
Synchronization in Multimedia Languages for Distributed Systems

A. Guercio1, A. Bansal2, T. Arndt3

1Department of Mathematical Sciences, Kent State University
2Department of Computer Science, Kent State University

3Department of Computer and Information Science, Cleveland State University

1 Introduction

The rising popularity of multimedia content on the web
has led to the development of special-purpose languages
for multimedia authoring and presentations. Examples of
such languages include SMIL [1], VRML [2], and
MPEG4 [3]. These languages support the description of a
multimedia presentation containing multiple media
sources including both natural and synthetic media as well
as media stored in files or streamed live over the network.
Some mechanism for specifying the layout of the media
on the screen is given as well as a set of primitives for
synchronizing the various elements of the presentation.
For example, in SMIL we can specify that two video clips
be displayed in parallel or that one audio clip be started
when another clip finishes. Some of these languages
allow for a limited amount of user interactions. A SMIL
2.0 presentation might allow a user to choose a
soundtrack in one of several different languages by
clicking on a particular area of the presentation. This is
accomplished through the incorporation of the events
defined in a scripting language such as JavaScript.

While these are well suited for the description of
multimedia presentations on the Web, they are of limited
use for creating more general distributed multimedia
applications since general-purpose programming is only
available in the form of scripting languages that have
limited power. To support the construction of more large-
scale applications approaches such as the use of special
multimedia libraries along with a general-purpose
language as in the case of Java and JMF [4] or the
extension of middleware such as Corba [5] have been
proposed. Besides lacking certain essential characteristics
for the development of advanced distributed multimedia
applications that will be noted below, the use of libraries
and/or middleware to achieve synchronization and
perform other media related services results in a less well-
specified approach than can be achieved by directly
extending existing general purpose languages with
multimedia constructs with precisely specified semantics.
This latter is the approach we follow in our work on
multimedia languages that we will describe here.

The language that we want to design should
support general-purpose computation; therefore the
multimedia constructs whose semantics we will describe
should be added to an existing general purpose language
such as C, C++ or Java. This is the approach taken by the
reactive language Esterel [6]. Reactivity is a very

important property for a multimedia language. A reactive
system is one which responds to stimuli from the
environment [7]. In a multimedia system such stimuli
might include user interactions as well as (for example)
events generated by the contents of some media stream.
The multimedia system must be able to interact with the
environment within a short, predefined time period. When
used in this context, the difference between reactive
systems and interactive systems is that while both may
interact with the environment, the latter do not have such
a time constraint. The way in which the environment
interacts with the multimedia system is through the
generation of signals. A signal can be either synchronous
(e.g. the reading of some sensing device) or asynchronous
(e.g. the recognition of a particular face in a video
stream). Our approach to multimedia languages greatly
increases the power and flexibility of synchronization by
providing synchronization constructs which can be
applied not just between media streams, but also between
media streams and (synchronous or asynchronous)
signals. In fact, in our approach multimedia streams are
just a particular type of signal.

The rest of this paper is organized as follows.
Section 2 describes the fundamental concepts of signals
and streams. Section 3 introduces the various
synchronization mechanisms. Section 4 describes the
language constructs. Section 5 discusses related research
while section 6 describes future research.

2 Signals and Streams

Reactive systems respond to signals generated by
the environment. The response must occur within a
predefined time period. The signals may have a value.
They may also be either periodic or aperiodic. An
example of a periodic signal is one which might be
generated by a sensor, like a thermometer, which
periodically sends the temperature in the form of a signal
to the reactive system. An example of an aperiodic signal
might be the coordinate values generated by a user using a
mouse which are generated only when the user moves the
mouse. In order to generalize synchronization of
multimedia streams, we define a multimedia stream as a
particular type of signal. This allows us to apply the
synchronization constructs not just to multimedia streams
but to streams and other signals as well.

Reactive multimedia systems often transform or
respond to multimedia data which is coming from a

sensor such as a digital video camera. The sensor
discretizes the continuous media data, converting it into a
periodic stream. In such a stream, the multimedia data is
associated with a periodic signal. Other types of
interactions can produce an aperiodic stream. An example
might be a security camera which transmits an image only
when motion is detected along a fence line. We model
these streams, both periodic and aperiodic as a pair of
data and attributes where the data is a sequence of tuples
whose elements can be either (elementary) values or
tuples. Since multimedia streams are directly associated
with a signal, we use the words “stream” and “signal”
interchangeably. Formally, we define three types of
streams, periodic, continuous and aperiodic, as follows.

