


 761

Exploiting Systemic Biological Modeling for Trigger Based Adaptation in 
Networked Intelligent Multi-Agent Systems 

 
Arvind K. Bansal 

Department of Computer Science 
Kent State University, Kent, OH 44242 

 
 

Abstract 
 

Current day networked intelligent agent based systems have 
limited capability of adaptability, self-repair, adaptation, and 
self-reconfiguration under changing external conditions.  In past, 
evolutionary algorithms have experimented with random 
mutation and heuristic selection based evolution for self-
adaptation. However, little research has been done to explore 
dynamic adaptive control to take care of sudden external stress 
and events at systemic response level.  This paper introduces a 
new message based biological model of intelligent multi-agent 
based systems that represents agents as self-correcting 
dynamically modifiable genes – a reconfigurable set of 
dynamically regulated built-in functions, and system of agents as 
dynamically adaptable event-trigger controlled interacting 
pathways that can be altered and reconfigured in response to 
external stress and events.  The model supports the integration of 
message, code, trigger, and belief states, and supports 
interchangeability of message, code, and trigger to provide 
dynamic adaptive control.  The model and its implementation 
have been described. 
 
Key words: Adaptability, intelligent agent, artificial intelligence 
biological model, distributed, genes, pathway, Systemic 
 
 
Introduction 
 
As the knowledge based systems are becoming more 
complex and networked, there is an increasing demand for 
adaptive autonomous intelligent multi-agent systems [ 13, 
18] interacting over the Internet.  An autonomous agent 
has its own belief system, and could be used for multiple 
functionalities depending upon the environment.  In a 
networked environment an ideal agent should be able to 
adapt and dynamically reconfigure itself in response to the 
external environment to avoid system failure and to 
provide adequate response.  The lack of such adaptation 
would increase the probability of cascade failure of 
interacting agents, hamper the overall system response, 
and negatively affect the capability of decision making by 
the humans in the loop. 

Despite advances in the technology of developing 
intelligent agents, current day intelligent agent based 
systems [13, 18] do not adapt and reconfigure well to the 
sudden change in external conditions, and do not support 

complex adaptable protection against system failure 
which is a hall mark of biological systems. 
 Biological systems [2] have remarkable capability to 
adapt through genetic evolution, adaptive modification of 
system of interacting pathways, gene-repair, and gene 
modification through recombination and rearrangement.  
Evolution provides time based self-adaptation by 
generating new desirable random mutations.  Adaptive 
modification provides dynamic selection and regulation of 
already existing set of functions at the systemic level of 
pathways.  Adaptive control involves promoter based 
switching and regulation of gene functions, and 
invocation of latent pathways (or shutdown of pathways) 
in response to external events.  Biological systems 
support controlled interchangeability between messages, 
triggers, and code (genetic segments), and message 
directed dynamic code and interaction modification 
through dynamic insertion, deletion, and suspension of 
genetic segment to handle environmental stress. 
 Evolutionary computing [1, 9] algorithms have 
experimented with gene based models to provide 
continuously evolving intelligent systems [10] by 
exploiting random point mutation of genes and limited 
random genome rearrangement such as cross-over of gene 
segments [1] combined with heuristic selection [11]. 
 The evolutionary systems lack the capability to 
model genes as interacting message (or event) 
controllable set of domains, and do not take into account 
dynamically modifiable selection, regulation, invocation 
of latent functions, and systemic interaction of various 
units at multiple hierarchical control levels such as team 
of cooperating agents and interacting pathways.  Little 
exploration has been done to provide dynamic adaptive 
control by: (1) dynamic modification of interaction 
between pathways, (2) dynamic modification of 
interaction between coordinating agents, and (3) dynamic 
modification of interaction between functional domains 
within an agent in response to external stress, external 
messages, and event based triggers.  Only recently 
researchers have started looking into systemic aspect of 
biological systems to model complex systems [12] based 
upon the theory of cybernetics and control systems [3]. 

