≤ r(v) + ∆ and, by
Lemma 2.6, dG(v,D) ≤ r(v) + 2∆. Thus, D is an (r + 2∆)-dominating set for G.

Creating a layering partition for a given graph and computing a minimum connected
r-dominating set of a tree can be done in linear time [35]. The one-sided binary search
over δ has at most O(log ∆) iterations. Each iteration of the binary search requires
at most linear time to compute Tδ, O

(
mα(n)

)
time to compute Sδ (Lemma 4.5), and

constant time to decide whether to increase or decrease δ. Therefore, Algorithm 4.2 runs
in O

(
mα(n) log ∆

)
total time. □

4.2 Using a Tree-Decomposition

Theorem 4.1 and Theorem 4.2 respectively show how to compute an (r + ∆)-dominating
set in linear time and a connected (r + 2∆)-dominating set in O

(
mα(n) log ∆

)
time.

It is known that the maximum diameter ∆ of clusters of any layering partition of a
graph approximates the tree-breadth and tree-length of this graph. Indeed, as shown in
Lemma 3.1 (page 11), for a graph G with tl(G) = λ, ∆ ≤ 3λ.

Corollary 4.3. Let D be a minimum r-dominating set for a given graph G with tl(G) = λ.
An (r + 3λ)-dominating set D′ for G with |D′| ≤ |D| can be computed in linear time.
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Corollary 4.4. Let D be a minimum connected r-dominating set for a given graph G

with tl(G) = λ. A connected (r + 6λ)-dominating set D′ for G with |D′| ≤ |D| can be
computed in O

(
mα(n) log λ

)
time.

In this section, we consider the case when we are given a tree-decomposition with
breadth ρ and length λ. We present algorithms to compute an (r + ρ)-dominating set as
well as a connected

(
r + min(3λ, 5ρ)

)
-dominating set in O(nm) time.

For the remainder of this section, assume that we are given a graph G = (V,E) and a
tree-decomposition T of G with breadth ρ and length λ. We assume that ρ and λ are
known and that, for each bag B of T , we know a vertex c(B) with B ⊆ Nρ

G[c(B)]. Let T
be minimal, i. e., B ⊈ B′ for any two bags B and B′. Thus, the number of bags is not
exceeding the number vertices of G. Additionally, let each vertex of G store a list of bags
containing it and let each bag of T store a list of vertices it contains. One can see this as
a bipartite graph where one subset of vertices are the vertices of G and the other subset
are the bags of T . Therefore, the total input size is in O(n+m+M) where M ≤ n2 is
the sum of the cardinality of all bags of T .

4.2.1 Preprocessing

Before approaching the (Connected) r-Domination problem, we compute a subtree Tr

of T such that, for each vertex v of G, Tr contains a bag B with dG(v,B) ≤ r(v). We
call such a (not necessarily minimal) subtree an r-covering subtree of T .

We do not know how to compute a minimum r-covering subtree Tr directly. However,
if we are given a bag B of T , we can compute the smallest r-covering subtree TB which
contains B. Then, we can identify a bag B′ in TB for which we know it is a bag of Tr.
Thus, we can compute Tr by computing the smallest r-covering subtree which contains B′.

The idea for computing TB is to determine, for each vertex v of G, the bag Bv of T
for which dG(v,Bv) ≤ r(v) and which is closet to B. Then, let TB be the smallest tree
that contains all these bags Bv. Algorithm 4.3 below implements this approach.

Additionally to computing the tree TB, we make it a rooted tree with B as the root,
give each vertex v a pointer β(v) to a bag of TB, and give each bag B′ a counter σ(B′).
The pointer β(v) identifies the bag Bv which is closest to B in TB and intersects the
r-neighbourhood of v. The counter σ(B′) states the number of vertices v with β(v) = B′.
Even though setting β and σ as well as rooting the tree are not necessary for computing TB,
we use it when computing an (r + ρ)-dominating set later.

Lemma 4.6. For a given tree-decomposition T and a given bag B of T , Algorithm 4.3
computes an r-covering subtree TB in O(nm) time such that TB contains B and has a
minimal number of bags.

Proof (Correctness). Note that, by construction of the set B (line 5 to line 7), B contains
a bag Bu for each vertex u of G such that dG(u,Bu) ≤ r(u). Thus, each subtree of T
which contains all bags of B is an r-covering subtree. To show the correctness of the
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Algorithm 4.3: Computes the smallest r-covering subtree TB of a given tree-
decomposition T that contains a given bag B of T .
1 Make T a rooted tree with the bag B as the root.
2 Create a set B of bags and initialise it with B := {B}.
3 For each bag B′ of T , set σ(B′) := 0 and determine dT (B′, B).
4 For each vertex u, determine the bag B(u) which contains u and has minimal

distance to B.
5 For Each u ∈ V

6 Determine a vertex v such that dG(u, v) ≤ r(u) and dT
(
B(v), B

)
is minimal

and let Bu := B(v).
7 Add Bu to B, set β(u) := Bu, and increase σ(Bu) by 1.
8 Output the smallest subtree TB of T that contains all bags in B.

algorithm, it remains to show that the smallest r-covering subtree of T which contains B
has to contain each bag from the set B. Then, the subtree TB constructed in line 8 is the
desired subtree.

Clearly, by properties of tree-decompositions, the set of bags which intersect the
r-neighbourhood of some vertex u induces a subtree Tu of T . That is, Tu contains exactly
the bags B′ with dG(u,B′) ≤ r(u). Note that T is a rooted tree with B as the root.
Clearly, the bag Bu ∈ B (determined in line 6) is the root of Tu since it is the bag closest
to B. Hence, each bag B′ with dG(u,B′) ≤ r(u) is a descendant of Bu. Therefore, if
a subtree of T contains B and does not contain Bu, then it also cannot contain any
descendant of Bu and, thus, contains no bag intersecting the r-neighbourhood of u. □

Proof (Complexity). Recall that T has at most n bags and that the sum of the cardinality
of all bags of T is M ≤ n2. Thus, line 3 and line 4 require at most O(M) time. Using
a BFS, it takes at most O(m) time, for a given vertex u, to determine a vertex v such
that dG(u, v) ≤ r(u) and dT

(
B(v), B

)
is minimal (line 6). Therefore, the loop starting in

line 5 and, thus, Algorithm 4.3 run in at most O(nm) total time. □

Lemma 4.7 and Lemma 4.8 below show that each leaf B′ ̸= B of TB is a bag of a
minimum r-covering subtree Tr of T . Note that both lemmas only apply if TB has at
least two bags. If TB contains only one bag, it is clearly a minimum r-covering subtree.

Lemma 4.7. For each leaf B′ ̸= B of TB, there is a vertex v in G such that B′ is the
only bag of TB with dG(v,B′) ≤ r(v).

Proof. Assume that Lemma 4.7 is false. Then, there is a leaf B′ such that, for each
vertex v with dG(v,B′) ≤ r(v), TB contains a bag B′′ ̸= B′ with dG(v,B′′) ≤ r(v).
Thus, for each vertex v, the r-neighbourhood of v is intersected by a bag of the tree-
decomposition TB −B′. This contradicts with the minimality of TB. □
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Lemma 4.8. For each leaf B′ ̸= B of TB, there is a minimum r-covering subtree Tr

of T which contains B′.

Proof. Assume that Tr is a minimum r-covering subtree which does not contain B′.
Because of Lemma 4.7, there is a vertex v of G such that B′ is the only bag of TB

which intersects the r-neighbourhood of v. Therefore, Tr contains only bags which are
descendants of B′. Partition the vertices of G into the sets V ↑ and V ↓ such that V ↓

contains the vertices of G which are contained in B′ or in a descendant of B′. Because Tr

is an r-covering subtree and because Tr only contains descendants of B′, it follows from
properties of tree-decompositions that, for each vertex v ∈ V ↑, there is a path of length at
most r(v) from v to a bag of Tr passing through B′ and, thus, dG(v,B′) ≤ r(v). Similarly,
since TB is an r-covering subtree, it follows that, for each vertex v ∈ V ↓, dG(v,B′) ≤ r(v).
Therefore, for each vertex v of G, dG(v,B′) ≤ r(v) and, thus, B′ induces an r-covering
subtree Tr of T with |Tr| = 1. □

Algorithm 4.4 below uses Lemma 4.8 to compute a minimum r-covering subtree Tr

of T .

Algorithm 4.4: Computes a minimum r-covering subtree Tr of a given tree-
decomposition T .
1 Pick an arbitrary bag B of T .
2 Determine the subtree TB of T using Algorithm 4.3.
3 If |TB| = 1 Then
4 Output Tr := TB.
5 Else
6 Select an arbitrary leaf B′ ̸= B of TB.
7 Determine the subtree TB′ of T using Algorithm 4.3.
8 Output Tr := TB′ .

Lemma 4.9. Algorithm 4.4 computes a minimum r-covering subtree Tr of T in O(nm)
time.

Proof. Algorithm 4.4 first picks an arbitrary bag B and then uses Algorithm 4.3 to
compute the smallest r-covering subtree TB of T which contains B. By Lemma 4.8, for
each leaf B′ of TB, there is a minimum r-covering subtree Tr which contains B′. Thus,
performing Algorithm 4.3 again with B′ as input creates such a subtree Tr.

Clearly, with exception of calling Algorithm 4.3, all steps of Algorithm 4.4 require
only constant time. Because Algorithm 4.3 requires at most O(nm) time (see Lemma 4.6)
and is called at most two times, Algorithm 4.4 runs in at most O(nm) total time. □

Algorithm 4.4 computes Tr by, first, computing TB for some bag B and, second,
computing TB′ = Tr for some leaf B′ of TB. Note that, because both trees are computed
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using Algorithm 4.3, Lemma 4.7 applies to TB and TB′ . Therefore, we can slightly
generalise Lemma 4.7 as follows.

Corollary 4.5. For each leaf B of Tr, there is a vertex v in G such that B is the only
bag of Tr with dG(v,B) ≤ r(v).

4.2.2 r-Domination

In this subsection, we use the minimum r-covering subtree Tr to determine an (r + ρ)-
dominating set S in O(nm) time using the following approach. First, compute Tr. Second,
pick a leaf B of Tr. If there is a vertex v such that v is not dominated and B is the
only bag intersecting the r-neighbourhood of v, then add the center of B into S, flag
all vertices u with dG(u,B) ≤ r(u) as dominated, and remove B from Tr. Repeat the
second step until Tr contains no more bags and each vertex is flagged as dominated.
Algorithm 4.5 below implements this approach. Note that, instead of removing bags
from Tr, we use a reversed BFS-order of the bags to ensure the algorithm processes bags
in the correct order.

Algorithm 4.5: Computes an (r+ ρ)-dominating set S for a given graph G with a
given tree-decomposition T with breadth ρ.
1 Compute a minimum r-covering subtree Tr of T using Algorithm 4.4.
2 Give each vertex v a binary flag indicating if v is dominated. Initially, no vertex is

dominated.
3 Create an empty vertex set S0.
4 Let ⟨B1, B2, . . . , Bk⟩ be the reverse of a BFS-order of Tr starting at its root.
5 For i = 1 To k
6 If σ(Bi) > 0 Then
7 Determine all vertices u such that u has not been flagged as dominated and

that dG(u,Bi) ≤ r(u). Add all these vertices into a new set Xi.
8 Let Si = Si−1 ∪

{
c(Bi)

}
.

9 For each vertex u ∈ Xi, flag u as dominated, and decrease σ
(
β(u)

)
by 1.

10 Else
11 Let Si = Si−1.

12 Output S := Sk.

Theorem 4.3. Let D be a minimum r-dominating set for a given graph G. Given a
tree-decomposition with breadth ρ for G, Algorithm 4.5 computes an (r + ρ)-dominating
set S with |S| ≤ |D| in O(nm) time.

Proof (Correctness). First, we show that S is an (r+ρ)-dominating set for G. Note that
a vertex v is flagged as dominated only if Si contains a vertex c(Bj) with dG(v,Bj) ≤ r(v)
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(see line 7 to line 9). Thus, v is flagged as dominated only if dG(v, Si) ≤ dG

(
v, c(Bj)

)
≤

r(v) + ρ. Additionally, by construction of Tr (see Algorithm 4.3), for each vertex v,
Tr contains a bag B with β(v) = B, σ(B) states the number of vertices v with β(v) = B,
and σ(B) is decreased by 1 only if such a vertex v is flagged as dominated (see line 9).
Therefore, if G contains a vertex v with dG(v, Si) > r(v) + ρ, then v is not flagged as
dominated and Tr contains a bag Bi with β(v) = Bi and σ(Bi) > 0. Thus, when Bi is
processed by the algorithm, c(Bi) will be added to Si and, hence, dG(v, Si) ≤ r(v) + ρ.

Let V S
i = {u | dG(u,Bj) ≤ r(u), c(Bj) ∈ Si } be the set of vertices which are flagged

as dominated after the algorithm processed Bi, i. e., each vertex in V S
i is (r+ρ)-dominated

by Si. Similarly, for some set Di ⊆ D, let V D
i = {u | dG(u,Di) ≤ r(u) } be the set of

vertices dominated by Di. To show that |S| ≤ |D|, we show by induction over i that, for
each i, (i) there is a set Di ⊆ D such that V D

i ⊆ V S
i , (ii) |Si| = |Di|, and (iii) if, for some

vertex v, β(v) = Bj with j ≤ i, then v ∈ V S
i .

For the base case, let S0 = D0 = ∅. Then, V S
0 = V D

0 = ∅ and all three statements
are satisfied. For the inductive step, first, consider the case when σ(Bi) = 0. Because
σ(Bi) = 0, each vertex v with β(v) = Bi is flagged as dominated, i. e., v ∈ V S

i−1. Thus, by
setting Si = Si−1 (line 11) and Di = Di−1, all three statements are satisfied for i. Next,
consider the case when σ(Bi) > 0. Therefore, G contains a vertex u with β(u) = Bi

and u /∈ V S
i−1. Then, the algorithm sets Si = Si−1 ∪

{
c(Bi)

}
and flags all such u as

dominated (see line 7 to line 9). Thus, u ∈ V S
i and statement (iii) is satisfied. Let

du be a vertex in D with minimal distance to u. Thus, dG(du, u) ≤ r(u), i. e., du is in
the r-neighbourhood of u. Note that, because u /∈ V S

i−1 and V D
i−1 ⊆ V S

i−1, du /∈ Di−1.
Therefore, by setting Di = Di−1 ∪ {du}, |Si| = |Si−1| + 1 = |Di−1| + 1 = |Di| and
statement (ii) is satisfied. Recall that β(u) points to the bag closest to the root of Tr

which intersects the r-neighbourhood of u. Thus, because β(u) = Bi, each bag B ̸= Bi

with dG(u,B) ≤ r(u) is a descendant of Bi. Therefore, du is in Bi or in a descendant
of Bi. Let v be an arbitrary vertex of G such that v /∈ V S

i−1 and dG(v, du) ≤ r(v), i. e., v
is dominated by du but not by Si−1. Due to statement (iii) of the induction hypothesis,
β(v) = Bj with j ≥ i, i. e., Bj cannot be a descendant of Bi. Partition the vertices of G
into the sets V ↑

i and V ↓
i such that V ↓

i contains the vertices which are contained in Bi

or in a descendant of Bi. If v ∈ V ↓
i , then there is a path of length at most r(v) from v

to Bj passing through Bi. If v ∈ V ↑
i , then, because du ∈ V ↓

i , there is a path of length at
most r(v) from v to du passing through Bi. Therefore, dG(v,Bi) ≤ r(v). That is, each
vertex r-dominated by du, is (r + ρ)-dominated by some c(Bj) ∈ Si. Therefore, because
Si = Si−1 ∪

{
c(Bi)

}
and Di = Di−1 ∪ {du}, v ∈ V S

i ∩ V D
i and, thus, statement (i) is

satisfied. □

Proof (Complexity). Computing Tr (line 1) takes at most O(nm) time (see Lemma 4.9).
Because Tr has at most n bags, computing a BFS-order of Tr (line 4) takes at most
O(n) time. For some bag Bi, determining all vertices u with dG(u,Bi) ≤ r(u), flagging
u as dominated, and decreasing σ

(
β(u)

)
(line 7 to line 9) can be done in O(m) time by

performing a BFS starting at all vertices of Bi simultaneously. Therefore, because Tr has
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at most n bags, Algorithm 4.5 requires at most O(nm) total time. □

4.2.3 Connected r-Domination

In this subsection, we show how to compute a connected (r + 5ρ)-dominating set and
a connected (r + 3λ)-dominating set for G. For both results, we use almost the same
algorithm. To identify and emphasise the differences, we use the label (♡) for parts which
are only relevant to determine a connected (r+ 5ρ)-dominating set and use the label (♢)
for parts which are only relevant to determine a connected (r + 3λ)-dominating set.

For the remainder of this subsection, let Dr be a minimum connected r-dominating
set of G. For (♡) ϕ = 3ρ or (♢) ϕ = 2λ, let Tϕ be a minimum (r + ϕ)-covering subtree
of T as computed by Algorithm 4.4.

The idea of our algorithm is to, first, compute Tϕ and, second, compute a small
enough connected set Cϕ such that Cϕ intersects each bag of Tϕ. Lemma 4.10 below
shows that such a set Cϕ is an

(
r + (ϕ+ λ)

)
-dominating set.

Lemma 4.10. Let Cϕ be a connected set that contains at least one vertex of each leaf
of Tϕ. Then, Cϕ is an

(
r + (ϕ+ λ)

)
-dominating set.

Proof. Clearly, since Cϕ is connected and contains a vertex of each leaf of Tϕ, Cϕ contains
a vertex of every bag of Tϕ. By construction of Tϕ, for each vertex v of G, Tϕ contains a
bag B such that dG(v,B) ≤ r(v) + ϕ. Therefore, dG(v, Cϕ) ≤ r(v) + ϕ+ λ, i. e., Cϕ is an(
r + (ϕ+ λ)

)
-dominating set. □

To compute a connected set Cϕ which intersects all leaves of Tϕ, we first consider
the case when Tρ contains only one bag B. In this case, we can construct Cϕ by simply
picking an arbitrary vertex v ∈ B and setting Cϕ = {v}. Similarly, if Tρ contains exactly
two bags B and B′, pick a vertex v ∈ B ∩ B′ and set Cϕ = {v}. In both cases, due to
Lemma 4.10, Cϕ is clearly an

(
r + (ϕ+ λ)

)
-dominating set with |Cϕ| ≤ |Dr|.

Now, consider the case when Tϕ contains at least three bags. Additionally, assume
that Tϕ is a rooted tree such that its root R is a leaf.

Notation. Based on its degree in Tϕ, we refer to each bag B of Tϕ either as leaf, as path
bag if B has degree 2, or as branching bag if B has a degree larger than 2. Additionally,
we call a maximal connected set of path bags a path segment of Tϕ. Let L denote the
set of leaves, P denote the set of path segments, and B denote the set of branching bags
of Tϕ. Clearly, for any given tree T , the sets L, P, and B are pairwise disjoint and can be
computed in linear time.

Let B and B′ be two adjacent bags of Tϕ such that B is the parent of B′. We call
S = B ∩ B′ the up-separator of B′, denoted as S↑(B′), and a down-separator of B,
denoted as S↓(B), i. e., S = S↑(B′) = S↓(B). Note that a branching bag has multiple
down-separators and that (with exception of R) each bag has exactly one up-separator.
For each branching bag B, let S↓(B) be the set of down-separators of B. Accordingly,
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for a path segment P ∈ P, S↑(P ) is the up-separator of the bag in P closest to the root
and S↓(P ) is the down separator of the bag in P furthest from the root. Let ν be a
function that assigns a vertex of G to a given separator. Initially, ν(S) is undefined for
each separator S.

Algorithm. Now, we show how to compute Cϕ. We, first, split Tϕ into the sets L, P,
and B. Second, for each P ∈ P, we create a small connected set CP , and, third, for
each B ∈ B, we create a small connected set CB . If this is done properly, the union Cϕ of
all these sets forms a connected set which intersects each bag of Tϕ.