Definition 1: A periodic stream SP is a sequence of
elements associated with periodic signals. SP

i is the i-th
element in the sequence such that the period p does not
vary, that is the time between SP

(i+1) and SP
i is the same as

the time between SP
(j+1) and SP

j, ∀ i,j with i≠j.

Definition 2: A continuous stream is the data produced
continuously by a sensor. A sensor is used to detect
information from the environment. A continuous stream
can be modeled as a periodic stream with periodicity 0 <
p < ε where ε is a small value. The period p represents
the rate at which the signal is produced.

Definition 3: An aperiodic signal can be generated at any
time either by an external stimulus or by an event
generated after a computation or through a user
interaction (such as voice or mouse movement). An
aperiodic stream SA is a sequence (possibly of length one)
of aperiodic signals. In an aperiodic stream SA

i represents
the ith aperiodic signal.

A multimedia stream is then defined as follows.

Definition 4: A multimedia stream S has two
components: attribute-set and data. Three attributes
periodic or aperiodic, number of data elements per unit
time, and type of data (such as audio or video or music or
audiovisual etsc.) are essential. Other attributes are
specific to the streams, and vary with different types of
multimedia streams.

Let us consider an example of a multimedia stream.

Example 1: A quadraphonic audio stream is a continuous
periodic multimedia stream, whose components are:

(i) the data represented as a sequence of sampled
packets;

(ii) the attribute-set A={a0 = periodic, a1 = audio,
a2 = 44,100 samples per second, a3 = no. of
channels = 4, a4 = 16 bits per sample, a5 = media
length, …}.

As an example of an aperiodic stream we have the
following.

Example 2: Aperiodic signals have data and attributes as
well. An example of an aperiodic signal is mouse

movement. The components of this aperiodic signal are:
(i) the data which describes the mouse movement as a
sequence of (X-coordinate, Y-coordinate);
 (ii) the attribute-set A={a0 = aperiodic, a1 =“Mouse
Movement”, …}.

3 Synchronization

Multimedia synchronization represents some
logical relationship (temporal, spatial, spatiotemporal, or
logical) between two or more multimedia streams or
objects [8]. In the context of research in multimedia
computing, however, it is customary to use
synchronization to describe only the temporal relationship
[9]. Synchronization can also mean in t ra -media
synchronization, which defines the temporal constraints
within a single multimedia stream; however in general
synchronization means inter-media synchronization.

Synchronization research can be done on a
number of issues [8]. Among these are modeling and
specification of synchronization requirements,
synchronization algorithms and protocols, and fault
recovery in the presence of failures. Our research falls in
the first category.

In order for multiple streams to be synchronized,
they must share a common clock. In centralized systems it
is possible for all streams to use the same physical clock,
but this is not possible in distributed systems. The use of
multiple physical clocks in such systems is problematic
since clock drift can cause skew between the clocks. In
order to control this, the multimedia data source insert
synchronization points into the streams. The
synchronization points can be media points or event
counters which preserve the partial ordering of events
[10]. In general, inserting more sync points allows for a
finer degree of synchronization, but with the cost of added
overhead. For synchronization purposes, the multimedia
streams need to share a common clock (possibly a logical
clock). This common clock provides a common time-base
used for synchronization purposes [11].

One of the issues we should take into account
while synchronizing media streams is the possibility to
have synchronization skew. For example, for good lip
synchronization the limit of the synch skew is ±80 msec
between audio and video. In general, ±200 msec is still
acceptable. For a video with speaker and voice the limit is
120 msec if the video precedes the voice and 20 msec if
the voice precedes the video [Li04]. The worst sync skew
that can occur depends on how far apart the synch points
have been chosen. The closer the synch points, the more
resources (such as buffer space) are required when the
system is running but more precision in synchronization
will be obtained. How should the synch points be chosen
if we have several streams with different synch points to
be synchronized? Of course, a common synch point for all
the streams must be found. If do not need a very strict
synchronization or we want to save resources, we

explicitly define the synch points to be further apart. For
example, if two streams are dependent and one stream has
sync points every 2 seconds and the other stream every 3
seconds, a resource saving choice would be to select as
the common sync point the least common denominator of
the two synch points, i.e. 6 seconds. However, it is highly
probable that this choice would not provide great results
from the visualization point of view, since it would
increase the chance of perceptual distortion. Therefore,
this choice is not appropriate in our case where
synchronization must be very tight. A more restrictive
option is used by selecting the smallest of the values of
the synch points of the streams.