This paper models complex intelligent systems as a 
set of interacting communicating pathways.  Each 
pathway consists of multiple interacting team of 
coordinating agents that are modeled as operons ― 

1082-3409/04 $20.00 @2004 IEEE 



 762

multiple genes working in tandem to compose high level 
functionality.  Each cooperating team of agents has a 
common goal and shares a blackboard for the ease of 
communication.  Genes are dynamically modifiable, and 
are modeled as a set of interacting domains.  Each domain 
is a symbolic reference to a built-in function, and also acts 
as an identifier for domain-domain interaction. The 
intelligent agents are modified using dynamic domain 
insertion, domain fusion, domain deletion, domain 
duplication and domain suspension temporarily or 
indefinitely in response to event triggers. 

 The overall contributions of this paper are as follows: 
1. The model supports interacting hierarchical 

information processing, dynamic reconfiguration and 
dynamic adaptive control of complex units in 
response to messages, sudden stress, and triggers. 

2. The computing units are reorganized through 
insertion, deletion, duplication of built-in core 
functions or derived functions, suspension and 
regulation of agents and/or functionalities based upon 
message communication between different units.   

3. The model supports transformation of message to 
code, message to trigger, code to trigger which 
provides a unique capability to dynamically change 
the code to adapt to the external changes. 

4. The interaction between multiple functional domains 
within a gene can be modified (permanently or 
temporarily) either through external message or in 
response to an event based trigger. 

 The system has been implemented, and is running on 
a cluster of four distributed computers.  The higher level 
system has been coded using Sicstus Prolog, and built-in 
functions have been coded using C and C++ library.  The 
system has been applied to an image capture and 
processing system [15]. 
 The overall paper is organized as follows.  Section 2 
describes the needed background.  Section 3 describes a 
functional model of biological agents and dynamic 
modification of agent’s functionality using the notion of 
dynamic affinity matrix.  Section 4 describes the 
hierarchical construction of biological agents. System 5 
describes the overall behavior of bio-agent systems. 
Section 6 describes the implementation architecture of the 
genome based bio-agent systems and check-pointing as a 
means to reuse the newly adapted system.  Section 7 
describes briefly an application.  Section 8 describes the 
related works.  The last section concludes the paper, and 
describes the future work. 
 
 
2.  Background 
 
This section describes the needed concepts and definitions 
of a single cell based system, new graph based definitions 
to model dynamic domain-domain interaction to model an 

agent based system, and logical clock based 
communication to maintain serial property of events in a 
distributed multi process environment.  
 
 
2.1  Biological concepts 
 
An organism consists of multiples types of interacting 
differentiated cells with different functionality.  Each cell 
[2] is a set of active interacting pathways.  Each pathway 
models a control flow network of transformation of 
biochemical substrates.  Each pathway consists of 
multiple operons and genes (or the corresponding 
proteins).  Proteins are formed by transcription and 
translation of genes.  Each operon is a set of genes 
involved in a common functionality, and share a common 
promoter — a control sequence of nucleotides used to 
enhance or repress the rate of transcription and translation 
of the a gene and thus affecting the overall processing  
rate of biochemical substrates.  The difference between 
the operon and a gene is that there is a single promoter in 
an operon despite having multiple genes. 
 Each gene consists of multiple interacting domains 
using hydrogen bonding, electrostatic charge, and to some 
extent covalent bonds.  Domain-domain interaction is 
present as: (1) interaction between two domains within 
the same gene, (2) interaction between a domain of a gene 
and a messenger protein, and (3) interaction between a 
domain of a gene and the domain of another gene of a 
foreign object.  Interaction between the domains within 
the same gene causes a gene to dynamically reconfigure 
resulting into change of gene-function or splitting of the 
gene.  The interaction between a domain and another 
domain is also used to insert (possibly temporarily) a gene 
segment, dynamically change the configuration of a gene, 
splice a gene, expose a gene’s surface to be attacked by 
other genes, and enhance or repress the expression of 
gene to a protein. 
 