Note that, due to properties of tree-decompositions, it can be the case that there are
two bags B and B′ which have a common vertex v, even if B and B′ are non-adjacent in Tϕ.
In such a case, either v ∈ S↓(B) ∩ S↑(B′) if B is an ancestor of B′, or v ∈ S↑(B) ∩ S↑(B′)
if neither is ancestor of the other. To avoid problems caused by this phenomenon and
to avoid counting vertices multiple times, we consider any vertex in an up-separator as
part of the bag above. That is, whenever we process some segment or bag X ∈ L ∪ P ∪ B,
even though we add a vertex v ∈ S↑(X) to Cϕ, v is not contained in CX .

Processing Path Segments. First, after splitting Tϕ, we create a set CP for each path
segment P ∈ P as follows. We determine S↑(P ) and S↓(P ) and then find a shortest
path QP from S↑(P ) to S↓(P ). Note that QP contains exactly one vertex from each
separator. Let x ∈ S↑(P ) and y ∈ S↓(P ) be these vertices. Then, we set ν

(
S↑(P )

)
= x

and ν
(
S↓(P )

)
= y. Last, we add the vertices of QP into Cϕ and define CP as QP \S↑(P ).

Let CP be the union of all sets CP , i. e., CP = ⋃
P ∈PCP .

Lemma 4.11. |CP| ≤ |Dr| − ϕ · Λ
(
Tϕ

)
.

Proof. Recall that Tϕ is a minimum (r+ϕ)-covering subtree of T . Thus, by Corollary 4.5,
for each leaf B ∈ L of Tϕ, there is a vertex v in G such that B is the only bag of Tϕ

with dG(v,B) ≤ r(v) + ϕ. Because Dr is a connected r-dominating set, Dr intersects the
r-neighbourhood of each of these vertices v. Thus, by properties of tree-decompositions,
Dr intersects each bag of Tϕ. Additionally, for each such v, Dr contains a path Dv with
|Dv| ≥ ϕ such that Dv intersects the r-neighbourhood of v, intersects the corresponding
leaf B of Tϕ, and does not intersect S↑(B) (S↓(B) if B = R). Let DL be the union of all
such sets Dv. Therefore, |DL| ≥ ϕ · Λ

(
Tϕ

)
.

Because Dr intersects each bag of Tϕ, Dr also intersects the up- and down-separators
of each path segment. For a path segment P ∈ P, let x and y be two vertices of Dr such
that x ∈ S↑(P ), y ∈ S↓(P ), and for which the distance in G[Dr] is minimal. Let DP be
the set of vertices on the shortest path in G[Dr] from x to y without x, i. e., x /∈ DP .
Note that, by construction, for each P ∈ P, DP contains exactly one vertex in S↓(P ) and
no vertex in S↑(P ). Thus, for all P, P ′ ∈ P, DP ∩DP ′ = ∅. Let DP be the union of all
such sets DP , i. e., DP = ⋃

P ∈PDP . By construction, |DP| = ∑
P ∈P |DP | and DL∩DP = ∅.
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Therefore, |Dr| ≥ |DP| + |DL| and, hence,∑
P ∈P

|DP | ≤ |Dr| − |DL| ≤ |Dr| − ϕ · Λ
(
Tϕ

)
.

Recall that, for each P ∈ P, the sets CP and DP are constructed based on a path
from S↑(P ) to S↓(P ). Since CP is based on a shortest path in G, it follows that
|CP | = dG

(
S↑(P ), S↓(P )

)
≤ |DP |. Therefore,

|CP| ≤
∑
P ∈P

|CP | ≤
∑
P ∈P

|DP | ≤ |Dr| − ϕ · Λ
(
Tϕ

)
. □

Processing Branching Bags. After processing path segments, we process the branching
bags of Tϕ. Similar to path segments, we have to ensure that all separators are connected.
Branching bags, however, have multiple down-separators. To connect all separators of
some bag B, we pick a vertex s in each separator S ∈ S↓(B) ∪

{
S↑(B)

}
. If ν(S) is

defined, we set s = ν(S). Otherwise, we pick an arbitrary s ∈ S and set ν(S) = s. Let
S↓(B) = {S1, S2, . . .}, si = ν(Si), and t = ν

(
S↑(B)

)
. We then connect these vertices as

follows. (See Figure 4.2 for an illustration.)
(♡) Connect each vertex si via a shortest path Qi (of length at most ρ) with the

center c(B) of B. Additionally, connect c(B) via a shortest path Qt (of length at
most ρ) with t. Add all vertices from the paths Qi and from the path Qt into Cϕ

and let CB be the union of these paths without t.
(♢) Connect each vertex si via a shortest path Qi (of length at most λ) with t. Add all

vertices from the paths Qi into Cϕ and let CB be the union of these paths without t.
Let CB be the union of all created sets CB, i. e., CB = ⋃

B∈BCB.

ρ ρ

ρ

S↑

S↓
i S↓

j

(♡)

λ λ

S↑

S↓
i S↓

j

(♢)

Figure 4.2. Construction of the set CB for a branching bag B.

Before analysing the cardinality of CB in Lemma 4.13 below, we need an axillary
lemma.

Lemma 4.12. For a tree T which is rooted in one of its leaves, let b denote the number
of branching nodes, c denote the total number of children of branching nodes, and l denote
the number of leaves. Then, c+ b ≤ 3l − 1 and c ≤ 2l − 1.
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Proof. Assume that we construct T by starting with only the root and then step by step
adding leaves to it. Let Ti be the subtree of T with i nodes during this construction. We
define bi, ci, and li accordingly. Now, assume by induction over i that Lemma 4.12 is
true for Ti. Let v be the leaf we add to construct Ti+1 and let u be its neighbour.

First, consider the case when u is a leaf of Ti. Then, u becomes a path node of Ti+1.
Therefore, bi+1 = bi, ci+1 = ci, and li+1 = li. Next, assume that u is path node of Ti. Then,
u is a branch node of Ti+1. Thus, bi+1 = bi + 1, ci+1 = ci + 2, and li+1 = li + 1. Therefore,
ci+1+bi+1 = ci+bi+3 ≤ 3(li+1)−1 = 3li+1−1 and ci+1 = ci+2 ≤ 2(li+1)−1 = 2li+1−1.
It remains to check the case when u is a branch node of Ti. Then, bi+1 = bi, ci+1 = ci + 1,
and li+1 = li + 1. Thus, ci+1 + bi+1 = ci + bi + 1 ≤ 3li − 1 + 1 ≤ 3li+1 − 1 and
ci+1 = ci + 1 ≤ 2li − 1 + 1 ≤ 2li+1 − 1. Therefore, in all three cases, Lemma 4.12 is true
for Ti+1. □

Lemma 4.13. |CB| ≤ ϕ · Λ
(
Tϕ

)
.

Proof. For some branching bag B ∈ B, the set CB contains (♡) a path of length at most ρ
for each Si ∈ S↓(B) and a path of length at most ρ to S↑(B), or (♢) a path of length at
most λ for each Si ∈ S↓(B). Thus, (♡) |CB| ≤ ρ ·

∣∣S↓(B)
∣∣ + ρ or (♢) |CB| ≤ λ ·

∣∣S↓(B)
∣∣.

Recall that S↓(B) contains exactly one down-separator for each child of B in Tϕ and that
CB is the union of all sets CB. Therefore, Lemma 4.12 implies the following.

|CB| ≤
∑
B∈B

|CB|

(♡) ≤ ρ ·
∑
B∈B

∣∣S↓(B)
∣∣ + ρ · |B| ≤ 3ρ · Λ

(
Tϕ

)
− 1

(♢) ≤ λ ·
∑
B∈B

∣∣S↓(B)
∣∣ ≤ 2λ · Λ

(
Tϕ

)
− 1

≤ ϕ · Λ
(
Tϕ

)
− 1. □

Properties of Cϕ. We now analyse the created set Cϕ with the result that Cϕ is a
connected (r + ϕ)-dominating set for G.

Lemma 4.14. Cϕ contains a vertex in each bag of Tϕ.

Proof. Clearly, by construction, Cϕ contains a vertex in each path bag and in each
branching bag. Now, consider a leaf L of Tϕ. L is adjacent to a path segment or branching
bag X ∈ P ∩ B. Whenever such an X is processed, the algorithm ensures that all
separators of X contain a vertex of Cϕ. Since one of these separators is also the separator
of L, it follows that each leaf L and, thus, each bag of Tϕ contains a vertex of Cϕ. □

Lemma 4.15. |Cϕ| ≤ |Dr|.

Proof. Note that, for each vertex u we add to Cϕ, we also add u to a unique set CX for
some X ∈ P∩B. The exception is the vertex v in S↓(R) which is added to no such set CX .
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It follows from our construction of the sets CX that there is only one such vertex v and
that v = ν

(
S↓(R)

)
. Thus, |Cϕ| = |CP| + |CB| + 1. Now, it follows from Lemma 4.11 and

Lemma 4.13 that

|Cϕ| ≤ |Dr| − ϕ · Λ
(
Tϕ

)
+ ϕ · Λ

(
Tϕ

)
− 1 + 1 ≤ |Dr|. □

Lemma 4.16. Cϕ is connected.

Proof. First, note that, by maximality, two path segments of Tϕ cannot share a common
separator. Also, note that, when processing a branching bag B, the algorithm first checks
if, for any separator S of B, ν(S) is already defined; if this is the case, it will not be
overwritten. Therefore, for each separator S in Tϕ, ν(S) is defined and never overwritten.

Next, consider a path segment or branching bag X ∈ P ∪ B and let S and S′ be
two separators of X. Whenever such an X is processed, our approach ensures that Cϕ

connects ν(S) with ν(S′). Additionally, observe that, when processing X, each vertex
added to Cϕ is connected via Cϕ with ν(S) for some separator S of X.

Thus, for any two separators S and S′ in Tϕ, Cϕ connects ν(S) with ν(S′) and,
additionally, each vertex v ∈ Cϕ is connected via Cϕ with ν(S) for some separator S
in Tϕ. Therefore, Cϕ is connected. □

From Lemma 4.14, Lemma 4.15, Lemma 4.16, and from applying Lemma 4.10 it
follows:

Corollary 4.6. Cϕ is a connected
(
r + (ϕ+ λ)

)
-dominating set for G with |Cϕ| ≤ |Dr|.

Implementation. Algorithm 4.6 below implements our approach described above. This
also includes the case when Tϕ contains at most two bags.

Theorem 4.4. Algorithm 4.6 computes a connected
(
r + (ϕ + λ)

)
-dominating set Cϕ

with |Cϕ| ≤ |Dr| in O(nm) time.

Proof. Since Algorithm 4.6 constructs a set Cϕ as described above, its correctness follows
from Corollary 4.6. It remains to show that the algorithm runs in O(nm) time.

Computing Tϕ (line 2) can be done in O(nm) time (see Lemma 4.9). Picking a
vertex u in the case when Tϕ contains at most two bags (line 3 to line 6) can be easily
done in O(n) time. Recall that Tϕ has at most n bags. Thus, splitting Tϕ in the sets L,
P, and B can be done in O(n) time.

Determining all up-separators in Tϕ can be done in O(M) time as follows. Process
all bags of Tϕ in an order such that a bag is processed before its descendants, e. g., use a
preorder or BFS-order. Whenever a bag B is processed, determine a set S ⊆ B of flagged
vertices, store S as up-separator of B, and, afterwards, flag all vertices in B. Clearly,
S is empty for the root. Because a bag B is processed before its descendants, all flagged
vertices in B also belong to its parent. Thus, by properties of tree-decompositions, these
vertices are exactly the vertices in S↑(B). Clearly, processing a single bag B takes at
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Algorithm 4.6: Computes (♡) a connected (r + 5ρ)-dominating set or (♢) a con-
nected (r+3λ)-dominating set for a given graph G with a given tree-decomposition T
with breadth ρ and length λ.
1 (♡) Set ϕ := 3ρ.

(♢) Set ϕ := 2λ.
2 Compute a minimum (r + ϕ)-covering subtree Tϕ of T using Algorithm 4.4.
3 If Tϕ contains only one bag B Then
4 Pick an arbitrary vertex u ∈ B, output Cϕ := {u}, and stop.
5 If Tϕ contains exactly two bags B and B′ Then
6 Pick an arbitrary vertex u ∈ B ∩B′, output Cϕ := {u}, and stop.
7 Pick a leaf of Tϕ and make it the root of Tϕ.
8 Split Tϕ into a set L of leaves, a set P of path segments, and a set B of branching

bags.
9 Create an empty set Cϕ.

10 For Each P ∈ P
11 Find a shortest path QP from S↑(P ) to S↓(P ) and add its vertices into Cϕ.
12 Let x ∈ S↑(P ) be the start vertex and y ∈ S↓(P ) be the end vertex of QP . Set

ν
(
S↑(P )

)
:= x and ν

(
S↓(P )

)
:= y.

13 For Each B ∈ B
14 If ν

(
S↑(B)

)
is defined, let u := ν

(
S↑(B)

)
. Otherwise, let u be an arbitrary

vertex in S↑(B) and set ν
(
S↑(B)

)
:= u.

15 (♡) Let v := c(B) be the center of B.
(♢) Let v := u.

16 Find a shortest path from u to v and add its vertices into Cϕ.
17 For Each Si ∈ S↓(B)
18 If ν(Si) is defined, let wi := ν(Si). Otherwise, let wi be an arbitrary vertex

in Si and set ν(Si) := wi.
19 Find a shortest path from wi to v and add the vertices of this path into Cϕ.

20 Output Cϕ.

most O(|B|) time. Thus, processing all bags takes at most O(M) time. Note that it is
not necessary to determine the down-separators of a (branching) bag. They can easily be
accessed via the children of a bag.

Processing a single path segment (line 11 and line 12) can be easily done in O(m)
time. Processing a branching bag B (line 13 to line 19) can be implemented to run in
O(m) time by, first, determining ν(S) for each separator S of B and, second, running a
BFS starting at v (defined in line 15) to connect v with each vertex ν(S). Because Tϕ has
at most n bags, it takes at most O(nm) time to process all path segments and branching
bags of Tϕ. Therefore, Algorithm 4.6 runs in O(nm) total time. □
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4.3 Implications for the p-Center Problem
The p-Center problems asks for a vertex set C such that |C| ≤ p and the eccentricity
of C is minimal. It is known (see, e. g., [14]) that the p-Center problem and r-Domination
problem are closely related. Indeed, one can solve each of these problems by solving
the other problem a logarithmic number of times. Lemma 4.17 below generalises this
observation. Informally, it states that we are able to find a +ϕ-approximation for the
p-Center problem if we can find a good (r + ϕ)-dominating set.

Lemma 4.17. For a given graph G, let Dr be an optimal (connected) r-dominating set
and Cp be an optimal (connected) p-center. If, for some non-negative integer ϕ, there
is an algorithm to compute a (connected) (r + ϕ)-dominating set D with |D| ≤ |Dr|
in O

(
T (G)

)
time, then there is an algorithm to compute a (connected) p-center C

with ecc(C) ≤ ecc(Cp) + ϕ in O
(
T (G) logn

)
time.

Proof. Let A be an algorithm which computes a (connected) (r+ϕ) dominating set D =
A(G, r) for G with |D| ≤ |Dr| in O

(
T (G)

)
time. Then, we can compute a (connected)

p-center for G as follows. Make a binary search over the integers i ∈ [0, n]. In each
iteration, set ri(u) = i for each vertex u of G and compute the set Di = A(G, ri). Then,
increase i if |Di| > p and decrease i otherwise. Note that, by construction, ecc(Di) ≤ i+ϕ.
Let D be the resulting set, i. e., out of all computed sets Di, D is the set with minimal i
for which |Di| ≤ p. It is easy to see that finding D requires at most O

(
T (G) logn

)
time.

Clearly, Cp is a (connected) r-dominating set for G when setting r(u) = ecc(Cp) for
each vertex u of G. Thus, for each i ≥ ecc(Cp), |Di| ≤ |Cp| ≤ p and, hence, the binary
search decreases i for next iteration. Therefore, there is an i ≤ ecc(Cp) such that D = Di.
Hence, |D| ≤ |Cp| and ecc(D) ≤ ecc(Cp) + ϕ. □

From Lemma 4.17, the results in Table 4.1 and Table 4.2 follow immediately.

Table 4.1. Implications of our results for the p-Center problem.

Approach Approx. Time
Layering Partition +∆ O(m logn)
Tree-Decomposition +ρ O(nm logn)

Table 4.2. Implications of our results for the Connected p-Center problem.

Approach Approx. Time
Layering Partition +2∆ O(mα(n) log ∆ logn)
Tree-Decomposition + min(5ρ, 3λ) O(nm logn)

Theorem 4.5 below shows that we can slightly improve the result for the p-Center
problem when using a layering partition.
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Theorem 4.5. For a given graph G, a +∆-approximation for the p-Center problem can
be computed in linear time.

Proof. First, create a layering partition T of G. Second, find an optimal p-center S
for T . Third, create a set S by picking an arbitrary vertex of G from each cluster in S.
All three steps can be performed in linear time, including the computation of S (see [54]).

Let C be an optimal p-center for G. Note that, by Lemma 2.6 (page 7), C also induces
a p-center for T . Therefore, because S induces an optimal p-center for T , Lemma 2.6
(page 7) implies that, for each vertex u of G,

dG(u,C) ≤ dG(u, S) ≤ dT (u,S) + ∆ ≤ dT (u,C) + ∆ ≤ dG(u,C) + ∆. □
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Bandwidth and Line-Distortion⋆

Consider a given graph G = (V,E). Then, an injective function f : V → N is called
layout of G. The bandwidth of a layout f , denoted as bw(f), is defined as maximum
stretch of any edge, i. e., bw(f) = maxuv∈E

∣∣f(u) − f(v)
∣∣. Additionally, the bandwidth of

a graph G, denoted as bw(G), is defined as the minimum bandwidth of all layouts of G.
Accordingly, the bandwidth problem asks, for a given graph G = (V,E), to find a layout f
with minimum bandwidth.

A non-contractive embedding f of G is a layout f of G with the additional requirement
that, for all vertices u and v, d(u, v) ≤

∣∣f(u)−f(v)
∣∣. The distortion of such an embedding f

is the smallest integer k such that
∣∣f(u) − f(v)

∣∣ ≤ k · d(u, v) for all edges uv of G. The
minimum line-distortion of a graph G, denoted as ld(G), is defined as the minimum
distortion of all non-contractive embeddings of G. Accordingly, the line-distortion problem
asks, for a given graph G, to find an embedding f with minimum distortion.

Both problems may appear to be closely related to each other. The only difference
between the two parameters is that a minimum distortion embedding has to be non-
contractive whereas there is no such restriction for bandwidth. It is known that bw(G) ≤
ld(G) for every connected graph G [62]. However, the bandwidth and the minimum
line-distortion of a graph can be very different. For example, a cycle of length n has
bandwidth 2, whereas its minimum line-distortion is exactly n− 1 [62].

Computing a minimum distortion embedding of a given graph G into a line ℓ was
recently identified as a fundamental algorithmic problem with important applications in
various areas of computer science, like computer vision [89], as well as in computational
chemistry and biology (see [63, 64]).

In this chapter, we investigate possible connections between the line-distortion, band-
width, and the path-length of a graph. We show that, for every graph G, pl(G) ≤ ld(G)
and pb(G) ≤ ⌈ld(G)/2⌉ hold. Additionally, we show that, for every class of graphs
with path-length bounded by a constant, there is an efficient constant-factor approxi-
mation algorithm for the minimum bandwidth problem. Furthermore, we demonstrate
that, for graphs with path-length bounded by a constant, there is an efficient constant-
factor approximation algorithm for the minimum line-distortion problem. In the last
section of this chapter, we give a linear time 6-approximation algorithm for the minimum
line-distortion problem and a linear time 4-approximation algorithm for the minimum
bandwidth problem for AT-free graphs.

⋆ Results from this chapter have been published partially at SWAT 2014, Copenhagen, Denmark [38],
and in Algorithmica [39].
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5.1 Existing Results

Bandwidth is known to be one of the hardest graph problems; it is NP-hard even for
very simple graphs like caterpillars of hair-length at most 3 [75], and it is hard to
approximate by a constant factor even for trees [11] and caterpillars with arbitrary
hair-lengths [46]. Polynomial-time algorithms for the exact computation of bandwidth are
known for very few graph classes, including bipartite permutation graphs [60] and interval
graphs [66, 70, 87]. Constant-factor approximation algorithms are known for AT-free
graphs [67] and convex bipartite graphs [84]. Recently, Golovach et al. [57] showed
also that the bandwidth minimization problem is Fixed Parameter Tractable on AT-free
graphs by presenting an n2O(k log k) time algorithm. For general (unweighted) graphs, the
minimum bandwidth can be approximated to within a factor of O

(
log3.5 n

)
[50]. For

trees and chordal graphs, the minimum bandwidth can be approximated to within a
factor of O

(
log2.5 n

)
[58]. For caterpillars, the minimum bandwidth can be approximated

to within a factor of O(logn/ log logn) [51].
Table 5.1 and Table 5.2 summarise the results mentioned above.