3.1 Groups

A distributed multimedia system receives input
data from sources, which can be either local or remote.
The input data are either streams of media data or
asynchronous signals produced by the interaction of the
system with the external environment. Because of the
temporality of the input data involved in the model, each
multimedia stream S generated from the source has an
associated clock c ∈ C and forms a multimedia source
Src(S, c). Many streams can be generated at the same
instant from different sources. Some of these streams
must be treated by the distributed reactive multimedia
systems as dependent on one another; other streams must
be treated independently. For example, suppose that an
audio and a video are produced from two distinct sources
and that they must be rendered at the same time. If we
later decide to speed up one of the two streams what
should happen to the second one? If they are dependent
the second should speed up as well, on the other hand if
they are independent, the second one should proceed
undisturbed. We show the dependence of the streams by
defining them to be members of the same group.

Definition 5: A group G is defined recursively as:
 (i) A single multimedia stream such that the time-

base of G is same as the time-base of the
stream.

 (ii) Two or more multimedia streams sharing a
common time base or with their time-bases
related through an equation for proper
synchronization.

Logically, a group is a tree in which the interior
nodes of the tree are groups, and the leaf nodes are
multimedia streams. Groups express of dependency of
streams and operations performed on the group will
influence all of the elements of the group. Operations on a
particular multimedia stream of a group (e.g. scaling of
the time-base) can either be applied in isolation or to all
of the streams in a group to which the stream belongs. We
will call the first type of operation isolated and the second
type synchronized.

3.2 The Synchronization Process

The synchronization process consists of a set of
spatio-temporal functionalities that enables rendering of
multimedia objects in multiple streams to have the same
perception as if it happened in real time. Inter-media
synchronization involving multiple media streams
requires the ability to relate the clock of each stream
either through a common shared time-base or through an
equation relating the two time-bases. If two multimedia
streams are grouped together (are dependent) then
changing the time-base of one stream similarly affects the
time-base of the other stream to maintain synchronization.

Definition 6: Given n streams S1, S2,…, Sn, in a
multimedia group G ={Sj, Sj+1,…, Sm} , a n d a
synchronization function f, the application f(Si) (1 ≤ i ≤ n)
enforces the application of function f on all the
multimedia streams S1, S2, …, Sn such that the
synchronization constraint is maintained.

Consider the lip synching of an audio and a video
stream that are played in a lock step manner to give a
realistic perception. The two streams are grouped so that
time-scaling on either stream (e.g. time stretching or
compressing the video) causes the other stream to be
time-scaled to maintain synchronization.

The grouping of streams is dynamic and event-
driven. That is, certain events may affect a group in one
way while another event may affect the group in another
way. This dynamic behavior can be obtained either by
having multiple orthogonal groups and associating
different events with different groups, or by dynamically
ungrouping and regrouping the streams through language
grouping constructs.

4 Language Constructs

In this section we will describe those language
constructs that support synchronization in reactive
multimedia systems. Due to space limitations, we are not
able to give all of the language constructs. The exact
syntax of the constructs will depend on the host language
that the multimedia constructs are embedded in.

4.1 Stream Definition

Declarations of media streams are given in terms
of the source of the stream (a URL) and the type of the
stream (audio, video, audiovisual, etc.) An asynchronous
stream can be defined as well. The granularity of the sync
points is given as well. Each different type of multimedia
stream has a number of attributes whose values are given
as part of the declaration (e.g. audio attributes include the
name of the stream, number of samples per second,
number of channels, number of bits per sample, etc.).

Example 3: The following code is used to declare and
initialize an audio stream coming from a remote source.
The file name is “speech.mov” and the origin of the
media is indicated by the URI address of the source. The
audio received can be rendered in the systems at 44,100
samples/sec with 16 bits/sample over 2 channels and the
playback rate should not be slower than half of the normal
rate, nor more than twice as fast as the normal rate. The
stream should have a sync point every 200 milliseconds.
The host language is C.

audio_stream mm1={source1, “192.168.2.102”,
“speech.mov”, 44100, 2, 16, 0.5, 2.0, .2}

4.2 Grouping Constructs

Media streams are grouped together when
dependency between streams needs to be stated explicitly.
In particular, grouping clusters one or more media
streams or groups for synchronization. The groups are
both dynamic and hierarchical.