 
 
 

Figure 1. The organization of a gene 
 

 Pathways [2] are of many types.  Some of the important 
pathways relevant for modeling information processing 
systems are: signaling pathways — information carriers 
used to regulate the activity of another gene by binding 
the communicated messenger protein to the promoters, 
metabolic pathways — used to transform the input 
biochemical compound for the required cell activity, 
transcription and translation pathways — used to 
generate multiple copies of proteins using the same gene 
template, sensor pathways — used to sense the 
environment and send signal to cells to adapt accordingly, 

Promoter Domains 



 763

transporter pathways — used to bring nutrients and 
information from external environment to the inside the 
cell, stress-response pathways – used to regulate or 
suspend the currently active pathways  (or activate latent 
pathways) in response to sudden extreme change in the 
environment, gene-repair pathways − used to correct the  
faulty genes, and pathways involved in providing 
immunity.  Many of these pathways are intricately 
interrelated through triggers initiated through 
concentration of substrates and/or foreign bodies, 
proximity of gene-domains to each other, and 
environmental conditions. 
 A plasmid [2] is an independently replicating element 
consisting of a bag of genes which transfer from one 
genome to another genome, and causes genome 
rearrangement.  A transposon [2] is a mobile genetic 
element which moves to different specific sites within a 
genome carrying with it neighboring genes to cause 
genome rearrangement. 
 A bacterial organism reacts to the changes in the external 
environment using stress response adaptation and 
evolution based adaptation.  Evolution based adaptation 
could be point mutation where an insertion/deletion of an 
individual molecule (adenine, cytosine, guanine, thymine) 
changes the gene sequence causing a change in 
functionality or through genome rearrangement where a 
subsequence of a gene gets replaced to another gene  
Genome rearrangement could be caused by transferring a 
domain to other gene either from external genomes such 
as plasmids or lateral gene transfer [2, 6], within the same 
genome through crossovers [2] and through transposons.  
Stress response is a trigger based activity, may activate a 
latent pathway, cause a subset of current pathways to 
become extinct or temporarily suspended by make some 
genes dormant, or reconfigure the genes so that they do 
not support a subset of interactions.  Heat shock and cold 
shock proteins [8] are examples of stress response. 
 The biological systems use double helix structure for 
stability and error correction against random mutation.  
The mutation of nucleotides can be corrected by gene-
repair genes by looking at the complementary strand. 
 
 
2.2 Graph related concepts 
 
This paper models domain interactions within a gene 
using affinity relationship.  Affinity is an asymmetric 
transitive relationship.  Asymmetry and transitivity of 
affinity relationship provides the directionality in the 
processing of information.  A domain interacts with 
another domain(s) with highest affinity.  The affinity 
between domains within a gene is modeled as a weighted 
directed graph (see Figure 2).  The weight of an edge 
shows the affinity of the source node to the destination 
node.  A maximum affinity edge from a node has the 
highest weight among all the outgoing edges from the 

node.  Each node with at least one outgoing edge has at 
least one maximum affinity edge.  A maximum affinity 
path consists of maximum affinity edges connecting two 
nodes.  The information is passed along the maximum 
affinity edges from source node to sink node. 
 
Example 1  Consider the weighted directed graph in 
Figure 2.  The node V1 is a source node, and the node V5 
is a sink node.  The edges (V1, V2), (V1, V3), (V2, V5), 
(V3, V4), (V4, V2) and (V4, V5) have the weights 8, 20, 2, 
10, 5, 9, and 4 respectively.  The maximum affinity edge 
from the node V1 is (V1, V3), the maximum affinity edge 
from the node V2 is (V2, V5) as it is the only outgoing edge 
from V2.  The maximum affinity path between the nodes 
V1 and V5 is (V1, V3) (V3, V4) (V4, V2) (V2, V5) as marked by 
bold lines in Figure 2. 
 