Table 5.1. Existing solutions for calculating bandwidth.

Graph Class Solution Quality Run Time
AT-free optimal n2O(k log k) [57]

2-approx. O(nm) [67]
4-approx. O(m+ n logn) [67]

convex bipartite 2-approx. O
(
n log2 n

)
[84]

4-approx. O(n) [84]
bipartite permutation optimal O

(
n4 logn

)
[60]

interval optimal O
(
n log2 n

)
[87]

chordal O
(
log2.5 n

)
-approx. polynomial [58]

caterpillars O(logn/ log logn) polynomial [51]

Table 5.2. Existing hardnes results for calculating bandwidth.

Graph Class Result
caterpillars (hair-length at most 3) NP-hard [75]
caterpillars hard to approximate by a constant factor [46]
trees hard to approximate by a constant factor [11]
convex bipartite NP-hard [84]

In [18], Bădoiu et al. showed that the line-distortion problem is hard to approximate
within a constant factor. They gave an exponential-time exact algorithm and a polynomial-
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time O
(
n1/2

)
-approximation algorithm for arbitrary unweighted input graphs, along with

a polynomial-time O
(
n1/3

)
-approximation algorithm for unweighted trees. In another

paper, Bădoiu et al. [17] showed that the problem is hard to O
(
n1/12

)
-approximate, even

for weighted trees. They also gave a better polynomial-time approximation algorithm for
general weighted graphs, along with a polynomial-time algorithm that approximates the
minimum line-distortion k embedding of a weighted tree by a factor that is polynomial
in k.

Fast exponential-time exact algorithms for computing the line-distortion of a graph
were proposed in [52, 53]. Fomin et al. [53] showed that a minimum distortion embedding
of an unweighted graph into a line can be found in time 5n+o(n). Fellows et al. [52]
gave an O

(
nk4(2k + 1)2k

)
time algorithm that for an unweighted graph G and integer k

either constructs an embedding of G into a line with distortion at most k, or concludes
that no such embedding exists. They extended their approach also to weighted graphs
obtaining an O

(
nk4W (2k + 1)2kW

)
time algorithm, where W is the largest edge weight.

Thus, the problem of minimum distortion embedding of a given graph G into a line ℓ is
Fixed Parameter Tractable.

Recently, Heggernes et al. [61, 62] initiated the study of minimum distortion em-
beddings into a line of specific graph classes. In particular, they gave polynomial-time
algorithms for the problem on bipartite permutation graphs and on threshold graphs [62].
Furthermore, Heggernes et al. [61] showed that the problem of computing a minimum
distortion embedding of a given graph into a line remains NP-hard even when the input
graph is restricted to a bipartite, cobipartite, or split graph, implying that it is NP-hard
also on chordal, cocomparability, and AT-free graphs. They also gave polynomial-time
constant-factor approximation algorithms for split and cocomparability graphs.

Table 5.3 and Table 5.4 summarise the results mentioned above.

Table 5.3. Existing solutions for calculating the minimum distortion.

Graph Class Solution Quality Run Time
trees (unweighted) O

(
n1/3

)
-approx. polynomial [18]

trees (weighted) kO(1)-approx. polynomial [17]
general (unweighted) optimal 5n+o(n) [53]
general optimal O

(
nk4(2k + 1)2k

)
[52]

bipartite permutation optimal O
(
n2)

[62]
threshold graphs optimal linear [62]
split 6-approx. linear [61]
cocomparability 6-approx. O

(
n log2 n+m

)
[61]
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Table 5.4. Existing hardnes results for calculating the minimum distortion.

Graph Class Result
general O(1)-approximation is NP-hard [18]
trees (weighted) Hard to O

(
n1/12

)
-approximate [17]

bipartite NP-hard [61]
cobipartite NP-hard [61]
split NP-hard [61]

5.2 k-Dominating Pairs
A pair of vertices x and y of a graph G is called a k-dominating pair if every path
between x and y has eccentricity at most k. It is known that every AT-free graph has a
1-dominating pair [24].

In this section, we investigate the relation of k-dominating pairs with the path-length
and line-distortion of a graph. Additionally, we present approaches to determine if a
given graph contains a k-domination pair.

5.2.1 Relation to Path-Length and Line-Distortion
Lemma 5.1. Every graph G with pl(G) ≤ λ has a λ-dominating pair.

Proof. Consider a path-decomposition P =
{
X1, . . . , Xq

}
of length pl(G) ≤ λ of G.

Consider any two vertices x ∈ X1 and y ∈ Xq and a path P between them in G.
Necessarily, by properties of path decompositions, every path of G connecting the vertices
x and y has a vertex in every bag of P. Hence, as each vertex v of G belongs to some
bag Xi of P, there is a vertex u ∈ P with u ∈ Xi and, thus, d(v, u) ≤ λ. □

Next, we show that the line-distortion of a graph G gives an upper bound on the
minimum k for which G contains a k-dominating pair.

Lemma 5.2. Every graph G with ld(G) ≤ λ has a
⌊

λ
2

⌋
-dominating pair.

Proof. Let f be an optimal line embedding for G = (V,E). This embedding has a first
vertex v1 and a last vertex vn, i. e., for all u ∈ V , f(v1) ≤ f(u) ≤ f(vn). Let u be an
arbitrary vertex of G and P an arbitrary path from v1 to vn in G. If u is not on this
path, there is an edge vivj of P with f(vi) < f(u) < f(vj). Without loss of generality,
let f(u) − f(vi) ≤ f(vj) − f(u). Thus, by definition of line-distortion, we can say that

f(u) − f(vi) ≤
⌊
f(vj) − f(vi)

2

⌋
≤

⌊
λ

2

⌋
.

Therefore, each vertex u of G is in distance at most
⌊

λ
2

⌋
to each path from v1 to vn, i. e.,

(v1, vn) is a
⌊

λ
2

⌋
-dominating pair. □
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Note that the difference between both factors can be arbitrary large. The complete
graph Kn has line-distortion n− 1. However, each vertex pair is a 1-dominating pair.

5.2.2 Determining a k-Dominating Pair

In this subsection, we present a polynomial time algorithm to determine if a given graph
contains a k-dominating pair. Additionally, we show that, in a graph with path-length λ,
one can find a 2λ-dominating pair in linear time.

Consider a k-dominating pair (x, y) and an arbitrary vertex w. By definition, each
path P from x to y is in distance at most k to w, i. e., P ∩Nk[w] ̸= ∅. Therefore, we get
the following observation.

Observation 5.1. A pair of vertices x and y is a k-dominating pair if and only if, for
every vertex w ∈ V \

(
Nk[x] ∪Nk[y]

)
, the disk Nk[w] separates x and y.

Based on Observation 5.1, Algorithm 5.1 below determines if a given graph contains
a k-dominating pair for a given k. The idea is to (i) compute the connected components
of G−Nk[v] for each v and (ii) iterate over all pairs (x, y) and check, for each vertex w
with sufficiently large distance to x and y, if x and y are in different connected components
of G−Nk[w]. If this is the case, x and y form a dominating pair.

Algorithm 5.1: Determines if a given graph contains a k-dominating pair.
Input: A graph G = (V,E) and a non-negative integer k.
Output: A k-dominating pair (x, y) if such a pair exists in G.

1 Determine the pairwise distances of all vertices.
2 Create an empty n× n matrix M .
3 For Each v ∈ V

4 Determine the connected components of G−Nk[v].
5 Label each vertex x in G−Nk[v] with its connected component and store this

label in M(v, x). (Thus, M(v, x) is the label of the connected component of
vertex x in G−Nk[v].)

6 For Each vertex pair (x, y)
7 If for each w ∈ V with max

{
d(x,w), d(y, w)

}
> k, M(w, x) ̸= M(w, y) Then

8 Output (x, y) and Stop.

Theorem 5.1. Given a graph G and an integer k, Algorithm 5.1 determines if G

contains a k-dominating pair (x, y) in O
(
n3)

time.

Proof. By Observation 5.1, (x, y) is a k-dominating pair if, for each vertex w ∈ V \(
Nk[x] ∪Nk[y]

)
, x and y are in different connected components of G − Nk[w]. That

is, M(w, x) ̸= M(w, y). Clearly, w /∈
(
Nk[x] ∪Nk[y]

)
if and only if the larger of d(x,w)
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and d(y, w)is strictly larger than k. Therefore, line 7 is successful if and only if (x, y) is a
dominating pair.

The pairwise distances of all vertices as well as the matrix M can easily be computed
in O

(
n(n+m)

)
time by performing a BFS on each vertex. Because the pairwise distances

are known, it can be checked in constant time for a vertex pair (x, y) and a vertex w

if max
{
d(x,w), d(y, w)

}
> k and M(w, x) ̸= M(w, y). Therefore, the algorithm runs in

total O
(
n3)

time. □

By performing a binary search over k, we get the following result:

Corollary 5.1. There is a O
(
n3 logn

)
time algorithm that computes a k-dominating

pair with minimum k of a given graph.

In [69], Kratsch and Spinrad show that finding a dominating pair is essentially
as hard as finding a triangle in a graph. Thus, it is unlikely that there is a linear time
algorithm to find a dominating pair if it exists. Yet, by Lemma 5.1, one can search for
k-dominating pairs in dependence of the path-length of a graph. We do not know how to
find a k-dominating pair with k ≤ pl(G) for an arbitrary graph G in linear time. However,
we can prove the following weaker result which is useful in later sections. For this, recall
that a spread pair is a vertex pair (x, y) such that, for some vertex s, d(s, x) = ecc(s) and
d(x, y) = ecc(x).

Theorem 5.2. In a graph G, any spread pair is a 2 pl(G)-dominating pair.

Proof. Consider a path-decomposition P =
{
X1, X2, . . . , Xq

}
of G with length pl(G) = λ.

Let (x, y) be a spread pair and let s be a vertex of G such that d(s, x) = ecc(s). We claim
that (x, y) is a 2λ-dominating pair of G.

If there is a bag in P containing both s and x, then d(s, x) ≤ λ and, by the choice
of x, each vertex of G is within distance at most λ from s and, hence, within distance at
most 2λ from x. Evidently, in this case, (x, y) is a 2λ-dominating pair of G.

Assume now, without loss of generality, that x ∈ Xi and s ∈ Xl with i < l. Consider
an arbitrary vertex v of G that belongs to only bags with indices smaller than i. We show
that d(x, v) ≤ 2λ. As Xi separates v from s, a shortest path P of G between s and v must
have a vertex u in Xi. We have d(s, x) ≥ d(s, v) = d(s, u) + d(u, v) and, by the triangle
inequality, d(s, x) ≤ d(s, u) + d(u, x). Hence, d(u, v) ≤ d(u, x) and, since both u and x

belong to same bag Xi, d(u, x) ≤ λ. That is, d(x, v) ≤ d(x, u) + d(u, v) ≤ 2d(u, x) ≤ 2λ.
If d(x, y) ≤ 2λ then, by the choice of y, each vertex of G is within distance at most 2λ

from x and, hence, (x, y) is a 2λ-dominating pair of G. So, assume that d(x, y) > 2λ,
i. e., every bag of P that contains y has an index greater than i. Consider a bag Xj

containing y. We have i < j. Repeating the arguments of the previous paragraph, we
can show that d(y, v) ≤ 2λ for every vertex v that belongs to bags with indices greater
than j.
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Consider now an arbitrary path P of G connecting vertices x and y. By properties of
path-decompositions, P has a vertex in every bag Xh of P with i ≤ h ≤ j. Hence, for each
vertex v of G that belongs to a bag Xh with i ≤ h ≤ j, there is a vertex u ∈ P ∩Xh such
that d(v, u) ≤ λ. As d(v, x) ≤ 2λ for each vertex v from Xi′ with i′ < i and d(v, y) ≤ 2λ
for each vertex v from Xj′ with j′ > j, we conclude that P has eccentricity at most 2λ
in G. □

5.3 Bandwidth of Graphs with Bounded Path-Length

In this section, we show that there is an efficient algorithm which, for any graph G with
pl(G) = λ, produces a layout f with bandwidth at most O(λ) bw(G). Moreover, this
statement is true even for all graphs containing a shortest path with eccentricity λ. Recall
that a shortest path P of a graph G has eccentricity k in G if every vertex v of G is at
distance at most k from a vertex of P , i. e., d(v, P ) ≤ k.

We need the following “local density” lemma.

Lemma 5.3 (Räcke [82]). For each vertex v of an arbitrary graph G and each positive
integer r, ∣∣N r[v]

∣∣ − 1
2r ≤ bw(G).

The main result of this section is the following.

Theorem 5.3. For a given graph G and a given shortest path with eccentricity k in G,
a layout f with bandwidth at most (4k + 2) bw(G) can be found in linear time.

Proof. Let P = {x0, x1, . . . , xi, . . . , xj , . . . , xq} be a given shortest path with eccentricity k
in G = (V,E). Based on P , determine a partition X = {X1, X2, . . .} of V such that each
subset Xi induces a connected subgraph and v ∈ Xi implies d(v, xi) = d(v, P ). This can
be done by running a single BFS starting at P . Then, a vertex v is in the subset Xi if xi

is an ancestor of v in the resulting BFS-tree. Now, create a layout f of G by placing all
the vertices of Xi before all vertices of Xj , if i < j, and by placing the vertices within
each Xi in an arbitrary order. See Figure 5.1 for an illustration.

Clearly, computing X and f can be done in linear time if P is given.
We claim that this layout f has bandwidth at most (4k + 2) bw(G). Consider any

edge uv of G and assume u ∈ Xi and v ∈ Xj with i ≤ j. For this edge uv, we
have f(v) − f(u) ≤

∣∣∣⋃j
ℓ=iXℓ

∣∣∣ − 1. Since P is a shortest path with eccentricity k, we
also know that d(xi, xj) = j − i ≤ d(xi, u) + 1 + d(xj , v) ≤ 2k + 1. Consider a vertex xc

of P with c =
⌊
(i+ j)/2

⌋
, i. e., a middle vertex of the subpath of P between xi and xj .

Consider an arbitrary vertex w in Xℓ for i ≤ ℓ ≤ j. We know that, by triangle inequality,
d(xc, w) ≤ d(xc, xℓ) + d(xℓ, w), by definition of xc, d(xc, xℓ) ≤ ⌈2k + 1⌉/2, and, because
ecc(P ) ≤ k, d(xℓ, w) ≤ k. Thus, we get d(xc, w) ≤ 2k+ 1. In other words, for r := 2k+ 1,
the disk N r[xc] contains all vertices of ⋃j

ℓ=iXℓ and, hence,
∣∣N r[xc]

∣∣ ≥
∣∣∣⋃j

ℓ=iXℓ

∣∣∣. Applying
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XjXi

P . . .

[1, n] . . .

xi xj

u v

Xi Xj

Figure 5.1. Illustration to the proof of Theorem 5.3.

Lemma 5.3, we conclude f(v) − f(u) ≤
∣∣∣⋃j

ℓ=iXℓ

∣∣∣ − 1 ≤
∣∣N r[xc]

∣∣ − 1 ≤ 2(2k+ 1) bw(G) =
(4k + 2) bw(G). □

For a given graph G, one can find a shortest path with eccentricity k ≤ pl(G) in
O(n2m) time in the following way. Iterate over all vertex pairs of G. For each vertex
pair (x, y), pick a shortest (x, y)-path P and determine the eccentricity of P . Finally,
output the path P for which ecc(P ) is minimal. By Lemma 5.1, this minimum is at
most pl(G).

Alternatively, using Theorem 5.2, one can find a shortest path with eccentricity at
most 2 pl(G) in linear time. Therefore, Theorem 5.3 implies:

Corollary 5.2. For every graph G, a layout with bandwidth at most (4 pl(G) + 2) bw(G)
can be found in O(n2m) time and a layout with bandwidth at most (8 pl(G) + 2) bw(G)
can be found in O(n+m) time.

The above results did not require a path-decomposition of length pl(G) of a graph G
as input. We also avoided the construction of such a path-decomposition of G and
just relied on the existence of a shortest path in G with eccentricity k. If, however, a
path-decomposition with length λ of a graph G is given in advance together with G, then
a better approximation ratio for the minimum bandwidth problem on G can be achieved.

Theorem 5.4. If a graph G is given together with a path-decomposition of G of length λ,
then a layout f with bandwidth at most λ bw(G) can be found in O

(
n2 + n log2 n

)
time.

Proof. Let P =
{
X1, X2, . . . , Xq

}
be a path-decomposition of length λ of G = (V,E).

We form a new graph G+ = (V,E+) from G by adding an edge between a pair of
vertices u, v ∈ V if and only if u and v belong to a common bag in P. From this
construction, we conclude that G is a subgraph of G+ and G+ is a subgraph of Gλ.
Note that G+ is an interval graph: P gives a path-decomposition of G+ such that each
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bag Xi is a clique of G+. In [87], an O(n log2 n) time algorithm to compute a minimum
bandwidth layout of a graph is given. Let f be an optimal layout produced by that
algorithm for our interval graph G+. We claim that this layout f , when considered for G,
has bandwidth at most λ bw(G). Indeed, following [67], we have maxuv∈E |f(u) − f(v)| ≤
maxuv∈E+ |f(u) − f(v)| = bw

(
G+)

≤ bw
(
Gλ

)
≤ λ bw(G). Clearly, raising a graph to

the λ-th power can only increase its bandwidth by a factor of λ. □

As shown in Lemma 3.2 (page 11), one can compute, for a given graph G, a path-
decomposition with length at most 2 pl(G) in O(n3) time. Combining this with Theo-
rem 5.4, it follows:

Corollary 5.3. For a given graph G, a layout f with bandwidth at most 2 pl(G) bw(G)
can be found in O(n3) time.

Summarising the results of this section, we have the following interesting conclusion.

Theorem 5.5. For every class of graphs with path-length bounded by a constant, there is
an efficient constant-factor approximation algorithm for the minimum bandwidth problem.

In Section 5.5, using some additional structural properties of AT-free graphs, we give
a linear time 4-approximation algorithm for the minimum bandwidth problem for AT-free
graphs. This result reproduces an approximation result by Kloks et al. [67] with a better
runtime.

5.4 Path-Length and Line-Distortion

In this section, we first show that the line-distortion of a graph gives an upper bound on
its path-length and then demonstrate that, if the path-length of a graph G is bounded by
a constant, there is an efficient constant-factor approximation algorithm for the minimum
line-distortion problem on G.

5.4.1 Bound on Line-Distortion Implies Bound on Path-Length

In this subsection, we show that the path-length of an arbitrary graph never exceeds its
line-distortion. The following inequalities are true.

Theorem 5.6. For an arbitrary graph G, pl(G) ≤ ld(G), pw(G) ≤ ld(G), and pb(G) ≤
⌈ld(G)/2⌉.

Proof. It is known (see, e. g., [62]) that every connected graph G has a minimum distortion
embedding f into a line ℓ (called a canonic embedding) such that |f(x) − f(y)| = d(x, y)
for every two vertices x and y of G that are placed next to each other in ℓ by f . Assume,
in what follows, that f is such a canonic embedding and let k := ld(G).
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Consider the following path-decomposition ofG created from f . For each vertex v, form
a bag Bv consisting of all vertices of G which are placed by f in the interval [f(v), f(v)+k]
of a line ℓ. Order these bags with respect to the left ends of the corresponding intervals.
Evidently, for every vertex v ∈ V , v ∈ Bv, i. e., each vertex belongs to a bag. More
generally, a vertex u belongs to a bag Bv if and only if f(v) ≤ f(u) ≤ f(v) + k. Since
ld(G) = k, for every edge uv of G, |f(u) − f(v)| ≤ k holds. Hence, both ends of the
edge uv belong either to the bag Bu (if f(u) < f(v)) or to the bag Bv (if f(v) < f(u)).
Now, consider three bags Ba, Bb, and Bc with f(a) < f(b) < f(c) and a vertex v of G
that belongs to Ba and Bc. We have f(a) < f(b) < f(c) ≤ f(v) ≤ f(a) + k < f(b) + k.
Hence, v belongs to Bb as well.