Example 4: Suppose we have a video that shows a opera
singer singing and we want to add the audio in lip synch
mode. To keep up the impression that the soprano is
really singing, if we speed up the video, we expect the
audio to speed up as well. In order to provide this type of
synchronization, we need to indicate that the audio and
the video are somehow dependent on each other. Groups
are an elegant and efficient way to specify
synchronization on multiple streams. The following code
groups the two streams.

group soprano = {“videostream_opera”,
“audiostream_opera”}

Groups are hierarchical since a group member
can be a previously declared group. They are dynamic
since we have commands ungroup , to dissolve an
existing group, add_group, to add elements to a group,
delete_group to remove elements from a group, and
regroup to add elements to a new group. Groups have
sync points as well. They can either be given explicitly, or
computed implicitly as the smallest value of the elements
of the group (chosen so as not to lose precision).

4.3 Event Definition

Our constructs make heavy use of events. An
event may be generated based on the characteristics of the
multimedia streams. For example, the appearance of a
particular face in a video stream or a particular voice in an
audio stream might cause an event to be generated. The
events in turn can affect the synchronization of multiple
streams. Events are defined based on the satisfaction of
one or more partial conditions. Partial conditions can
involve the presence or absence of some signal, the
matching of an attribute value or some other condition.
Events have a destination (module or object or

synchronization process) that they are sent to, as well start
and end times and a priority.

Example 5: A user performs a right click of the mouse
every time he or she wants to start a video clip; however
the video clip cannot be started until the current video clip
is terminated and the video must be terminated within a
reasonably small range of time (within 5 seconds)
otherwise the request is dropped.

partial_condition_signal_presence cond1 = {
// Test for signal presence

NewVideoClip,
// Name of the signal – it is present when
// the video is playing

yes } // Test for its presence
partial_condition_signal_presence cond2 = {

RightClick,
// Present when user right clicks

yes,
// Test for presence (not absence)

0, 5 }
// It was present in last 5 seconds
event start_video = { player1,
// Destination of event is renderer

cond1,
// The partial conditions of the event

cond2 }

4.4 Synchronization

One basic synchronization construct is the loop.
It has a number of elements which are played one or more
times in sequence. The number of times the loop is
repeated can be specified along with a delay time.

Example 6: In the following example, the second video
stream is played three seconds after the first. The pair
repeats two times.

loop {
times = 2,
element = video_stream1,
delay = 3,
element = video_stream2

};

Another important type of synchronization is
when we want to play two or more streams concurrently.
We support this type of synchronization with the parloop
construct. The syntax is similar to the loop construct
however the elements of the parloop are played in parallel
rather than sequentially. Loops can also be nested as
shown in the following example.

parloop {
times = 4,
element = audio_stream,
loop {

times = 2,
element = video_stream1,
element = video_stream2

}
}

We can also specify that we want two or more
media streams to play in parallel (in other words start at
the same time) and end at the same time as well in a
parloop construct. In order for this to occur in general one
or more of the streams must be stretched (scaled). In order

for the scaling to occur, the scaling constraints given as
part of the Quality of Service requirements in the
declaration of the stream must not be violated.

Loops and parloops are the basic constructs used
for synchronization of periodic data streams. They are
also the mechanism used to start the playback (rendering)
of a multimedia data stream. If we wish to play a stream
just once, we use a loop construct with a single element
and a single loop time. Note also that the presence of a
loop embedded in a program does not cause the execution
of the rest of the program to wait until the playback
finishes – the execution continues concurrently with the
rendering of the media.

4.5 Preemption Constructs

Loops, including infinite loops can be ended
prematurely in response to an event. For example,
consider a situation where a sequence of advertisements
are being displayed on a public terminal, and suddenly a
weather warning must interrupt or terminate the current
show to provide urgent news. The warning is sent as an
asynchronous signal, which may generate an alert event
and require showing a text stream, which explains the
type of emergency. Other multimedia streams such as an
audio signal or a video could follow the text. This
situation requires the specification of an abortion of a
loop based on the presence of an asynchronous signal (for
example the pressing of a button). The advertisement is
put inside a loop, and the text media is displayed after the
asynchronous signal aborts the loop. There are 2 types of
abortion: "strong", "weak" which can be specified in the
loop or parloop construct:

Strong abortion performs the immediate
interruption at the next multimedia sync point without
waiting for the completion of the current cycle of the loop
as soon as an aperiodic signal is present.