It remains to show that each bag Bv, v ∈ V , has in G diameter at most k, radius at
most ⌈k/2⌉, and cardinality at most k+1. Indeed, for any two vertices x, y ∈ Bv, we have
|f(x)−f(y)| ≤ k, i. e., d(x, y) ≤ |f(x)−f(y)| ≤ k. Furthermore, any interval [f(v), f(v)+
k] of length k can have at most k + 1 vertices of G as the distance between any two
vertices placed by f to this interval is at least 1 (|f(x) − f(y)| ≥ d(x, y) ≥ 1). Thus,
|Bv| ≤ k + 1 for every v ∈ V .

Now, consider the point pv := f(v)+⌊k/2⌋ in the interval [f(v), f(v)+k] of ℓ. Assume,
without loss of generality, that pv is between f(x) and f(y) which are the images of
two vertices x and y of G placed next to each other in ℓ by f . Let f(x) ≤ pv < f(y).
See Figure 5.2 for an illustration. Since f is a canonic embedding of G, there must
exist a vertex c on a shortest path between x and y such that d(x, c) = pv − f(x)
and d(c, y) = f(y) − pv = d(x, y) − d(x, c). We claim that, for every vertex w ∈ Bv,
d(c, w) ≤ ⌈k/2⌉ holds. Assume f(w) ≥ f(y) (the case when f(w) ≤ f(x) is similar).
Then, we have d(c, w) ≤ d(c, y) + d(y, w) ≤ (f(y) − pv) + (f(w) − f(y)) = f(w) − pv =
f(w) − f(v) − ⌊k/2⌋ ≤ k − ⌊k/2⌋ ≤ ⌈k/2⌉. □

f(v) f(x) f(y)pv f(v) + k

Bv

Figure 5.2. Illustration to the proof of Theorem 5.6.

It should be noted that the difference between the path-length and the line-distortion
of a graph can be very large. The graph Kn has path-length 1, whereas the line-distortion
of Kn is n − 1. Note also that the bandwidth and the path-length of a graph do not
bound each other. The bandwidth of Kn is n− 1 while its path-length is 1. On the other
hand, the path-length of cycle C2n is n while its bandwidth is 2.

5.4.2 Line-Distortion of Graphs with Bounded Path-Length
In this subsection, we show that there is an efficient algorithm that, for any graph G with
pl(G) ≤ λ, produces an embedding f of G into a line with distortion at most (8λ+2) ld(G).
This statement is true even for all graphs with a shortest path with eccentricity λ.
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We need the following simple “local density” lemma.

Lemma 5.4. For every vertex set S ⊆ V of an arbitrary graph G = (V,E),

|S| − 1 ≤ diam(S) ld(G).

Proof. Consider an embedding f∗ of G into a line ℓ with distortion ld(G). Let a and b be
the leftmost and the rightmost, respectively, vertices of S in ℓ, i. e., f∗(a) ≤ f∗(v) ≤ f∗(b)
for all v ∈ S. Consider a shortest path P in G from a to b. Since, for each edge xy of G,
|f∗(x) − f∗(y)| ≤ ld(G) holds, we get f∗(b) − f∗(a) ≤ d(a, b) ld(G) ≤ diam(S) ld(G). On
the other hand, since all vertices of S are mapped to points of ℓ between f∗(a) and f∗(b),
we have f∗(b) − f∗(a) ≥ |S| − 1. □

The main result of this section is the following.

Theorem 5.7. Every graph G with a shortest path of eccentricity k admits an embed-
ding f of G into a line with distortion at most (8k + 2) ld(G). If a shortest path of G of
eccentricity k is given in advance, then such an embedding f can be found in linear time.

Proof. Let P = {x0, x1, . . . , xi, . . . , xj , . . . , xq} be a shortest path of G of eccentricity k.
Build a BFS(P,G)-tree T of G (i. e., a Breadth-First-Search tree of G started at path P ).
Denote by {X0, X1, . . . , Xq} the decomposition of the vertex set V of G obtained from T

by removing the edges of P . That is, Xi is the vertex set of a subtree (branch) of T
growing from vertex xi of P . See Figure 5.3a for an illustration. Since the eccentricity
of P is k, we have dG(v, xi) ≤ k for every i ∈ {1, . . . , q} and every v ∈ Xi.

We define an embedding f of G into a line ℓ by performing a preorder traversal of
the vertices of T starting at vertex x0 and visiting first the vertices of Xi and then the
vertices of Xi+1 for each i ∈ {0, . . . , q − 1}. We place the vertices of G on the line ℓ in
that order, and also, for each i ∈ {0, . . . , q − 1}, we leave a space of length dT (vi, vi+1)
between any two vertices vi and vi+1 placed next to each other (this can be done during
the preorder traversal). Alternatively, f can be defined by creating a twice around tour of
the tree T , which visits vertices of Xi prior to vertices of Xi+1, i = 0, . . . , q − 1, and then
returns to x0 from xq along edges of P . Following vertices of T from x0 to xq as shown
in Figure 5.3b (i. e., using upper part of the twice around tour), f(v) can be defined as
the first appearance of vertex v in that subtour.

We claim that f is a (non-contractive) embedding with distortion at most (8k+2) ld(G).
It is sufficient to show that dG(x, y) ≤ |f(x) − f(y)| for every two vertices of G that are
placed by f next to each other in ℓ and that |f(v) − f(u)| ≤ (8k + 2) ld(G) for every
edge uv of G (see, e. g., [18, 62]).

Let x and y be two arbitrary vertices of G that are placed by f next to each other
in ℓ. By construction, we know that |f(x) − f(y)| = dT (x, y). Since dG(x, y) ≤ dT (x, y),
we get also dG(x, y) ≤ |f(x) − f(y)|, i. e., f is non-contractive.

Consider now an arbitrary edge uv of G and assume u ∈ Xi and v ∈ Xj (i ≤ j).
Note that dP (xi, xj) = j − i ≤ 2k + 1, since P is a shortest path of G and dP (xi, xj) =
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P
xixi−1 xi+1

Xi

(a) The decomposition {X0, X1, . . . , Xq} of
the vertex set V ofG.

P

ℓ
f(xi) f(xi+1)

(b) The upper part of the twice around tour
and an embedding f obtained from following
the upper part of the twice around tour.

Figure 5.3. Illustration to the proof of Theorem 5.7.

dG(xi, xj) ≤ dG(xi, u) + 1 + dG(xj , v) ≤ 2k + 1. Set S = ⋃j
h=iXh. For any two

vertices x, y ∈ S, dG(x, y) ≤ dG(x, P ) + 2k + 1 + dG(y, P ) ≤ k + 2k + 1 + k = 4k + 1
holds. Hence, diamG(S) ≤ 4k + 1. Consider subtree TS of T induced by S. Clearly,
TS is connected and has |S| − 1 edges. Therefore, f(v) − f(u) ≤ 2(|S| − 1) since
each edge of TS contributes to f(v) − f(u) at most 2 units. Now, by Lemma 5.4,
f(v) − f(u) ≤ 2(|S| − 1) ≤ 2 diamG(S) ld(G) ≤ (8k + 2) ld(G). □

Recall that, by Lemma 5.1, each graph G with pl(G) ≤ λ has a λ-dominating pair
and, hence, a shortest path with eccentricity λ. Such a path can easily be found in
O

(
n2m

)
time by iterating over all vertex pairs. Additionally, by Theorem 5.2, one can

find a shortest path with eccentricity at most 2λ in linear time. Thus, Theorem 5.7
implies:

Corollary 5.4. For a given graph G, one can compute an embedding of G into a
line with distortion at most

(
8 pl(G) + 2

)
ld(G) in O

(
n2m

)
time and with distortion at

most
(
16 pl(G) + 2

)
ld(G) in O(n+m) time.

Thus, we have the following interesting conclusion.

Theorem 5.8. For every class of graphs with path-length bounded by a constant, there
is an efficient constant-factor approximation algorithm for the minimum line-distortion
problem.

Using the inequality pl(G) ≤ ld(G) in Corollary 5.4 once more, we reproduce a result
of [18].

Corollary 5.5 (Bădoiu et al. [18]). For every graph G with ld(G) = c, an embedding
into a line with distortion at most O

(
c2)

can be found in polynomial time.
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It should be noted that, since the difference between the minimum eccentricity of a
shortest path and the line-distortion of a graph can be very large (close to n), the result
in Theorem 5.7 seems to be stronger. In Chapter 6 (page 68), we investigate the problem
of finding a shortest path with minimum eccentricity in a given graph.

5.5 Approximation for AT-Free Graphs
From Theorem 5.8 and results from Section 3.3 (page 25), it follows already that there is an
efficient constant-factor approximation algorithm for the minimum line-distortion problem
on such particular graph classes as permutation graphs, trapezoid graphs, cocomparability
graphs as well as AT-free graphs. Recall that, for arbitrary graphs, the minimum line-
distortion problem is hard to approximate within a constant factor [18]. Furthermore,
the problem remains NP-complete even when the input graph is restricted to a chordal,
cocomparability, or AT-free graph [61]. Polynomial-time constant-factor approximation
algorithms were known only for split and cocomparability graphs; Heggernes and
Meister [61] gave efficient 6-approximation algorithms for both graph classes. As far as
we know, for AT-free graphs (the class which contains all cocomparability graphs), no
prior efficient approximation algorithm was known.

In this section, we give a better approximation algorithm for all AT-free graphs
using additional structural properties of AT-free graphs; more precisely, we give a 6-
approximation algorithm that runs in linear time.

Theorem 5.9. There is a linear time algorithm to compute an embedding with distortion
at most 6 ld(G) for a given AT-free graph G = (V,E).

Proof. Let s be an arbitrary vertex of G, let v be the vertex last visited (numbered 1)
by a LexBFS starting at s, and let w be the vertex last visited by a LexBFS starting
at v. One can compute, in linear time, a shortest path P = {v = v0, v1, . . . , vk = w}
from v to w such that, for all u ∈ L

(v)
i with i ≥ 1, uvi ∈ E or uvi−1 ∈ E [67]. Based

on P , we partition every layer L(v)
i in three sets: {vi}, Xi =

{
x

∣∣∣ x ∈ L
(v)
i , vix ∈ E

}
, and

Xi = L
(v)
i \

(
{vi} ∪Xi

)
. See Figure 5.4 for an illustration.

Note that, due to Lemma 2.12 (page 9) the diameter of each layer L(v)
i is at most 2,

i. e., for each x, y ∈ L
(v)
i , d(x, y) ≤ 2. The embedding f places vertices of G into a line ℓ in

the following order:
〈
v0, . . . , vi−1, Xi, Xi, vi, Xi+1, Xi+1, vi+1, . . . , vk

〉
. Between every two

vertices x and y placed next to each other on the line ℓ, to guarantee non-contractiveness,
f leaves a space of length d(x, y) (which is either 1, or 2).

Now, we show that f approximates the minimum line-distortion of G. Since a layer L(v)
i

only contains vertices with distance i to v, there is no edge xy with x ∈ L
(v)
i−1 and y ∈ L

(v)
i+1.

Therefore, for all xy ∈ E with x, y ∈ L
(v)
i ∪L(v)

i+1, |f(x) − f(y)| < |f(vi−1) − f(vi+1)|. Let
S = {vi−1, vi, vi+1} ∪ Xi ∪ Xi ∪ Xi+1 ∪ Xi+1. Then, counting how many vertices are
placed by f between f(vi−1) and f(vi+1) and the distance in G between vertices placed
next to each other, we get |f(x) − f(y)| ≤ 2|S| − 1.
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P

vi

vi+1

vi−1

Xi+1

Xi

Xi−1

Xi+1

Xi

Xi−1

Li+1

Li

Li−1

Figure 5.4. Illustration to the proof of Theorem 5.9. Layering of an AT-free graph.

Claim 1. diam(S) ≤ 3

Proof (Claim). Note that, by definition of S, S = L
(v)
i+1∪L(v)

i ∪{vi−1}. Due to Lemma 2.12
(page 9), the diameter of L(v)

i+1 and L(v)
i is at most 2. Also, each vertex x ∈ L

(v)
i+1 is adjacent

to a vertex y ∈ L
(v)
i . Therefore, the diameter of L(v)

i+1 ∪ L
(v)
i is at most 3. It remains to

show that, for each x ∈ Xi+1 ∪ Xi+1, d(vi−1, x) ≤ 3. If x ∈ Xi+1, then there is a path
{x, vi+1, vi, vi−1}. If x ∈ Xi+1, then there is a path {x, vi, vi−1}. ♢

From Claim 1 and Lemma 5.4, it follows that |f(x) − f(y)| ≤ 2|S| − 1 ≤ 6 ld(G) for
all xy ∈ E. □

Algorithm 5.2 formalises the method described above.

Algorithm 5.2: A 6-approximation algorithm for the minimum line-distortion of
an AT-free graph.
Input: An AT-free graph G = (V,E).
Output: An embedding f of G into a line.

1 Compute the distance layers Lv
i a path P = {v0, . . . , vk} such that, for all u ∈ Lv

i

with i ≥ 1, uvi ∈ E or uvi−1 ∈ E (see [67]).
2 Partition each layer Li into three sets: {vi}, Xi = {x | x ∈ Li, vix ∈ E }, and

Xi = Li \
(
{vi} ∪Xi

)
.

3 Create an embedding f by placing the vertices of G into a line ℓ in the
order

〈
v0, . . . , vi−1, Xi, Xi, vi, Xi+1, Xi+1, vi+1, . . . , vk

〉
.

4 Between every two consecutive vertices x and y on the line ℓ, leave a space of
length d(x, y).

5 Output f .

Note that S ⊆ N2[vi]. Therefore, it follows from Lemma 5.3 that the order in which
the vertices of G are placed by f into the line ℓ gives also a layout of G with bandwidth
at most 4 bw(G). This reproduces an approximation result by Kloks et al. [67]. Their
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algorithm has complexity O(m+ n logn) for a graph, since it involves an O(n logn) time
algorithm by Assmann et al. [4] to find an optimal layout for a caterpillar with hair-length
at most 1.

Corollary 5.6 (Kloks et al. [67]). There is a linear time algorithm to compute a 4-
approximation of the minimum bandwidth of an AT-free graph.

Combining Theorem 3.13 (page 26) and Theorem 5.4, we also obtain the following
result by Kloks et al. [67] as a corollary.

Corollary 5.7 (Kloks et al. [67]). There is an O
(
m + n log2 n

)
time algorithm to

compute a 2-approximation of the minimum bandwidth of an AT-free graph.
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Chapter 6

The Minimum Eccentricity Shortest
Path Problem⋆

In Section 5.3 (page 59) and Section 5.4 (page 61), we use the path-length of a graph to
obtain a shortest path P with eccentricity λ and then use P to calculate approximations
for the Bandwidth and Line-Distortion problems. However, after determining P , we do
not use the bounded path-length again. This leads to the question if we can directly
determine such a path. We call this the Minimum Eccentricity Shortest Path problem,
MESP for short.

Definition 6.1. For a given a graph G, the Minimum Eccentricity Shortest Path problem
asks to find a shortest path P such that, for each shortest path Q, ecc(P ) ≤ ecc(Q).

Note that our Minimum Eccentricity Shortest Path problem is close but different
from the Central Path problem in graphs introduced in [85]. It asks, for a given graph G,
to find a not necessarily shortest path P such that any other path of G has eccentricity
at least ecc(P ). The Central Path problem generalizes the Hamiltonian Path problem
and, therefore, is NP-complete even for chordal graphs [76]. Our problem, however, is
polynomial time solvable for chordal graphs (see Corollary 6.7).

In this chapter, we investigate the Minimum Eccentricity Shortest Path problem. We
analyse the hardness of the problem, show algorithms to compute an optimal solution,
and present approximation algorithms differing in quality and runtime. This is done for
general graphs as well as for special graph classes. Additionally, we show that, if a shortest
path with eccentricity k is given, a k-dominating set can be found in pseudo-polynomial
time.

6.1 Hardness

In this section, we show that finding a minimum eccentricity shortest path is NP-hard,
even if restricted to planar bipartite graphs with maximum vertex-degree 3. Additionally,
we show that the problem is W[2]-hard for sparse graphs. To do that, we define the
decision version of the Minimum Eccentricity Shortest Path problem, named k-ESP,
as follows: Given a graph G and an integer k, does G contain a shortest path P with
eccentricity at most k?

⋆ Results from this chapter have been published partially at WADS 2015, Victoria, Canada [41],
at WG 2015, Munich, Germany [40], and in the Journal of Graph Algorithms and Applications [42].
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Theorem 6.1. The decision version of the Minimum Eccentricity Shortest Path problem
is NP-complete.

Proof. To prove Theorem 6.1, we use a version of 3-SAT which is called Planar Monotone
3-SAT. It was introduced by de Berg and Khosravi in [8]. Consider an instance of
3-SAT given in CNF with the variables P = {p1, . . . , pn} and the clauses C = {c1, . . . , cm}.
A clauses is called positive if it consists only of positive variables (i. e., pa ∨ pb ∨ pc) and is
called negative if it consists only of negative variables (i. e., ¬pa ∨ ¬pb ∨ ¬pc). Consider
the bipartite graph G = (P, C, E) where picj ∈ E if and only if cj contains pi or ¬pi. An
instance of 3-SAT is planar monotone if each clause is either positive or negative and
there is a planar embedding for G such that all variables are on a (horizontal) line L, all
positive clauses are above L, all negative clauses are below L, and no edge is crossing L.
Planar Monotone 3-SAT is NP-complete [8].

Now, assume that we are given an instance I of Planar Monotone 3-SAT with the
variables P = {p1, . . . , pn} and the clauses C = {c1, . . . , cm}. Also, let k = max{n,m}.
We create a graph G as shown in Figure 6.1. For each variable pi create two vertices,
one representing pi and one representing ¬pi. Create one vertex ci for every clause ci.
Additionally, create two vertices u0, un and, for each i with 0 ≤ i ≤ n, a vertex vi.
Connect each variable vertex pi and ¬pi with vi−1 and vi directly with an edge. Connect
each clause with the variables contained in it with a path of length k. Also connect v0
with u0 and vn with un with a path of length k.

Recall that, by definition of I, the corresponding bipartite graph G has a planar
embedding where all variables are on a line. Therefore, we can clearly achieve a planar
embedding for G when placing its vertices as shown in Figure 6.1.

. . .
u0 unv0 v1 vn−1 vn

p1

¬p1

pn

¬pn

c1 ci

cj cm

k k

Figure 6.1. Reduction from Planar Monotone 3-SAT to k-ESP. Illustration to the proof of Theorem 6.1.

Note that every shortest path in G not containing v0 and vn has an eccentricity larger
than k. Also, a shortest path from v0 to vn has length 2n (d(vi−1, vi) = 2, passing through
pi or ¬pi). Since k ≥ n, no shortest path from v0 to vn is passing through a vertex ci; in
this case the minimal length would be 2k+ 2. Additionally, note that, for all vertices in G
except the vertices which represent clauses, the distance to a vertex vi with 0 ≤ i ≤ n is
at most k.

We now show that I is satisfiable if and only if G has a shortest path with eccentricity k.
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First, assume I is satisfiable. Let f : P → {T, F} be a satisfying assignment for the
variables. As shortest path P , we choose a shortest path from v0 to vn. Thus, we have to
chose between pi and ¬pi. We chose pi if and only if f(pi) = T . Because I is satisfiable,
there is a pi for each cj such that either f(pi) = T and d(cj , pi) = k, or f(pi) = F and
d(cj ,¬pi) = k. Thus, P has eccentricity k.

Next, consider a shortest path P in G of eccentricity k. As mentioned above, P
contains either pi or ¬pi. Now, we define f : P → {T, F} as follows:

f(pi) =

T if pi ∈ P ,
F else, i. e. ¬pi ∈ P .

Because P has eccentricity k and only vertices representing a variable in the clause cj are
at distance k to vertex cj , f is a satisfying assignment for I. □

While the reduction works in principle for any version of SAT (given as CNF), choosing
Planar Monotone 3-SAT allows to construct a planar graph G.

Note that the created graph is bipartite. Set the colour of each vertex vi to black
and of each pj and ¬pj to white. For some vertex x on the shortest path from ci to pj

(or ¬pj), set the colour of x based on its distance to pj (or ¬pj), i. e., x is white if d(x, pi)
is even and black otherwise.

Additionally, V. B. Le1 pointed out that, by slightly modifying the created graph as
follows, it can be shown that the problem remains NP-complete even if the graph has
the maximum vertex-degree 3. First, increase k to k = max{2n− 1,m} and update all
distances in the graph accordingly. Therefore, 2k+2 > 4n−2. Then, replace each vertex vi

where 1 ≤ i ≤ n− 1 with three vertices v−
i , v′

i, and v+
i such that N(v−

i ) = {pi,¬pi, v
′
i},

N(v′
i) = {v−

i , v
+
i }, and N(v+

i ) = {pi+1,¬pi+1, v
′
i}. Note that a path from v0 to vn which,

for all i, passes through pi or ¬pi has length 4n− 2. This is still a shortest path because
each path from v0 to vn passing through some ci has length 2k + 2 > 4n− 2. Also, since
d(pi, pi+1) = 4, the graph remains bipartite. Next, to limit the degree of a vertex pi

(or ¬pi), instead of connecting it directly to all clauses containing it, make pi adjacent to
the root of a binary tree Ti with height ⌈log2 k⌉. Then, connect each clause containing pi

to a leaf of Ti using a path with length k− ⌈log2 k⌉ − 1 and, last, remove unused branches
of Ti. Because this does not effect planarity or colouring, we get:

Corollary 6.1. The decision version of the MESP problem remains NP-complete if
restricted to planar bipartite graphs with maximum vertex-degree 3.

We can slightly modify the MESP problem such that a start vertex s and an end
vertex t of the path are given. That is, for a given a graph G and two vertices s and t,
find a shortest (s, t)-path P such that, for each shortest (s, t)-path Q, ecc(P ) ≤ ecc(Q).
We call this the (s, t)-MESP problem. From the reduction above, it follows that the
decision version of this problem is NP-complete, too.

1University of Rostock, Germany
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Corollary 6.2. The decision version of the (s, t)-MESP problem is NP-complete, even
if restricted to planar bipartite graphs with maximum vertex-degree 3.

Note that the factor k in the reduction above depends on the input size. In [68], it
was already mentioned that, for k = 1, the problem can be solved in O

(
n3m

)
time by

modifying an algorithm given in [28]. There, the problem was called Dominating Shortest
Path problem. Therefore, it is an interesting question how hard MESP is if k is bounded
by a constant.

To answer this question, we show next that the problem is W[2]-hard in general and
for sparse graphs. Therefore, we do not expect that MESP is Fixed Parameter Tractable,
i. e., there is probably no algorithm that finds an optimal solution in f(k)nO(1) time.
In Section 6.2, we generalise the result from [68] to show that MESP can be solved in
pseudo-polynomial time.

Theorem 6.2. The Minimum Eccentricity Shortest Path problem is W[2]-hard.

Proof. To show W[2]-hardness, we make a parametrised reduction from the Dominating
Set problem which is known to be W[2]-complete [34].

Consider a given graph G = (V,E) with V = {v1, v2, . . . , vn} and a given k. Based
on G and k, we construct a graph H (containing G as subgraph) as follows. Start with
G and add k sets of vertices U1, U2, . . . , Uk with Ui =

{
ui

1, u
i
2, . . . , u

i
n

}
. For each j

with 1 ≤ j < k, make a join between Uj and Uj+1. Add the vertices s, s′, t, and t′ and
connect s with s′ and t with t′, respectively, with a path of length k. Additionally, make
s adjacent to all vertices in U1 and make t adjacent to all vertices in Uk. Connect each
vertex uj

i ∈ Uj with each vertex in NG[vi] with a path of length k for all j with 1 ≤ j ≤ k.
Figure 6.2 gives an illustration.

NG[vi]

. . . . . .s′ s t t′

uj
i

k k

k

U1 Uj Uk

G

Figure 6.2. Reduction from Dominating Set to k-ESP. Illustration to the graphH as constructed in the
proof of Theorem 6.2.

Because dH

(
s, s′) = dH

(
t, t′

)
= k, each shortest path in H not containing s and t has

an eccentricity larger than k. Also, a shortest path from s to t has length k+ 1, intersects
all sets Uj , and does not intersect V .
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First, assume that H has a shortest path P with eccentricity k. By definition
of P and construction of H, for every v ∈ V , there is a vertex uj

i ∈ P such that
dH

(
v, uj

i

)
= dH(v, P ) = k and, hence, v ∈ NG[vi]. Therefore, the set D =

{
vi ∈ V

∣∣∣
there is a j with uj

i ∈ P
}

is a dominating set for G with cardinality at most k.
Next, assume there is a dominating set D for G with cardinality at most k. Without

loss of generality, let D =
{
v1, v2, . . . , vk

}
. Then, we define P =

{
s, u1

1, u
2
2, . . . , u

k
k, t

}
. By

construction of H, each vertex v ∈ NG[vi] is at distance k to ui
i. Thus, because D is

a dominating set, there is a vertex ui
i ∈ P for each vertex v ∈ V with dH

(
v, ui

i

)
= k.

Therefore, P has eccentricity k in H. □

Note that the graph H constructed in the reduction above has at most O
(
kn2)

edges.
Thus, we can transform H into a sparse graph H ′ by simply adding Θ

(
kn2)

pendent
vertices which are adjacent to s. Clearly, H ′ has a shortest path with eccentricity k if
and only if H has a shortest path with eccentricity k. Thus, we get the following result.

Corollary 6.3. The Minimum Eccentricity Shortest Path problem remains W[2]-hard
when restricted to sparse graphs.

Later, Corollary 6.5 shows that MESP is Fixed Parameter Tractable for graphs with
bounded degree.

6.2 Computing an Optimal Solution

In this section, we investigate how to find an optimal solution for MESP. First, we present
a pseudo-polynomial time algorithm to solve MESP on general graphs. Then, we analyse
the problem for sparse graphs. Additionally, we present an approach to solve MESP for
tree-structured graphs and show that, for some graph classes, the problem is solvable in
polynomial time.

6.2.1 General Graphs

The next algorithm shows that the k-ESP problem remains polynomial for a fixed k.
Our algorithm is a generalisation of the algorithm mentioned in [68]. It is based on
Lemma 6.1 below. Informally, Lemma 6.1 states that, if a graph has a shortest path P

with eccentricity k starting at s, each layer L(s)
i is dominated by a subpath of P of length

at most 2k.

Lemma 6.1. Let P =
{
s = v0, v1, . . . , vl

}
be a shortest path with eccentricity k, vi ∈ L

(s)
i ,

and Pi,k =
{
vmax{0,i−k}, . . . , vmin{i+k,l}

}
. Then, L(s)

i ⊆ Nk[Pi,k].

Proof. Assume there is a vertex u ∈ L
(s)
i \Nk[Pi,k]. Consider any vertex vj ∈ P \ Pi,k.

By the definition of Pi,k it follows that |i− j| > k. Thus, because u ∈ L
(s)
i and vj ∈ L

(s)
j ,

d(vj , u) ≥ |i− j| > k. This contradicts with P having eccentricity k. □
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For Algorithm 6.1 below, we say a shortest path τ = {vi−k, . . . , vj} with i ≤ j ≤ i+ k

is a layer-dominating path for a layer L(s)
i if

• vl ∈ L
(s)
l for i− k ≤ l ≤ j,

• j < i+ k implies that there is no edge vjw ∈ E with w ∈ L
(s)
j+1, and

• Nk[τ ] ⊇ L
(s)
i with Nk[τ ] := ⋃j

l=i−k N
k[vl].

We say that a layer-dominating path σ = {vi−k, . . . , vj} for layer L(s)
i is compatible with

a layer-dominating path τ = {ui+1−k, . . . , uj′} for layer L(s)
i+1 if j′ − j ∈ {0, 1} and vl = ul

for i+ 1 − k ≤ l ≤ j. That is, σ and τ share a path of length j − i− 1 + k.

Algorithm 6.1: Determines if there is a shortest path of eccentricity at most k
starting at a given vertex s.
Input: A graph G = (V,E) and a positive integer k.
Output: A shortest path with eccentricity at most k if existent in G.

1 Calculate the layers L(s)
i = { v ∈ V | dG(s, v) = i } with 0 ≤ i ≤ eccG(s).

2 If eccG(s) ≤ 2k Then
3 For each shortest path P from s, determine if eccG(P ) ≤ k. In this case,

Return P . If there is no such P , then G does not contain a shortest path of
eccentricity at most k starting at s.

4 For i = k To eccG(s) − k

5 Create an empty vertex set V ′
i .

6 For Each layer-dominating path τ for layer L(s)
i

7 Add a vertex vτ , representing the path τ , to V ′
i .

8 For Each vτ ∈ V ′
eccG(s)−k

9 If Nk
G[τ ] ⊉ ⋃eccG(s)

j=eccG(s)−k L
(s)
j , remove vτ from V ′

eccG(s)−k.

10 Create a graph G′ = (V ′, E′) with V ′ = V ′
k ∪ · · · ∪ V ′

eccG(s)−k and
E′ = { vσvτ | σ is compatible with τ }.

11 G contains a shortest path of eccentricity at most k starting at s if and only if G′

contains a path from a vertex vσ ∈ V ′
k to a vertex vτ ∈ V ′

eccG(s)−k.

Theorem 6.3. Algorithm 6.1 determines if there is a shortest path of eccentricity at
most k starting from a given vertex s in O

(
n2k+1m

)
time.

Proof (Correctness). To show the correctness of the algorithm, we need to show that
line 11 is correct. Without loss of generality, we can assume that eccG(s) > 2k. Otherwise,
the algorithm would have stopped in line 3.

First, assume that there is a shortest path P = {s = u0, . . . , ul} of length l in G

with eccG(P ) ≤ k. Note that eccG(s) − k ≤ l ≤ eccG(s). Then, by Lemma 6.1, each
subpath τ = {ui−k, . . . , uj} (k ≤ i ≤ eccG(s) − k, j = min{l, i+ k}) is a layer-dominating
path for layer L(s)

i . Additionally, if j = l, then Nk
G[τ ] ⊇

⋃eccG(s)
j=eccG(s)−k L

(s)
j . Thus, the
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algorithm creates a vertex vτ ∈ V ′
i in line 7 which represents a subpath of P for each i

with k ≤ i ≤ eccG(s) − k. If vτ ∈ V ′
i and vσ ∈ V ′

i+1 represent subpaths of P , vτ and vσ

are adjacent in G′ because τ and σ are compatible. Therefore, there is a path in G′ from
a vertex in V ′

k to a vertex in V ′
eccG(s)−k.

Next, assume that G′ contains a path P ′ from a vertex u ∈ V ′
k to a vertex v ∈ V ′

eccG(s)−k.
Each vertex vσ ∈ V ′

i ∩ P ′ represents a layer-dominating path for layer L(s)
i in G. By

definition of layer-dominating paths, if vσ ∈ V ′
i is adjacent to vτ ∈ V ′

i+1, the paths σ
and τ in G (of length 2k) can be combined to a longer path (of length 2k + 1). If τ has
length less than 2k, it is a subpath of σ. Thus, P ′ represents a path P in G from s to a
vertex w ∈ L

(s)
q with eccG(s) − k ≤ q ≤ eccG(s).

Each vertex vτ ∈ V ′
i ∩P ′ represents a layer-dominating path τ for layer L(s)

i . Because
of line 9, vτ ∈ V ′

eccG(s)−k implies Nk
G[τ ] ⊇

⋃k
j=eccG(s)−k L

(s)
j . Thus, P is a shortest path

starting from s with eccG(P ) ≤ k. □

Proof (Complexity). If eccG(s) ≤ 2k, the algorithm stops after line 3. In this case there
are at most O

(
n2k

)
shortest paths starting from s. Thus, finding a shortest path with

eccentricity k can be done in O
(
n2km

)
time by deciding in O(m) time if a path has

eccentricity k.
Next, assume eccG(s) > 2k. The graph can only contain O

(
n2k+1)

layer-dominating
paths because each such path has at most 2k + 1 vertices in it. Therefore, creating the
vertices of G′ (line 4 to line 9) can be done in O

(
n2k+1m

)
time.

Store the found layer-dominating paths in a forest structure T as follows. For each
vertex v of G, T contains a tree Tv rooted at v of depth at most 2k. This tree Tv stores all
layer-dominating paths of G starting at v. Any node u in Tv (including the root v) at depth
less than 2k has as the children all neighbours w of u in G such that dG(s, w) = dG(s, w)+1.
Every node of Tv represents a unique path of G corresponding to the path of Tv from
the root v to this node. A leaf t of Tv has a pointer to a layer-dominating path τ (and,
hence, to the corresponding vertex vτ in G′) if the path τ = {v, . . . , t} from the root v to
the leaf t forms a layer-dominating path τ in G.

Now, given a layer-dominating path σ = {vi−k, vi−k+1, . . . , vj}, we can determine all
layer-dominating paths τ which σ is compatible with in O(m) time as follows. Take the
tree Tvi−k+1 in T and, following path σ, decent to node vj of Tvi−k+1 representing path
{vi−k+1, . . . , vj}. Then, leaves of Tvi−k+1 attached to vj have pointer to all paths τ which
σ is compatible with.

Since G′ has at most O
(
n2k+1)

vertices, creating G′ (in line 10) takes at most
O

(
n2k+1m

)
time. Thus, the overall running time for Algorithm 6.1 is O

(
n2k+1m

)
. □

Algorithm 6.1 determines if there is a shortest path of eccentricity at most k for a given
vertex s. If a start vertex is not given, iterating Algorithm 6.1 over each vertex determines if
there is a shortest path of eccentricity at most k in a given graphG in O

(
n2k+2m

)
time. If k

is unknown, a path with minimum eccentricity can be found by trying different values for k
starting with 1. Then, the runtime is O

(
n4m

)
+O

(
n6m

)
+· · ·+O

(
n2k+2m

)
= O

(
n2k+2m

)
.
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Corollary 6.4. If a given graph G contains a shortest path with eccentricity k, the MESP
problem can be solved for G in O

(
n2k+2m

)
time, even if k is unknown.

Algorithm 6.1 requires O
(
n2k+1m

)
time because there can be up-to O(2k + 1) layer-

dominating paths with length 2k (see complexity proof of Theorem 6.3). Now, consider
the case that a given graph G has maximum vertex-degree ∆. Therefore, such a graph
contains at most O

(
∆2kn

)
layer-dominating paths of length 2k and, hence, Algorithm 6.1

requires at most O
(
∆2knm

)
time. Thus:

Corollary 6.5. The Minimum Eccentricity Shortest Path problem is Fixed Parameter
Tractable for graphs with maximum degree ∆. If such a graph G contains a shortest path
with eccentricity k, the MESP problem can be solved for G in O

(
∆2kn2m

)
time, even

if k is unknown.

6.2.2 Distance-Hereditary Graphs
In this subsection, we present an algorithm that solves the Minimum Eccentricity Shortest
Path problem for distance-hereditary graphs in linear time. Our algorithm is based on
the following result.

Theorem 6.4 (Dragan and Leitert [42]). Let x, y be a diametral pair of vertices of
a distance-hereditary graph G, and k be the minimum eccentricity of a shortest path in G.
Then, there is a shortest path P between x and y with ecc(P ) = k.

Recall that a diametral path in a tree can be found as follows. Select an arbitrary
vertex v. Find a most distant vertex x from v and then a most distant vertex y from x.
The shortest path from x to y is a diametral path. Thus, it follows from Theorem 6.4:

Corollary 6.6. For a tree, a shortest path with minimum eccentricity can be computed
in linear time by simply performing two BFS calls.

It is known [45] that a diametral pair of a distance-hereditary graph can be found
in linear time. Hence, according to Theorem 6.4, to find a shortest path of minimum
eccentricity in a distance-hereditary graph in linear time, one needs to efficiently extract
a best eccentricity shortest path for a given pair of end-vertices. In what follows, we
demonstrate that, for a distance-hereditary graph, such an extraction can be done in
linear time as well.

We will need few auxiliary lemmas.

Lemma 6.2. In a distance-hereditary graph G, for each pair of vertices s and t, if x is a
vertex on a shortest path from v to Πv = Pr(v, I(s, t)) with d(x,Πv) = 1, then Πv ⊆ N(x).

Proof. Let p and q be two vertices in Πv and d(v,Πv) = r. By Lemma 2.8 (page 8),
N(p) ∩ L

(v)
r−1 = N(q) ∩ L

(v)
r−1. Thus, each vertex x on a shortest path from v to Πv with

d(x,Πv) = 1 (which is in N(p) ∩ L(v)
r−1 by definition) is adjacent to all vertices in Πv, i. e.,

Πv ⊆ N(x). □
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For an interval I(s, t) between two vertices s and t, a slice Si(s, t) is defined as the
set of vertices in I(s, t) with distance i to s, i. e., Si(s, t) = L

(s)
i ∩ I(s, t).

Lemma 6.3. In a distance-hereditary graph G, let Si(s, t) and Si+1(s, t) be two con-
secutive slices of an interval I(s, t). Each vertex in Si(s, t) is adjacent to each vertex
in Si+1(s, t).

Proof. Consider Lemma 2.8 (page 8) from perspective of t. Thus, Si(s, t) ⊆ N(v) for
each vertex v ∈ Si+1(s, t). Additionally, from perspective of s, Si+1(s, t) ⊆ N(u) for each
vertex u ∈ Si(s, t). □

Lemma 6.4. In a distance-hereditary graph G, if a projection Πv = Pr(v, I(s, t)) inter-
sects two slices of an interval I(s, t), each shortest (s, t)-path intersects Πv.

Proof. Because of Lemma 6.2, there is a vertex x with N(x) ⊇ Πv and d(v, x) =
d(v,Πv) − 1. Thus, Πv intersects at most two slices of interval I(s, t) and those slices
have to be consecutive, otherwise x would be a part of the interval. Let Si(s, t) and
Si+1(s, t) be these slices. Note that d(s, x) = i + 1. Thus, by Lemma 2.8 (page 8),
N(x) ∩ Si(s, t) = N(u) ∩ Si(s, t) for each u ∈ Si+1(s, t). Therefore, Si(s, t) ⊆ Πv, i. e.,
each shortest path from s to t intersects Πv. □

From the lemmas above, we can conclude that, for determining a shortest (s, t)-path
with minimal eccentricity, a vertex v is only relevant if d(v, I(s, t)) = ecc(I(s, t)) and the
projection of v on the interval I(s, t) only intersects one slice. Algorithm 6.2 below uses
this observation to find such a path in linear time.

Lemma 6.5. For a distance-hereditary graph G and an arbitrary vertex pair s, t, Algo-
rithm 6.2 computes a shortest (s, t)-path with minimal eccentricity in linear time.

Proof. The loop in line 3 determines for each vertex v outside of the interval I(s, t)
a gate vertex g(v) such that N(g(v)) ⊇ Pr(v, I(s, t)) and d(v, I(s, t)) = d(v, g(v)) + 1
(see Lemma 6.2). From Lemma 6.4 and Lemma 6.3, it follows that for a vertex v

which is not in Vecc(I(s,t)) or its projection to I(s, t) is intersecting two slices of I(s, t),
d(v, P (s, t)) ≤ ecc(I(s, t)) for every shortest path P (s, t) between s and t. Therefore,
line 6 only marks g(v) if v ∈ Vecc(I(s,t)) and its projection Pr(v, I(s, t)) intersects only one
slice. Because only one slice is intersected and each vertex in a slice is adjacent to all
vertices in the consecutive slice (see Lemma 6.3), in each slice the vertex of an optimal (of
minimum eccentricity) path P can be selected independently from the preceding vertex.
If a vertex x of a slice Si(s, t) has the maximum number of relevant vertices in N(x), then
x is good to put in P . Indeed, if x dominates all relevant vertices adjacent to vertices of
Si(s, t), then x is a perfect choice to put in P . Else, any vertex y of a slice Si(s, t) is a
good vertex to put in P . Hence, P is optimal if the number of relevant vertices adjacent
to P is maximal. Thus, the path selected in line 8 to line 10 is optimal. □
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Algorithm 6.2: Computes a shortest (s, t)-path P with minimal eccentricity for
a given distance-hereditary graph G and a vertex pair s, t.
Input: A distance-hereditary graph G = (V,E) and two distinct vertices s and t.
Output: A shortest path P from s to t with minimal eccentricity.