Weak abortion performs preemption as soon an
aperiodic signal is present but will complete the “current”
loop cycle that is playing when the signal occurs.

Suppose that we have declared a group
consisting of a video stream – MyAdvertisement, a text
stream – MyText, and an audio stream – MyAudio.
Further assume that we have declared sync points every
two seconds for this group. If we want to stop playing
MyAdvertisement when an aperiodic signal named
StopAdv is present, we can do this as follows:f

loop {
times = 3,
abort_when = StopAdv,
abort_type = strong,
element = MyAdvertisement

}

In this example, even though the abort type is
strong, we will wait until the next sync point in the media
stream to abort the rendering of the stream in order to
maintain synchronization with other members of the

group. In the worst case, we will wait 2 seconds from the
time the signal is present until the abortion occurs.

Suppose the advertisement is shown in sequence
with some text. Suppose further that in the presence of the
aperiodic signal StopAdv we want to skip the rest of the
sequence of ads and text, and skip to the song which is
supposed to follow them. However, we don’t want to
interrupt an advertisement which has already started. In
this case we can use weak abortion as shown below.

loop {
times = 1,
loop {

times = 1,
abort_when = StopAdv,
abort_type = weak,
element = MyAdvertisement,
loop {

times = 3,
element = MyText

}
}
element = Song

}

We can further control the weakness of the
abortion and specify other possible synchronization
situations by introducing the delayed abort. In this case,
the delay value is added to the time required to reach the
first synch point after the delay is over. That means that
the media stream is rendered for the delay period plus the
time to reach the first sync point after the delay is over.
Again, let us consider an example.

loop {
times = 1,
abort_when = StopAdv,
delay = 3,
element = MyAdvertisement

}

In this example, since MyAdvertisement has
sync points every 2 seconds and assuming that strong
abortion is the default, the abort will occur between 3 and
5 seconds after presence of the signal StopAdv. If the
loop ends before this time, no further delay occurs.

5 Related Research

Athwal [12f] presents a methodology for the
synchronization of multimedia streams for engineering
and scientific analysis. Since the scientific and
engineering phenomena which are recorded and
subsequently played back are frequently not well
correlated to the human’s visual and cognitive timeframe,
it is quite possible that the previously captured data must
be played back in a different timeframe – perhaps using
slow motion or time lapse or some more complex
variability in the playback rate. This is termed time
elasticity and it has some relationship to our notion of
stretching grouped multimedia streams. It should be noted
that the methods described in [12] are suitable only for
prerecorded multimedia streams and that much of the
methodology is concerned with minimizing resource
usage during the synchronized play back of such streams.

Besides the limitations as far as application area and type
of multimedia streams, the focus of that work is different
from our research in that the focus is on implementation
details for systems for synchronization rather than on
languages to allow for the expression of synchronization.
The work also differs in that it lacks the notion of sync
points, which can be defined for our groups and loops,
which allow a high level of flexibility for synchronizing
multimedia streams under many different quality of
service requirements. Furthermore, interaction of
multimedia streams with aperiodic signals is not even
considered. The same points about the difference of focus
of our work and this one could be made about most of the
other recent research on synchronization.

Cameron [13] proposes a model for reactivity in
multimedia systems; however their notion of reactivity is
much different than ours. They discuss multimedia
systems in which a multimedia artifact (i.e. a multimedia
stream) can react to discrete events, such as an audio
player reaching the end of a track as well as to
continuously evolving behaviors such as the volume of an
audio track. They make a distinction between a series of
discrete events and a continuously evolving behavior.
Since behavior is an author-level abstraction, which
therefore hides implementation details of the media
streams, the approach is more suited for use as a high-
level authoring tool for multimedia presentations rather
than for construction of distributed multimedia systems.

A number of XML-based multimedia languages
have been proposed lately. None of them provide all of
the capabilities described in this paper, although some
provide complementary capabilities. For example, Gu
[14] introduces HQML, an XML-based language to
express the quality of service requirements of distributed
multimedia systems. Another example is the multi-modal
presentation markup language (MPML) [15] which is an
easy to use XML-based language enabling authors to
script web-based interaction scenarios featuring life-like
animated characters.