1 Compute the sets Vi = { v | d(v, I(s, t)) = i } for 1 ≤ i ≤ ecc(I(s, t)).
2 Each vertex v /∈ I(s, t) gets a pointer g(v) initialised with g(v) := v if v ∈ V1, and

g(v) := ∅ otherwise.
3 For i := 2 To ecc(I(s, t))
4 For each v ∈ Vi, select a vertex u ∈ Vi−1 ∩N(v) and set g(v) := g(u).
5 For Each v ∈ Vecc(I(s,t))
6 If N(g(v)) intersects only one slice of I(s, t), flag g(v) as relevant.
7 Set P := {s, t}.
8 For i := 1 To d(s, t) − 1
9 Find a vertex v ∈ Si(s, t) for which the number of relevant vertices in N(v) is

maximal.
10 Add v to P .

Running Algorithm 6.2 for a diametral pair of vertices of a distance-hereditary graph G,
by Theorem 6.4, we get a shortest path of G with minimum eccentricity. Thus, we have
proven the following result.

Theorem 6.5. A shortest path with minimum eccentricity of a distance-hereditary graph
can be computed in linear time.

6.2.3 A General Approach for Tree-Structured Graphs

In a graph G, consider a shortest path P which starts at a vertex s. Each vertex x has a
projection Πx = Pr(x, P ). In case of a tree this is a single vertex. However, in general, Πx

can contain multiple vertices and does not necessarily induce a connected subgraph. In this
case, there are two vertices u and w in Πx such that all vertices v in the subpath Q between
u and w are not in Πx. Formally, u,w ∈ Πx, Q = { v ∈ P | d(s, u) < d(s, v) < d(s, w) },
and Q ∩ Πx = ∅.

Now, assume the cardinality of Q is at most γ, i. e., d(u,w) ≤ γ + 1 for each P , x, u
and w. Then, we refer to γ as the projection gap of G.

Definition 6.2 (Projection Gap). In a graph G, let P = {v0, . . . , vl} be a shortest
path with d(v0, vi) = i. The projection gap of G is γ, pg(G) = γ for short, if, for every
vertex x of G and every two vertices vi, vk ∈ Pr(x, P ), d(vi, vk) > γ+ 1 implies that there
is a vertex vj ∈ Pr(x, P ) with i < j < k.

Based on this definition, we can make the following observation.
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Lemma 6.6. In a graph G with pg(G) = γ, let P be a shortest path starting at s, Q be
a subpath of P , |Q| > γ, u and w be two vertices in P \Q such that d(s, u) < d(s,Q) <
d(s, w), and x be an arbitrary vertex in G. If d(x, u) < d(x,Q), then d(x,w) ≥ d(x,Q).

Proof. Assume that d(x, u) < d(x,Q) and d(x,w) < d(x,Q). Without loss of generality,
let d(x, u) = d(x,w) < d(x, v) for all v ∈ P with d(s, u) < d(s, v) < d(s, w). Let P ′

be the subpath of P from u to w. Note that Pr(x, P ′) = {u,w} and Q ⊂ P ′. Thus,
d(u,w) ≥ |Q| + 1 > γ + 1. This contradicts with pg(G) = γ. □

Informally, Lemma 6.6 says that, when exploring a shortest path P , if the distance to
a vertex x did not decrease during the last γ + 1 vertices of P , it will not decrease when
exploring the remaining subpath. Based on this, we show that a minimum eccentricity
shortest path can be found in polynomial time if pg(G) is bounded by some constant.
Additionally, we show that for some graph classes the projection gap has an upper bound
leading to polynomial time algorithms for these classes.

Algorithm. For the remainder of this subsection, we assume that we are given a graph G
with pg(G) = γ containing a vertex s. We need the following notions and notations:

• Qi and Qj are subpaths of length γ of some shortest paths starting at s. They do
not need to be subpath of the same shortest path. Let vi ∈ Qi and vj ∈ Qj be the
two vertices such that d(s,Qi) = d(s, vi) and d(s,Qj) = d(s, vj). Without loss of
generality, let d(s, vi) ≤ d(s, vj). We say, Qi is compatible with Qj (with respect
to s) if |Qi ∩ Qj | = γ − 1, vi is adjacent to vj , and d(s, vi) < d(s, vj). Let Cs(Qj)
denote the set of subpaths compatible with Qj .

• Rs(Qj) = {w | Qj ⊆ I(s, w) } ∪ Qj is the set of vertices w such that there is a
shortest path from s to w containing Qj (or w ∈ Qj).

• Is(Qj) = I(s, vj) ∪Qj are the vertices that are on a shortest path from s to Qj (or
in Qj).

• V ↓
s (Qj) = {x | d(x,Qj) = d(x,Rs(Qj)) } is the set of vertices x which are closer

to Qj than to all other vertices in Rs(Qj). Thus, given a shortest path P contain-
ing Qj and starting at s, expanding P beyond Qj will not decrease the distance
from x to P .

Note that Qj ⊆ V ↓
s (Qj) and Qj = Is(Qj) ∩Rs(Qj).

Lemma 6.7. For each vertex x in G, d(x,Qj) = d(x, Is(Qj)) or d(x,Qj) = d(x,Rs(Qj)).

Proof. Assume that d(x,Qj) > d(x, Is(Qj)) and d(x,Qj) > d(x,Rs(Qj)). Then, there is
a vertex ui ∈ Is(Qj) and a vertex ur ∈ Rs(Qj) with d(x, ui) < d(x,Qj) and d(x,Qj) >
d(x, ur). Because ui, Qj , and ur are on a shortest path starting at s and |Qj | > γ, this
contradicts Lemma 6.6. □

Lemma 6.8. If Qi is compatible with Qj, then V ↓
s (Qi) ⊆ V ↓

s (Qj).
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Proof. Assume that V ↓
s (Qi) ⊈ V ↓

s (Qj), i. e., there is a vertex x ∈ V ↓
s (Qi)\V ↓

s (Qj). Then,
d(x,Qj) > d(x,Rs(Qj)). Thus, by Lemma 6.7, d(x,Qj) = d(x, Is(Qj)). Because Qi ⊆
Is(Qj), d(x,Qi) ≥ d(x, Is(Qj)) = d(x,Qj). Since x ∈ V ↓

s (Qi), d(x,Qi) = d(x,Rs(Qi)).
Also, because x /∈ V ↓

s (Qi), d(x,Qj) > d(x,Rs(Qj)). Thus, d(x,Rs(Qi)) > d(x,Rs(Qj)).
On the other hand, because Rs(Qi) ⊇ Rs(Qj), d(x,Rs(Qi)) ≤ d(x,Rs(Qj)) and a contra-
diction arises. □

For a subpath Qj , let Ps(Qj) denote the set of shortest paths P which start at s such
that Qj ⊆ P ⊆ Is(Qj). Then, we define εs(Qj) as follows:

εs(Qj) = min
P ∈Ps(Qj)

max
x∈V ↓

s (Qj)
d(x, P )

Consider a subpath Qj for which Rs(Qj) = Qj , i. e., a shortest path containing Qj

cannot be extended any more. Then, V ↓
s (Qj) = V . Therefore, for any path P ∈ Ps(Qj),

max
x∈V ↓

s (Qj) d(x, P ) = ecc(P ).

Lemma 6.9. If Cs(Qj) is non-empty, then

εs(Qj) = min
Qi∈Cs(Qj)

max
[

max
x∈V ↓

s (Qj)\V ↓
s (Qi)

min
(
d(x,Qi), d(x,Qj)

)
, εs(Qi)

]
.

Proof. By definition,
εs(Qj) = min

P ∈Ps(Qj)
max

x∈V ↓
s (Qj)

d(x, P ).

Let Qi be compatible with Qj . Because, by Lemma 6.8, V ↓
s (Qi) ⊆ V ↓

s (Qj), we can
partition V ↓

s (Qj) into V ↓
s (Qj) \ V ↓

s (Qi) and V ↓
s (Qi). For simplicity, we write V ↓

s (Qj) \
V ↓

s (Qi) as V ↓
s [Qj |Qi]. Thus, εs(Qj) =

min
Qi∈Cs(Qj)

min
P ∈Ps(Qi)

max
[

max
x∈V ↓

s [Qj |Qi]
d(x, P ∪Qj), max

x∈V ↓
s (Qi)

d(x, P ∪Qj)
]
.

Note that we changed the definition of P from P ∈ Ps(Qj) to P ∈ Ps(Qi), i. e., P may
not contain the last vertex of Qj any more.

If x ∈ V ↓
s [Qj |Qi], then d(x,Qi) > d(x,Rs(Qi)). Thus, by Lemma 6.7, d(x,Qi) =

d(x, Is(Qi)). Note that, by definition of P , d(x,Qi) ≥ d(x, P ) ≥ d(x, Is(Qi)). Therefore,
d(x, P ) = d(x,Qi) and

max
x∈V ↓

s [Qj |Qi]
d(x, P ∪Qj) = max

x∈V ↓
s [Qj |Qi]

min
(
d(x,Qi), d(x,Qj)

)
.

For simplicity, we define

εs(Qi, Qj) := max
x∈V ↓

s [Qj |Qi]
min

(
d(x,Qi), d(x,Qj)

)
.
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Note that εs(Qi, Qj) does not depend on P . Therefore, because minu max[c, f(u)] =
max[c,minu f(u)],

εs(Qj) = min
Qi∈Cs(Qj)

max
[
εs(Qi, Qj), min

P ∈Ps(Qi)
max

x∈V ↓
s (Qi)

d(x, P ∪Qj)
]
.

If x ∈ V ↓
s (Qi), then d(x,Qi) = d(x,Rs(Qi)) ≤ d(x,Rs(Qj)) = d(x,Qj). Therefore,

min
P ∈Ps(Qi)

max
x∈V ↓

s (Qi)
d(x, P ∪Qj) = min

P ∈Ps(Qi)
max

x∈V ↓
s (Qi)

d(x, P ) = εs(Qi).

Thus,

εs(Qj) = min
Qi∈Cs(Qj)

max
[

max
x∈V ↓

s (Qj)\V ↓
s (Qi)

min
(
d(x,Qi), d(x,Qj)

)
, εs(Qi)

]
. □

Based on Lemma 6.9, Algorithm 6.3 computes a shortest path starting at s with
minimal eccentricity. The algorithm has two parts. First, it computes the pairwise
distance of all vertices and d(x,Rs(v)) for each vertex pair x and v where, similarly to
Rs(Qj), Rs(v) = { z ∈ V | v ∈ I(s, z) }. This allows to easily determine if a vertex x is
in V ↓

s (Qj). Second, it computes εs(Qj) for each subpath Qj . For this, the algorithm uses
dynamic programming. After calculating εs(Qi) for all subpaths with distance i to s, the
algorithm uses Lemma 6.9 to calculate εs(Qj) for all subpaths Qj which Qi is compatible
with.

Theorem 6.6. For a given graph G with pg(G) = γ and a vertex s, Algorithm 6.3
computes a shortest path starting at s with minimal eccentricity. It runs in O

(
nγ+3)

time
if γ ≥ 2, in O

(
n2m

)
time if γ = 1, and in O(nm) time if γ = 0.

Proof (Correctness). The algorithm has two parts. The first part (line 1 to line 8) is a
preprocessing which computes d(x,Rs(v)) for each vertex pair x and v. The second part
computes εs(Qj) which is then used to determine a path with minimal eccentricity.

For the first part, without loss of generality, let d(s, v) = i, N↑
s (v) = N(v) ∩L(s)

i+1, and
let x be an arbitrary vertex. By definition of Rs, N↑

s (v) = ∅ implies Rs(v) = {v}, i. e.,
d(x,Rs(v)) = d(x, v). Therefore, d(x,Rs(v)) is correct for all vertices v with N↑

s (v) = ∅
after line 3. By induction, assume that d(x,Rs(w)) is correct for all vertices w ∈ N↑

s (v). Be-
cause Rs(v) = ⋃

w∈N↑
s (v)Rs(w) ∪ {v}, d(x,Rs(v)) = min(min

w∈N↑
s (v) d(x,Rs(w)), d(x, v)).

Therefore, line 8 correctly computes d(x,Rs(v)).
The second part of Algorithm 6.3 iterates over all subpaths Qj in increasing distance

to s. Line 12 checks if a given vertex x is in V ↓
s (Qj). By definition, Rs(Qj) = Qj ∪Rs(zj)

where zj is the vertex in Qj with the largest distance to s. Thus, d(x,Rs(Qj)) =
min(d(x,Rs(zj)), d(x,Qj)). By definition of V ↓

s , x ∈ V ↓
s (Qj) if and only if d(x,Qj) =

d(x,Rs(Qj)). Therefore, x ∈ V ↓
s (Qj) if and only if d(x,Qj) ≤ d(x,Rs(zj)), i. e., line 12

computes V ↓
s (Qj) correctly.
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Algorithm 6.3: Determines, for a given graph G with pg(G) ≤ γ and a vertex s,
a minimal eccentricity shortest path starting at s.
Input: A graph G = (V,E), an integer γ, and a vertex s ∈ V .
Output: A shortest path P starting at s with minimal eccentricity.

1 Determine the pairwise distances of all vertices.
2 For Each v, x ∈ V

3 Set d(x,Rs(v)) := d(x, v).
4 For i = ecc(s) − 1 DownTo 0
5 For Each v ∈ L

(s)
i

6 For Each w ∈ N(v) ∩ L
(s)
i+1

7 For Each x ∈ V

8 Set d(x,Rs(v)) := min
[
d

(
x,Rs(v)

)
, d

(
x,Rs(w)

)]
.

9 For j = 0 To ecc(s) − γ

10 For Each Qj with d(s,Qj) = j

11 For Each x ∈ V

12 Let zj be the vertex in Qj with the largest distance to s. If
d(x,Qj) ≤ d(x,Rs(zj)), add x to V ↓

s (Qj) and store d(x,Qj).
13 If j = 0 Then
14 εs(Qj) := max

x∈V ↓
s (Qj)

d(x,Qj)

15 Else
16 εs(Qj) := ∞

17 For Each Qi ∈ Cs(Qj)

18 ε′
s(Qj) := max

[
max

x∈V ↓
s (Qj)\V ↓

s (Qi)
min

(
d(x,Qi), d(x,Qj)

)
, εs(Qi)

]
19 If ε′

s(Qj) < εs(Qj) Then
20 Set εs(Qj) := ε′

s(Qj) and p(Qj) := Qi.

21 Find a subpath Qj such that a shortest path containing Qj cannot be extended any
more and for which εs(Qj) is minimal.

22 Construct a path P from Qj to s using the p()-pointers and output it.

Recall the definition of εs(Qj):

εs(Qj) = min
P ∈Ps(Qj)

max
x∈V ↓

s (Qj)
d(x, P )

If d(s,Qj) = 0, d(x, P ) = d(x,Qj). Therefore, εs(Qj) = max
x∈V ↓

s (Qj) d(x,Qj) as com-
puted in line 14. Note that there is no subpath Qi which is compatible with Qj , if
d(s,Qj) = 0. Therefore, the loop starting in line 17 is skipped for these Qj . Thus, the
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algorithm correctly computes εs(Qj), if d(s,Qj) = 0.
By induction, assume that εs(Qi) is correct for each Qi ∈ C(Qj). Thus, Lemma 6.9

can be used to compute εs(Qj). This is done in the loop starting in line 17. Therefore,
at the beginning of line 21, εs(Qj) is computed correctly for each subpath Qj .

Recall that, if P ∈ P(Qj) and Rs(Qj) = Qj , then V ↓
s (Qj) = V and, therefore,

max
x∈V ↓

s (Qj) d(x, P ) = ecc(P ). Thus, Rs(Qj) = Qj implies that εs(Qj) is the minimal
eccentricity of all shortest paths starting in s and containing Qj . Therefore, if Qj is
picked by line 21, then εs(Qj) is the minimal eccentricity of all shortest paths starting
in s. □

Proof (Complexity). First, we analyse line 1 to line 8. Line 1 runs in O(nm) time. This
allows to access the distance between two vertices in constant time. Thus, the total
running time for line 3 is O(n). Because line 8 is called at most once for each vertex x
and edge vw, implementing line 4 to line 8 can be done in O(nm) time.

For the second part of the algorithm (starting in line 9), if γ ≥ 2, let all subpaths be
stored in a trie as follows: There are γ + 1 layers of internal nodes. Each internal node is
an array of size n (one entry for each vertex) and each entry points to an internal node of
the next layer representing n subtrees. This requires O

(
nγ+1)

memory. Leafs are objects
representing a subpath.

If γ = 1, a subpath is a single edge, and, if γ = 0, a subpath is a single vertex. Thus,
no extra data structure is needed for these cases. In all three cases, a subpath can be
accessed in O(γ) time.

Next, we analyse the runtime of line 11 to line 16 for a single subpath Qj . Accessing
Qj can be done in O(γ) time. Line 12 requires at most O(γ) time for a single call and
is called at most O(n) times. Line 14 requires O(nγ) time and line 16 runs in constant
time. Therefore, for a given subpath, line 11 to line 16 require O(γn+ n) time.

For line 18 to line 20, consider a given pair of compatible subpathsQi andQj . Accessing
both subpaths can be done in O(γ) time. Assuming the vertices in V ↓

s (Qi) and V ↓
s (Qj)

are sorted and stored with their distance to Qi and Qj , line 18 requires at most O(n)
time. Note that Qi and Qj intersect in γ − 1 vertices. Thus, min

(
d(x,Qi), d(x,Qj)

)
=

min
(
d(x, vi), d(x,Qj)

)
where vi is the vertex in Qi closest to s. Line 19 and line 20 run

in constant time. Therefore, for a given pair of compatible subpaths, line 18 to line 20
require O(n) time.

Let ϕ be the number of subpaths and ψ be the number of pairs of compatible subpaths.
Then, the overall runtime for line 9 to line 20 is O(ϕ(γn+ n) + ψn) time, O(ϕ) time for
line 21, and O(n) time for line 22. Together with the first part of the algorithm, the total
runtime of Algorithm 6.3 is O(mn+ ϕ(γn+ n) + ψn).

Because a subpath contains γ + 1 vertices, there are up-to O
(
nγ+1)

subpaths and
up-to O

(
nγ+2)

compatible pairs if γ ≥ 2, i. e., ϕ ≤ nγ+1 and ψ ≤ nγ+2. Therefore, if
γ ≥ 2, Algorithm 6.3 runs in O

(
nγ+3)

time.
If γ = 1, a subpath is a single edge and there are at most mn compatible pairs of

subpaths, i. e., ϕ ≤ m and ψ ≤ nm. For the case when γ = 0, a subpath is a single vertex
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(ϕ ≤ n) and a pair of compatible subpaths is an edge (ψ ≤ m). Therefore, Algorithm 6.3
runs in O

(
n2m

)
time if γ = 1, and in O(nm) time if γ = 0. □

Note that Algorithm 6.3 computes a shortest path starting in a given vertex s. Thus, a
shortest path with minimum eccentricity among all shortest paths in G can be determined
by running Algorithm 6.3 for all start vertices s, resulting in the following:

Theorem 6.7. For a given graph G with pg(G) = γ, a minimum eccentricity shortest
path can be found in O

(
nγ+4)

time if γ ≥ 2, in O
(
n3m

)
time if γ = 1, and in O

(
n2m

)
time if γ = 0.

Projection Gap for Some Special Graph Classes. Above, we show that a minimum
eccentricity shortest path can be found in polynomial time if the projection gap is bounded
by a constant. In what follows, we determine the projection gap for chordal graphs,
dually chordal graphs, graphs with bounded tree-length or tree-breadth, and δ-hyperbolic
graphs.

Chordal Graphs.

Lemma 6.10. If G is a chordal graph, then pg(G) = 0.

Proof. Assume that pg(G) ≥ 1. Then, there is a shortest path P = {u, . . . , w} and a
vertex x with Pr(x, P ) = {u,w} and d(u,w) > 1. By Lemma 2.7 (page 2.7), u and w are
adjacent. This contradicts with d(u,w) > 1. □

Corollary 6.7. For chordal graphs, a minimum eccentricity shortest path can be found
in O

(
n2m

)
time.

Dually Chordal Graphs.

Lemma 6.11. If G is a dually chordal graph, then pg(G) ≤ 1.

Proof. Assume there is a shortest path P = {u, v1, . . . , vi, w} and a vertex x with
Pr(x, P ) ⊇ {u,w}. To show that pg(G) ≤ 1, we show that d(u,w) = i + 1 > 2 implies
there is a vertex vk ∈ Pr(x, P ) with 1 ≤ k ≤ i.

Consider a family of disks D =
{
N [u], N [v1], . . . , N [vi], N [w], N r[x]

}
where r =

d(x, P )−1. Let H be the intersection graph of D, a be the vertex in H representing N [u],
bk representing N [vk] (for 1 ≤ k ≤ i), c representing N [w], and z representing N r[x].
Because the intersection graph of disks of a dually chordal graph is chordal [16], H is
chordal, too. H contains the edges za and zc, ab1, cbi, and bkbk+1 for all 1 ≤ k < i. Note
that, if d(u,w) > 2, a and c are not adjacent in H. However, the path {a, b1, . . . , bk, c}
connects a and c. Therefore, because H is chordal and by Lemma 2.7 (page 7), there
is a k with 1 ≤ k ≤ i such that z is adjacent to bk in H. Thus, d(x, vk) ≤ r + 1, i. e.,
vk ∈ Pr(x, P ). □

Corollary 6.8. For dually chordal graphs, a minimum eccentricity shortest path can be
found in O

(
n3m

)
time.
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Graphs with bounded Tree-Length or Tree-Breadth.

Lemma 6.12. If G has tree-length λ or tree-breadth ρ, a factor γ ≥ pg(G) can be
computed in O

(
n3)

time such that γ ≤ 3λ− 1 or γ ≤ 6ρ− 1, respectively.

Proof. To compute γ, first determine the pairwise distances of all vertices. Then, compute
a layering partition for each vertex x. Let γ + 1 be the maximum diameter of all clusters
of all layering partitions.

As shown in Lemma 3.1 (page 11), the diameter of each cluster is at most 3λ if G has
tree-length λ and at most 6ρ if G has tree-breadth ρ. Therefore, for each shortest path P ,
diam(Pr(x, P )) ≤ 3λ and diam(Pr(x, P )) ≤ 6ρ, respectively. Thus, pg(G) ≤ γ ≤ 3λ− 1
and pg(G) ≤ γ ≤ 6ρ− 1.

Computing the pairwise distances of all vertices can be done in O(nm) time. A
layering partition can be computed in linear time (Lemma 2.5, page 7). For a given
layering partition, the diameter of each cluster can be computed in O

(
n2)

time if the
pairwise distances of all vertices are known. Thus, γ can be computed in O

(
n3)

time. □

Note that it is not necessary to know the tree-length or tree-breath of G to compute γ.
Thus, by computing γ and then running Algorithm 6.3 for each vertex in G, we get:

Corollary 6.9. For graphs with tree-length λ or tree-breadth ρ, a minimum eccentricity
shortest path can be found in O

(
n3λ+3)

time or O
(
n6ρ+3)

time, respectively.

δ-Hyperbolic Graphs.

Lemma 6.13. If G is δ-hyperbolic, then pg(G) ≤ 4δ.

Proof. Consider two vertices u and w such that u,w ∈ Pr(x, P ) for some vertex x

and shortest path P . Let v ∈ P be a vertex such that d(u, v) − d(v, w) ≤ 1 and
d(u, v) ≥ d(v, w), i. e., v is a middle vertex on the subpath from u to w.

Assume that d(u,w) > 4δ + 1. Thus, d(u, v) ≥ d(v, w) ≥ 2δ + 1 and d(u,w) >
d(u, v) + 2δ. Therefore, by Lemma 2.10 (page 9), d(v, x) < max{d(x, u), d(x,w)}. This
contradicts that u,w ∈ Pr(x, P ). Hence, the diameter of a projection is at most 4δ + 1
and, therefore, pg(G) ≤ 4δ. □

Corollary 6.10. For δ-hyperbolic graphs, a minimum eccentricity shortest path can be
found in O

(
n4δ+4)

time.

6.3 Approximation Algorithms

In this section, we present different approximation algorithms. The algorithms differ in
their approximation factor and runtime. First, we show algorithms for general graphs.
Then, we present approaches to compute an approximation for graphs with bounded
tree-length and graphs with bounded hyperbolicity. Additionally, we present an approach
to compute an approximation based on the layering partition of a graph.
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6.3.1 General Graphs

In [41], we show that a spread path gives an 8-approximation for MESP. Recently,
Birmelé et al. [10] were able to improve this result.

Theorem 6.8 (Birmelé et al. [10]). Let G be a graph having a shortest path of eccen-
tricity k. Any spread path in G has eccentricity at most 5k. This bound is tight.

From Theorem 6.8, it follows that a 5-approximation for MESP can be computed in
linear time by simply performing two BFS calls. Birmelé et al. [10] additionally show
that Algorithm 6.4 below computes a 3-approximation in linear time. However, the
runtime of this approach has a much higher constant factor.

Algorithm 6.4: [10] Computes a 3-approximation for MESP.
Input: A graph G = (V,E).
Output: A shortest path with eccentricity at most 2k, where k is the minimum

eccentricity of all paths in G.
1 Compute a spread path P in G from x to y and determine its eccentricity.
2 Initialise an empty queue Q of triples (u, v, s) where u and v are vertices of G and s

is an integer.
3 Insert (x, y, 0) into Q.
4 While Q is non-empty.
5 Remove a triple (u, v, s) from Q.
6 Compute a shortest path P ′ from u to v and determine a vertex w with

maximal distance to P ′.
7 If d(P ′, w) < ecc(P ) Then
8 Set P := P ′.
9 If s < 8 Then

10 Insert (u,w, s+ 1) and (v, w, s+ 1) into Q.

11 Output P .

Theorem 6.9 (Birmelé et al. [10]). Algorithm 6.4 calculates a 3-approximation for
the MESP problem in linear time.

Next, we present a 2-approximation algorithm. It is based on the following two
lemmas.

Lemma 6.14. In a graph G, let P be a shortest path from s to t of eccentricity at
most k. For each layer L(s)

i , there is a vertex pi ∈ P such that the distance from pi to
each vertex v ∈ L

(s)
i is at most 2k. Additionally, pi ∈ L

(s)
i if i ≤ d(s, t), and pi = t

if i ≥ d(s, t).
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Proof. For each vertex v, let p(v) ∈ P be a vertex with d(p(v), v) ≤ k.
For each i ≤ d(s, t), let pi ∈ P ∩ L

(s)
i be the vertex in P with distance i to s. For

an arbitrary vertex v ∈ L
(s)
i , let j = d(s, p(v)). Because ecc(P ) ≤ k and P is a shortest

path, |i− j| ≤ k. Thus, d(pi, v) ≤ d(pi, p(v)) + d(p(v), v) ≤ 2k.
Let L′ = { v | d(s, v) ≥ d(s, t) }. Because P has eccentricity at most k, d(p, t) ≤ k for

all p ∈ { p(v) | v ∈ L′ }. Therefore, d(t, v) ≤ 2k for all v ∈ L′. □

Lemma 6.15. If G has a shortest path of eccentricity at most k from s to t, then every
path Q with s ∈ Q and d(s, t) ≤ maxv∈Q d(s, v) has eccentricity at most 3k.

Proof. Let P be a shortest path from s to t with ecc(P ) ≤ k and Q an arbitrary path
with s ∈ Q and d(s, t) ≤ maxv∈Q d(s, v). Without loss of generality, we can assume that
Q starts at s. Also, let u be an arbitrary vertex. Since ecc(P ) ≤ k, there is a vertex
p ∈ P with d(u, p) ≤ k. Because d(s, t) ≤ maxv∈Q d(s, v), there is a vertex q ∈ Q with
d(s, p) = d(s, q). By Lemma 6.14, the distance between p and q is at most 2k. Thus, the
distance from q to u is at most 3k. □

Corollary 6.11. For a given graph G and two vertices s and t, each shortest (s, t)-path
is a 3-approximation for the (s, t)-MESP problem.

Note that the bounds given in Lemma 6.14 and Lemma 6.15 are tight. Figure 6.3
gives an example.

s t

u v w

x

Figure 6.3. Example for Lemma 6.14 and Lemma 6.15. The shortest path from s to t which contains x
has eccentricity 1 and the distance from x to v is 2. The shortest path from s to t which contains u
and w has eccentricity 3.

For Algorithm 6.5 below, we say the layer-wise eccentricity of a shortest (s, t)-path Q
is ϕ if, for each layer L(s)

i , max
{
d(qi, u)

∣∣∣ u ∈ L
(s)
i

}
≤ ϕ where qi ∈ Q∩L(s)

i if i ≤ d(s, t)
and qi = t if i > d(s, t). By Lemma 6.14, a shortest path with eccentricity k has a
layer-wise eccentricity of 2k. Therefore, determining a shortest path with minimum
layer-wise eccentricity gives a 2-approximation for the MESP problem. To find such a
path, Algorithm 6.5 computes, for each vertex s, the maximal distance of a vertex v to
all other vertices u in the same layer L(s)

i and uses a modified BFS to find a shortest path
with minimal layer-wise eccentricity starting at s.

Theorem 6.10. Algorithm 6.5 calculates a 2-approximation for the MESP problem
in O

(
n3)

time.
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Algorithm 6.5: A 2-approximation for the MESP problem.
Input: A graph G = (V,E).
Output: A shortest path with eccentricity at most 2k, where k is the minimum

eccentricity of all paths in G.
1 Calculate the distances d(u, v) for all vertex pairs u and v, including

L
(u)
i = { v ∈ V | d(u, v) = i } with 0 ≤ i ≤ ecc(u) for each u.

2 For Each s ∈ V

3 Set ϕ(s) := 0.
4 For i := 1 To ecc(s)
5 For Each v ∈ L

(s)
i

6 Set ϕ(v) := max
u∈L

(s)
i

d(u, v).

7 Let N−(v) = L
(s)
i−1 ∩N(v) denote the neighbours of v in the previous

layer. Set ϕ(v) := max
{

minu∈N−(v) ϕ(u), ϕ(v)
}

.
8 Set ϕ+(v) := max

{
d(u, v) | d(s, u) ≥ i

}
.

9 Calculate a BFS-tree T (s) starting from s. If multiple vertices u are possible as
parent for a vertex v, select one with the smallest ϕ(u).

10 Let t be the vertex for which ϕ′(t) := max
{
ϕ(t), ϕ+(t)

}
is minimal. Set

k(s) := ϕ′(t)
11 Among all computed pairs s and t, select a pair (and corresponding path in T (s))

for which k(s) is minimal.

Proof (Correctness). Assume a given graph G has a shortest path P from s to t with
ecc(P ) = k and s is the vertex selected by the loop starting in line 2. Let Q be a shortest
path from s to v.

We show that lines 4 to 8 calculate, for each v, the minimal ϕ(v) such that there is a
shortest path Q from s to v with a layer-wise eccentricity ϕ(v).

By induction, assume this is true for all vertices u ∈ L
(s)
j with j ≤ i − 1. Now let

v be an arbitrary vertex in L
(s)
i . Line 6 calculates the maximal distance ϕ(v) from v

to all other vertices in L
(s)
i . Since v is the only vertex in Q ∩ L

(s)
i for every shortest

path Q from s to v, the layer-wise eccentricity of each Q is at least ϕ(v). Let u be a
neighbour of v in the previous layer. By induction hypothesis, ϕ(u) is optimal. Therefore,
ϕ(v) := max

{
minu∈N−[v] ϕ(u), ϕ(v)

}
(line 7) is optimal for v.

Since line 9 selects the vertex u with the smallest ϕ(u) as parent for v, each path Q

from s to v in T (s) has an optimal layer-wise eccentricity of ϕ(v). Line 8 calculates the
maximal distance from v to all vertices in

{
u | d(s, u) ≥ d(s, v)

}
. Thus, ecc(Q) ≤ ϕ′(v)

and line 10 and line 11 select a shortest path which has an eccentricity at most ϕ′(v).
By Lemma 6.14, we know that P has a layer-wise eccentricity of at most 2k. Thus,

the path Q from s to t in T (s) has a layer-wise eccentricity of at most 2k. Additionally,

87



Chapter 6. The Minimum Eccentricity Shortest Path Problem

Lemma 6.14 says that t has distance at most 2k to all vertices in { v | d(s, v) ≥ d(s, t) }.
Therefore, ecc(Q) ≤ 2k. Thus, the path selected in line 11 is a shortest path with
eccentricity at most 2k. □

Proof (Complexity). Line 1 runs in O(nm) time. If the distances are stored in an array,
they can be later accessed in constant time. Therefore, line 6 and line 8 run in O(n) time
for a given s and v or in O

(
n3)

time overall. For a given s, line 7 runs in O(m) time and,
therefore, has an overall runtime of O(nm). Line 9 has an overall runtime of O(nm),
line 11 takes O

(
n2)

time, and line 10 runs in O(n) time. Adding all together, the total
runtime is O

(
n3)

. □

For the case that a start vertex s for a shortest path is given, Algorithm 6.5 can be
simplified by having only one iteration of the loop starting in line 2. Then, the runtime is
O(nm).

Corollary 6.12. A 2-approximation for the (s, t)-MESP problem can be computed in
O(nm) time.

6.3.2 Graphs with Bounded Tree-Length and Bounded Hyperbolicity

In Section 6.2.3, we show how to find a shortest path with minimum eccentricity k for
several graph classes. For graphs with tree-length λ, this can require up-to O

(
n3λ+3)

time. In this section, we show that, for graphs with tree-length λ, we can find a shortest
path with eccentricity at most k + 2.5λ in at most O(λm) time and, for graphs with
hyperbolicity δ, we can find a shortest path with eccentricity at most k+ O(δ logn) in at
most O(δm) time.

Lemma 6.16. Let G be a graph with hyperbolicity δ. Two vertices x and y in G

with ecc(x) = ecc(y) = d(x, y) can be found in O(δm) time.

Proof. Let u and v be two vertices in G such that d(u, v) = diam(G). For an arbitrary
vertex x0 and for i ≥ 0, let yi = xi+1 be vertices in G such that d(xi, yi) = ecc(xi) and
d(xi, yi) < d(xi+1, yi+1). To prove Lemma 6.16, we show that there is no vertex y2δ+1.

Because d(x0, y0) = ecc(x0), d(x0, y0) ≥ max
{
d(x0, u), d(x0, v)

}
. Therefore, by

Lemma 2.10 (page 9), d(u, v) ≤ max
{
d(u, y0), d(v, y0)

}
+ 2δ and, thus, diam(G) ≤

ecc(x1) + 2δ. Since d(xi, yi) < d(xi+1, yi+1), there is no vertex yj with j ≥ 2δ + 1, other-
wise d(xj , yj) > diam(G). Therefore, a vertex pair x, y with ecc(x) = ecc(y) = d(x, y) can
be found in O(δm) time as follows: Pick an arbitrary vertex x0 and find a vertex x1 with
d(x0, x1) = ecc(x0) using a BFS. Next, find a vertex x2 such that d(x1, x2) = ecc(x1).
Repeat this (at most 2δ times) until d(xi, xi+1) = ecc(xi) = ecc(xi+1). □

Recall that, if a graph has tree-length λ, its hyperbolicity is at most λ (Theorem 2.4,
page 9). Thus, it follows:
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Corollary 6.13. Let G be a graph with tree-length λ. Two vertices x and y in G

with ecc(x) = ecc(y) = d(x, y) can be found in O(λm) time.

The next lemma shows that, in a graph with bounded tree-length, a shortest path
between two mutually furthest vertices gives an approximation for MESP.

Lemma 6.17. Let G be a graph with tree-length λ having a shortest path with eccentric-
ity k. Also, let x and y be two mutually furthest vertices, i. e., ecc(x) = ecc(y) = d(x, y).
Then, each shortest path from x to y has eccentricity less than or equal to k + 2.5λ.

Proof. Let P be a shortest path from s to t with eccentricity k and Q be a shortest
path from x to y. Consider a tree-decomposition T for G with length λ. We distinguish
between two cases: (1) There is a bag in T containing a vertex of P and a vertex of Q
and (2) there is no such bag in T .

Case 1: There is a bag in T containing a vertex of P and a vertex of Q. We define bags
Bx and By as follows: Both contain a vertex of P and a vertex of Q, Bx is a bag closest
to a bag containing x, By is a bag closest to a bag containing y, and the distance between
Bx and By in T is maximal. Let {B0, B1, . . . , Bl} be a subpath of the shortest path from
Bx to By in T such that B0 is a bag closest to a bag containing s, Bl is a bag closest to a
bag containing t, Bi is adjacent to Bi+1 in T (0 ≤ i < l), and the distance l between B0
and Bl is maximal. Without loss of generality, let dT (Bx, B0) ≤ dT (Bx, Bl). Let ps be
the vertex in B0 ∩P which is closest to s in G and let pt be the vertex in Bl ∩P which is
closest to t in G. Figure 6.4 gives an illustration.

pt

ps

Bx = B0 Bl By

s t

x y

Figure 6.4. Example for a possible tree-decomposition.

Claim 1. For each vertex p ∈ P with dG(s, ps) ≤ dG(s, p) ≤ dG(s, pt), dG(p,Q) ≤ 1.5λ.

Proof (Claim). There is a vertex set {ps = p0, p1, . . . , pl, pl+1 = pt} ⊆ P , where pi ∈
Bi−1 ∩ Bi for all positive i ≤ l. Because pi, pi+1 ∈ Bi for 0 ≤ i ≤ l, dG(pi, pi+1) ≤ λ.
Thus, because P is a shortest path, for all p′ ∈ P with dG(s, ps) ≤ dG(s, p′) ≤ dG(s, pt)
there is a vertex pi with 0 ≤ i ≤ l + 1 such that dG(pi, p

′) ≤ 0.5λ. By definition of T ,
each bag Bi (0 ≤ i ≤ l) contains a vertex q ∈ Q, i. e., dG(pi, Q) ≤ λ (0 ≤ i ≤ l + 1).
Therefore, for all p′ ∈ P with dG(s, ps) ≤ dG(s, p′) ≤ dG(s, pt) there is a vertex pi with
0 ≤ i ≤ l + 1 such that dG(p′, Q) ≤ dG(pi, p

′) + dG(pi, Q) ≤ 1.5λ. ♢
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Consider an arbitrary vertex v in G. Let v′ be a vertex in P closest to v and let Pv be a
shortest path from v to v′. If v′ is between ps and pt, i. e., dG(s, ps) ≤ dG(s, v′) ≤ dG(s, pt),
then, by Claim 1, dG(v,Q) ≤ dG(v, v′) + dG(v′, Q) ≤ k + 1.5λ. If Pv intersects a bag
containing a vertex q ∈ Q, dG(v,Q) ≤ k + λ.

Next, consider the case when Pv does not intersect a bag containing a vertex of Q
and (without loss of generality) dG(s, v′) > dG(s, pt). In this case, each path from x to v
intersects Bl.

Claim 2. There is a vertex u ∈ Bl such that dG(u, y) ≤ k + 0.5λ.

Proof (Claim). Let y′ be a vertex in P that is closest to y and let Py be a shortest path
from y to y′. If Py intersects Bl, there is a vertex u ∈ Py ∩Bl with dG(y, u) ≤ k.

If Py does not intersect Bl, then there is a subpath of P starting at pt, containing y′,
and ending in a vertex pl ∈ Bl. Because dG(pt, pl) ≤ λ, dG(y′, {pt, pl}) ≤ 0.5λ. Therefore,
dG(y, {pt, pl}) ≤ dG(y, y′) + dG(y′, {pt, pl}) ≤ k + 0.5λ. ♢

Let u, v′, and z be vertices in Bl such that dG(u, y) ≤ k+0.5λ, v′ is on a shortest path
from x to v, and z ∈ Q. Because dG(x, y) = ecc(x), dG(x, v′) +dG(v′, v) ≤ dG(x, y). Also,
by the triangle inequality, dG(x, y) ≤ dG(x, v′) + dG(v′, y) and dG(v′, y) ≤ dG(v′, u) +
dG(u, y). Because {u, v′, z} ⊆ Bl and dG(u, y) ≤ k + 0.5λ, dG(v′, v) ≤ k + 1.5λ and
therefore dG(z, v) ≤ k + 2.5λ.