6 Conclusions and Future Research

A model for distributed multimedia systems
which incorporates the synchronization constructs
discussed in this paper along with an active repository
which allows for the constant testing of the multimedia
data for deterministic and non-deterministic events is
given in [16]. The behavioral semantics of the language
constructs have been developed as well in order to
provide a formalism for verification, compilation, and
validation. The semantics incorporates the temporality
and the communication aspects of the system and uses a
variation of the π-calculus [17] for modeling distributed
reactive multimedia systems. The π-calculus has its roots
in the CCS (Calculus of Communicating Systems) [18,
19, 20], which is able to describe interactive concurrent
systems as well as traditional computation. The π-calculus

adds to the CCS, mobility of the participating processes
and uses the transmission of processes as values, and the
representation of data structures as processes. This
research will be presented in a future paper.

References

1. Synchronized Multimedia Integration Language 2.0
Specification, http://www.w3.org/TR/smil20/ Aug. 2001.
2. Virtual Reality Modeling Language, ISO/IEC14772, 1997
http://www.web3d.org/x3d/specifications/vrml/ISO_IEC_14772
-All/part1/concepts.html.
3. H. Kalva, L. Cheok, A. Eleftheriadis, “MPEG-4 Systems and
Applications”, Proc. of the 7th ACM Intl. Conf. on Multimedia
(Part 2), Orlando, Florida, pp. 192-192, October 1999.
4. R. Gordon, S. Talley, “Essential JMF – Java Media
Framework”, Prentice Hall, 1999.
5. Object Management Group, “Control and management of A/V
streams specification”, OMG Doc. telecom/97-05-07, 1997.
6. G. Berry, G. Gonthier, “The ESTEREL Synchronous
Programming Language: Design, Semantics, Implementation,”
Sci. of Comp. Progr. vol. 19, no. 2, pp. 87-152, Nov. 1992.
7. G. Berry, “The Foundations of Esterel”, in Proof, Language
and Interaction: Essays in Honour of Robin Milner, G. Plotkin,
C. Stirling and M. Tofte ed., MIT Press, pp. 425-454, June 2000.
8. N.D. Georganas, R. Steinmetz, T. Nakagawa, “Guest Editorial
on Synchronization Issues in Multimedia Communication”,
IEEE J. on Sel. Areas in Comm. vol. 14, no. 1, pp. 1-4, 1996.
9. L. Li, A. Karmouch, N.D. Georganas, “Multimedia
Teleorchestra with Independent Sources: Part 1&2 – Temporal
Modeling of Collaborative Multimedia Scenarios”,
ACM/Springer Multimedia Sys. vol. 1, no. 4, pp. 143-153, 1994.
10. L. Lamport, "Time, Clocks and the Ordering of Events in a
Distributed System", Comm. of the ACM, vol. 21, no. 7, pp. 558-
564, 1978.
11. R. Gordon, S. Talley, “Essential JMF – Java Media
Framework”, Prentice Hall, 1999.
12. C.S. Athwal, J. Robinson, “Synchronized Multimedia for
Engineering and Scientific Analysis”, Multimedia Systems, vol.
9, pp. 365-377, 2003.
13. H. Cameron, P. King, S. Thompson, “Modeling Reactive
Multimedia: Events and Behaviors”, Multimedia Tools and
Applications, vol. 19, pp. 53-77, 2003.
14. X. Gu, K. Nahrstedt, W. Yuan, D. Wichadakul, "An XML-
based Quality of Service Enabling Language for the Web", J. of
Visual Lang. and Comp. vol.13, no. 1, pp. 61-95, 2002.
15. H. Prendinger, S. Descamps, M. Ishizuka, “MPML: a
Markup Language for Controlling the Behavior of Life-like
Characters”, J. of Visual Lang. and Comp. vol. 15, pp. 183-203,
2004.
16. A. Guercio, A.K. Bansal, “TANDEM - Transmitting
Asynchronous Non Deterministic and Deterministic Events in
Multimedia Systems over the Internet”, Proc, of DMS 2004, pp.
57-62.
17. R. Milner, “Communicating and Mobile Systems; the π-
calculus”, Cambridge University Press, 1999.
18. R. Milner, “A Calculus of Communicating Systems”, LNCS,
vol. 92, Springer-Verlag, 1980.
19. R. Milner, “Communication and Concurrency”, Prentice
Hall, 1989.
20. Y. Wang, “CSS + Time = an Interleaving Model for Real
Time”, LNCS 510, pp. 217-228, 1991.