Thus, if there is a bag in T containing a vertex of P and a vertex of Q, then
dG(v,Q) ≤ k + 2.5λ for all vertices v in G.

Case 2: There is no bag in T containing vertices of P and Q. Because there is no such
bag, T contains a bag B such that each path from x and y to P intersects B and there is
a vertex z ∈ B ∩Q.

Consider an arbitrary vertex v. If there is a shortest path Pv from v to P which
intersects B, then dG(z, v) ≤ k + λ. If there is no such path, each path from x to v

intersects B. Let v′ ∈ B be a vertex on a shortest path from x to v and let u ∈ B be a
vertex on a shortest path from y to P . Note that dG(u, y) ≤ k.

Because dG(x, y) = ecc(x), dG(x, v′) + dG(v′, v) ≤ dG(x, y). Also, by the triangle
inequality, dG(x, y) ≤ dG(x, v′) + dG(v′, y) and dG(v′, y) ≤ dG(v′, u) + dG(u, y). Because
{u, v′, z} ⊆ B and dG(u, y) < k, dG(v′, v) < k + λ and therefore dG(z, v) < k + 2λ.

Thus, if there is no bag in T containing vertices of P and Q, dG(v,Q) < k + 2λ for
all vertices v in G. □

Recall that a δ-hyperbolic graph has tree-length at most O(δ logn) (Theorem 2.4,
page 9).

Corollary 6.14. Let G be a graph with hyperbolicity δ having a shortest path with
eccentricity k. Also, let x and y be two mutually furthest vertices, i. e., ecc(x) = ecc(y) =
d(x, y). Each shortest path from x to y has eccentricity less than or equal to k+O(δ logn).
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Lemma 6.16, Lemma 6.17, Corollary 6.13, and Corollary 6.14 imply our next result:

Theorem 6.11. Let G be a graph having a shortest path with eccentricity k. If G has
tree-length λ, a shortest path with eccentricity at most k+2.5λ can be found in O(λm) time.
If G has hyperbolicity δ, a shortest path with eccentricity at most k + O(δ logn) can be
found in O(δm) time.

Recall that a graph is chordal if and only if it has tree-length 1 (Theorem 2.1, page 8).

Corollary 6.15. If G is a chordal graph and has a shortest path with eccentricity k, a
shortest path in G with eccentricity at most k + 2 can be found in linear time.

Figure 6.5 gives an example that, for chordal graphs, k + 2 is a tight upper bound for
the eccentricity of the determined shortest path.

uu′

vv′

ws

Figure 6.5. Example for Corollary 6.15. For the shown chordal graph G, a shortest path from s to v
passing v′ has eccentricity 2. This is the minimum for all shortest paths inG. The diametral path from
s to u passing u′ has eccentricity 4 because of its distance to w.

6.3.3 Using Layering Partition

In this subsection, we present an algorithm to compute an approximation for MESP
using the layering partition of a graph. For the remainder of this subsection, let G be a
graph, let T be a layering partition of G, and let ∆ be the maximum cluster diameter
of T . Additionally, let kG and kT be the minimum eccentricities of any shortest path in
G and T , respectively.

First, we show that
kT − 1

2∆ ≤ kG ≤ kT + ∆.

Lemma 6.18.
kT − 1

2∆ ≤ kG

Proof. Let P be a path in G with the start vertex s, the end vertex t, and with
eccentricity kG. Let TP be the subtree of T induced by the clusters of T which intersect P .
Let Q be the shortest path in T from Cs to Ct, where Cs and Ct are the clusters containing
s and t, respectively. Clearly, by the properties of a layering partition, each cluster of Q
is also a cluster of TP .
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Claim 1. For all p ∈ P , dG(p,Q) ≤ 1
2∆.

Proof (Claim). Let CP be a cluster of TP that is not part of Q. If no such cluster exists,
then TP = Q and, thus, dG(p,Q) = 0 for all p ∈ P . Additionally, let CQ be the cluster
of Q which is closest to CP in T and p be a vertex of P in CP .

Due to the properties of a layering partition, there are two vertices ps, pt ∈ P ∩ CQ

with dG(s, ps) < dG(s, p) < dG(s, pt). Because P is a shortest path and the diameter of a
cluster is at most ∆, dG(p, {ps, pt}) ≤ 1

2∆ and, therefore, dG(p,Q) ≤ 1
2∆. ♢

Let v be an arbitrary vertex of G and v′ be a vertex in P with minimal distance
to v. By definition of P , dG(v, v′) ≤ kG. Then, by triangle inequality, dG(v,Q) ≤
dG(v, v′) + dG(v′, Q), and, by Claim 1, dG(v,Q) ≤ kG + 1

2∆. Recall that, for any two
vertices u and v of G, dT (u, v) ≤ dG(u, v) (Lemma 2.6, page 7). Thus, for any vertex v
of G, dT (v,Q) ≤ kG + 1

2∆.
Let v be a vertex of G with maximal distance to Q in T , i. e., dT (v,Q) = eccT (Q).

Therefore, because kT ≤ eccT (Q), kT ≤ dT (v,Q) ≤ kG + 1
2∆. □

Lemma 6.19.
kG ≤ kT + ∆

Proof. Let Q be a path in T with minimum eccentricity, i. e., eccT (Q) = kT , such that
Q starts at the cluster Cs and ends at the cluster Ct. Additionally, let s and t be two
vertices of G with s ∈ Cs and t ∈ Ct and let P be a shortest path from s to t in G.

Consider a vertex v of G with maximal distance to P in G. Hence, kG ≤ eccG(P ) =
dG(v, P ). Because dG(u, v) ≤ dT (u, v) + ∆ for each vertex u of G (Lemma 2.6, page 7), it
follows that dG(v, P ) ≤ dT (v, P ) + ∆. Note that, by the properties of a layering partition,
P intersects all clusters of Q. Thus, dT (v, P ) ≤ dT (v,Q). Additionally, by definition of Q,
dT (v,Q) ≤ eccT (Q) = kT . From combining these observation, it follows that

kG ≤ eccG(P ) = dG(v, P ) ≤ dT (v, P )+∆ ≤ dT (v,Q)+∆ ≤ eccT (Q)+∆ = kT +∆. □

Based on Lemma 6.18 and Lemma 6.19, we can compute an approximation for MESP
in linear time.

Theorem 6.12. For a graph G with minimum eccentricity k, a shortest path P with
eccentricity at most k + 3

2∆ can be computed in linear time.

Proof. First, construct a layering partition T for G, starting at an arbitrary vertex. Next,
find a path Q in T with minimum eccentricity. Let Cs and Ct be the start and end
clusters of Q. Pick two arbitrary vertices s ∈ Cs and t ∈ Ct. Then, compute a shortest
path P from s to t in G and output it. Note that each of these steps can be done in
linear time, including the construction of T (Lemma 2.5, page 7) as well as finding Q
in T (Corollary 6.6).

Note that the construction of P is the same as in the proof of Lemma 6.19. Therefore,
as shown in the proof, eccG(P ) ≤ eccT (Q)+∆ and, by Lemma 6.18, eccG(P ) ≤ k+ 3

2∆. □
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6.4 Relation to Other Parameters

Similar to path-length, one can see the minimum eccentricity k of all shortest paths of a
graph G as a parameter describing the structure of G. In this section, we show how k

relates to the path-length of G and other parameters.

Theorem 6.13. Let G be a graph with path-length λ and path-breadth ρ and let the
minimum eccentricity of all shortest paths be k. Then,

k ≤ λ ≤ 4k + 1 and 1
2k ≤ ρ ≤ 2k + 1.

Proof. As shown in Lemma 5.1 (page 56), it clearly follows from the definition of path-
length that a graph with path-length λ has a shortest path with eccentricity at most λ.
Therefore, k ≤ λ and, since λ ≤ 2ρ, 1

2k ≤ ρ.
Next, let P be a shortest path in G with the start vertex s and ecc(P ) = k. As

shown in Lemma 6.14, the radius of L(s)
i is at most 2k. Thus, its diameter is not larger

than 4k. One can now create a path decomposition X = {X1, . . . , Xn} by creating a
set Xi including layer L(s)

i and all vertices from L
(s)
i−1 which are adjacent to vertices in

L
(s)
i , i. e., Xi = L

(s)
i ∪

{
u

∣∣∣ uv ∈ E, u ∈ L
(s)
i−1, v ∈ L

(s)
i

}
. It is easy to see that the radius

of Xi is at most 2k + 1, the diameter of Xi is at most 4k + 1, and that X is a valid path
decomposition for G, i. e., ρ ≤ 2k + 1 and λ ≤ 4k + 1. □

Recently, Völkel et al. [92] defined a closely related problem called k-Laminarity
problem. It asks if a given graph contains a diametral path with eccentricity at most k.
If a graph contains such a path, it is called k-laminar. Similar, if every diametral path of
a graph has eccentricity at most k, it is called k-strongly laminar.

Theorem 6.14 (Birmelé et al. [10]). Let G be a graph where the minimum eccentricity
of all shortest paths is k. Additionally, let l and s be the minimal values such that G
is l-laminar and s-strongly laminar. Then,

k ≤ l ≤ 4k − 2 and k ≤ s ≤ 4k.

These bounds are tight.

6.5 Solving k-Domination using a MESP

In [68], an O
(
n7)

time algorithm is presented which finds a minimum dominating set
for graphs containing a shortest path with eccentricity 1. Using a similar approach, we
generalise this result to find a minimum k-dominating set for graphs containing a shortest
path with eccentricity k.

Recall that, for a graph G = (V,E), a vertex set D is a k-dominating set if Nk[D] = V .
Additionally, D is a minimum k-dominating set if there is no k-dominating set D′ for G
with |D′| < |D|.
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Lemma 6.20. Let D be a minimum k-dominating set of a graph G and let G have a
shortest path of eccentricity at most k starting at a vertex s. Then, for all non-negative
integers i ≤ ecc(s), ∣∣∣∣∣∣D ∩

i+k⋃
l=i−k

L
(s)
l

∣∣∣∣∣∣ ≤ 6k + 1.

Proof. Let P = {s = v0, v1, . . . , vj} be a shortest path with j ≤ ecc(s) and ecc(P ) ≤ k.
Also, let Di = D∩

⋃i+k
l=i−k L

(s)
l be a set of k-dominating vertices in the layers L(s)

i−k to L(s)
i+k.

Because D is k-dominating, Di can only k-dominate vertices in the layers L(s)
i−2k to L

(s)
i+2k.

By Lemma 6.1, these layers are also k-dominated by Pi = {vi−3k, . . . , vi+3k}. Thus,

Nk[Di] ⊆
i+2k⋃

l=i−2k

L
(s)
l ⊆ Nk[Pi].

Assume that |Di| > |Pi|. Note that |Pi| ≤ 6k + 1. Then, there is a k-dominating set
D′ = (D\Di)∪Pi such that |D| > |D′|. Thus, D is not a minimum k-dominating set. □

Based on Lemma 6.20, Algorithm 6.6 below computes a minimum k-dominating
set for a given graph G = (V,E) with a shortest path of eccentricity k starting at a
vertex s as follows. In the i-th iteration, the algorithm knows all vertex sets S for
which there is a vertex set S′ such that (i) S = S′ ∩

(
L

(s)
i−k ∪ · · · ∪ L

(s)
i−1+k

)
, (ii) the

set S∗ = S ∪
(
S′ ∩ L

(s)
i−1−k

)
k-dominates L(s)

i−1 and has cardinality at most 6k + 1, and
(iii) S′ k-dominates the layers L(s)

0 to L(s)
i−1. Due to Lemma 6.20, a set S∗ with a larger

cardinality cannot be a subset of a minimum dominating set of G and, hence, neither
can be S or S′. Each such set S is stored as a pair (S, S′) in a set Xi−1 where S′ is a
corresponding set with minimum cardinality, i. e., Xi−1 does not contain two pairs (S, S′)
and (T, T ′) with S = T . Note that, since S′ has minimum cardinality, it does not contain
any vertices from any layer L(s)

j with j > i− 1 + k. We show later that, this way, Xi−1
always contains a pair (S, S′) such that S′ is subset of some minimum k-dominating set.

Then, for each pair (S, S′) ∈ Xi−1, the algorithm computes all sets S ∪ U which
k-dominate the layer L(s)

i and have cardinality at most 6k + 1. For such a set, the
sets R = (S ∪ U) \ L(s)

i−k and R′ = S′ ∪ U are created and, if the set Xi does not contain
a pair (P, P ′) with P = R, stored as the pair (R,R′) in Xi. In the case that Xi already
contains such a pair (P, P ′), either, if |R′| < |P ′|, (P, P ′) is replaced by (R,R′) or, if
|R′| ≥ |P ′|, (R,R′) is not added to Xi.

Note that L(s)
i+k = ∅ for i > ecc(s) − k. Therefore, the algorithm can stop after

ecc(s) − k iterations.

Theorem 6.15. For a given graph G and a vertex s which is start vertex of a shortest
path with eccentricity k, Algorithm 6.6 determines a minimum k-dominating set in nO(k)

time.
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Algorithm 6.6: Determines a minimum k-dominating set in a given graph G

containing a shortest path of eccentricity k starting at s.
Input: A graph G, an integer k, and a vertex s which is start vertex of a shortest

path with eccentricity k.
Output: A minimum k-dominating set.

1 Compute the layers L(s)
0 , L

(s)
1 , . . . , L

(s)
ecc(s).

2 Create the set X0 :=
{

(S, S)
∣∣∣ S ⊆ Nk[s]; 0 < |S| ≤ 6k + 1

}
.

3 For i := 1 To ecc(s) − k

4 Create Xi := ∅.
5 For Each (S, S′) ∈ Xi−1

6 For Each U ⊆ L
(s)
i+k with |S ∪ U | ≤ 6k + 1

7 If Nk[S ∪ U ] ⊇ L
(s)
i Then

8 R := (S ∪ U) \ L(s)
i−k

9 R′ := S′ ∪ U

10 If There is no pair (P, P ′) ∈ Xi with P = R Then
11 Insert (R,R′) into Xi.
12 If There is a pair (P, P ′) ∈ Xi with P = R and |R′| < |P ′| Then
13 Replace (P, P ′) in Xi by (R,R′).

14 Among all pairs (S, S′) ∈ Xecc(s)−k for which S′ k-dominates G, determine one
with minimum |S′|, say (D,D′).

15 Output D′.

Proof (Correctness). To prove the correctness, we show by induction that, for each i

with 0 ≤ i ≤ ecc(s) − k, there is a minimum k-dominating set D and a pair (S, S′) ∈ Xi

such that S′ = D ∩
⋃i+k

l=0 L
(s)
l . If this is true for i = ecc(s) − k, then S′ = D. Hence, if

(S, S′) is a pair in Xecc(s)−k such that S′ k-dominates G and has minimum cardinality,
then S′ is a minimum k-dominating set of G.

By construction in line 2, X0 contains all pairs (S, S′) such that S′ is a vertex set with
cardinality at most 6k + 1 which k-dominates L(s)

0 . Thus, the base case is true. Next, by
induction hypothesis and by definition of the pairs (S, S′), there is a minimum dominating
set D and a pair (S, S′) ∈ Xi−1 such that S = S′ ∩

⋃i+k−1
l=i−k L

(s)
l = D ∩

⋃i+k−1
l=i−k L

(s)
l . Let

M = D∩L(s)
i+k. By Lemma 6.20,

∣∣∣D ∩
⋃i+k

l=i−k L
(s)
l

∣∣∣ = |S∪M | ≤ 6k+1. Therefore, there is
an iteration of the loop starting in line 6 with U = M . Because S ∪M = D ∩

⋃i+k
l=i−k L

(s)
l ,

S∪M k-dominates L(s)
i , i. e., Nk[S∪M ] ⊇ L

(s)
i . Thus, the algorithm creates a pair (R,R′)

with R′ = D ∩
⋃i+k

l=0 L
(s)
l (see line 7 to line 9).

Assume that there is a pair (P, P ′) ̸= (R,R′) with P = R and |P ′| ≤ |R′|, i. e.,
(R,R′) will not be stored in Xi or replaced by (P, P ′) (see line 10 to line 13). Because
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P = R, P ′ ∩
⋃i+k

l=i−k+1 L
(s)
l = D ∩

⋃i+k
l=i−k L

(s)
l . Let D′ = P ′ ∪

(
D ∩

⋃ecc(s)−k
l=i−k+1 L

(s)
l

)
. By

definition, P ′ k-dominates ⋃i
l=0 L

(s)
l . Thus, D′ k-dominates ⋃i

l=0 L
(s)
l . Note that D′ ⊇

D∩
(⋃ecc(s)

l=i−k+1 L
(s)
l

)
. Thus, D′ also k-dominates ⋃ecc(s)

l=i+1 L
(s)
l . Therefore, D′ is a minimum

k-dominating set and there is a pair (P, P ′) ∈ Xi such that P ′ = D′ ∩
⋃i+k

l=0 L
(s)
l . □

Proof (Complexity). For a given i, there are no two pairs (S, S′) and (T, T ′) in Xi with
S = T (see line 10 to line 13). Thus, for each set U ⊆ L

(s)
i+k, S ∪U ̸= T ∪U . Additionally,

since S and T intersect at most 2k consecutive layers, S ̸= T for all pairs (S, S′) ∈ Xi

and (T, T ′) ∈ Xj with |i − j| ≥ 2k. Therefore, a set S ∪ U is processed at most O(k)
times by the loop starting in line 6. Hence, because there are at most n6k+1 sets S ∪ U

with |S ∪ U | ≤ 6k + 1, the loop starting in line 6 has at most O
(
n6k+1k

)
iterations.

Next, we show that a single iteration of the loop starting in line 6 requires at most
O(m) time. It takes at most O(m) time to check if Nk[S ∪ U ] ⊇ L

(s)
i (line 7) and at

most O(n) time to construct (R,R′). Determining if Xi contains a pair (P, P ′) with
P = R and (if necessary) replacing it can be achieved in O(n) time as follows. One way
is to use a tree-structure similar to the one we used for Algorithm 6.1. An other (less
memory efficient) option is to use an array Ai of size n6k+1 where each element can store
a pair (S, S′). To determine the index of a pair, assume that each vertex of G has a
unique identifier in the range from 0 to n − 1. Additionally, assume that the vertices
in a set S are ordered by their identifier. Therefore, each set S can be represented by
a unique (6k + 1)-digit number with base n. This number is the index of a pair (S, S′)
in Ai. Hence, it takes at most O(n) time to add (R,R′) to Xi and (if necessary) replace
a pair (P, P ′).

Therefore, the total runtime of the algorithm is O
(
n6k+1km

)
. □

If the start vertex s is unknown, one can use Algorithm 6.1 to, first, find a shortest
path with eccentricity k and, then, use Algorithm 6.6 to find a minimum k-dominating
set.

6.6 Open Questions

Finding Start and End Vertex. The Minimum Eccentricity Shortest Path problem
can be naturally split into two subproblems. First, find the start and end vertices of
an optimal path. Second, for a given vertex pair, find a shortest path between them
with the minimum eccentricity. We know that the second subproblem remains NP-hard
(Corollary 6.2). However, is it possible to determine the start and end vertices of an
optimal path efficiently?

APX-Complete? In Section 6.3.1, we show multiple algorithms which compute a
constant factor approximation in linear or polynomial time. Therefore, MESP is in APX.
It remains an open question if the problem is APX-complete.
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Complexity for Planar Graphs. We show that MESP is NP-complete for planar
graphs (Corollary 6.1) and remains W[2]-hard for sparse graphs (Corollary 6.3). Addi-
tionally, we show that the problem is Fixed Parameter Tractable for graphs with bounded
degree (Corollary 6.5). Since every induced subgraph of a planar graphs has an average
degree less than 6, we conjecture that there is a Fixed Parameter Tractable algorithm to
solve MESP on planar graphs.

Computing Projection Gap. In Section 6.2.3, we show that we can solve MESP
in polynomial time, if the projection gap of a given graph bounded by a constant.
Additionally, we determine an upper bound for the projection gap of some graph classes.
It would be interesting to know how to compute the projection gap for a given graph.
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