 
 
 
 
 
 
 
 

Figure 2. A maximum affinity path 
 
The maximum affinity path changes if at least one of the 
maximum affinity edges are deleted, a new incident edge 
with a weight higher than the current maximum affinity 
edge is inserted, or if the weights of the maximum affinity 
edges are altered. 
 
Example 2 Let us consider the graph in Figure 2.  The 
deletion of the maximum affinity edge (V3, V4) will make 
the maximum affinity path between the nodes V1 and V5 
as (V1, V3 ) (V3, V5 ).  Similarly insertion of one or more 
nodes will also change the maximum affinity path. 
 A weighted graph is represented in the matrix form by 
representing the nodes as rows and columns and 
representing the edge (Vi, Vj) connectivity by the 
corresponding non zero weight in the ith row and jth 
column.  Using matrix representation, the maximum 
affinity edges are identified by finding the maximum 
nonzero value in the corresponding row vector. 
 
 
2.3 Logical clocks and communication 
 
In a distributed processing system involving multiple 
processes, the order of events can not be ascertained by  
physical clocks due to difference in physical clocks in 
different processors and the scheduling delay of the 
processes within the same processors.  Instead a 
distributed logical clock [14] is tagged with the events to 

V2

20

8

10
5 

9
4 

2 

V1

V3

V4 V5



 764

maintain their serial order.  A distributed logical clock is a 
vector of event counters.  An event could be change of 
belief state or transmission of a message to another agent.  
This paper models an event counter in an agent as a pair 
of the form (state-counter, message counter) [5].  A 
message counter is incremented when a message is 
transmitted from an agent or a message is received from 
other agents.  A state counter is incremented when an 
agent processes an incoming data or it is dynamically 
reconfigured.  The reconfiguring operations could be 
modification of a domain, modification of affinity matrix, 
or suspension (or activation) of an agent.  An event 
counter (S1, M1) precedes another event counter (S2, M2) if 
S1 < S2 and M1 ≤ M2 or if M1 < M2 and S1 ≤ S2. 
 A logical clock T1 precedes another logical clock T2 if 
there exists at least one event counter in T1 which 
precedes the corresponding event-counter in T2 and all 
other counters in T1 are less than or equal to the 
corresponding counters in T2. 
 Each agent transmits three types of counter-pairs: its 
own counter-pairs, counter-pairs of logical neighbors, and 
the counter-pairs received by the agent-team in the 
previous messages.  The rationale is that these three 
counter-pairs are needed in a logical clock to ascertain if 
the message sent by an agent has been received by the 
destination agent [5].  It has been shown in [5] that if the 
time-stamp received by any neighbor of the agent 
transmitting an information I follows the time-stamp 
transmitted with I to a neighbor then the transmitted 
message has been received by the intended destination. 
 
 
3. Functional Model of Bio-intelligent Agents 
 
There are four basic units: information processing units 
(genes), information carrying units (messages), control 
units (promoters or triggers within messages), and belief 
systems within agents.  In our computational model we do 
not use the notion of proteins in modeling pathways.  
Instead we substitute proteins by genes.  The rationale for 
this approach is that biological systems sense the signals 
based upon concentration of the message units and thus 
need multiple copies of proteins, while our system 
recognizes even a single trigger in the information.  This 
variation provides computational efficiency in our model.  
The basic unit of functionality in modeling a bio-
intelligent agent is a gene.  A gene is modeled as a pair of 
the form (P, D) where P is a control-unit analogous to the 
promoter inside a gene, and D is an ordered set <D1, D2, 
…, DI, … DM> (M > 0) of set of interacting domains 
within a gene.  The control P is a set of segments <P1, P2, 
…., PI, …, PM> (M > 0) such that each control-segment PI 
controls the activity of the corresponding domain DI by 
shutting a domain, or turning on a suspended domain.  
Each PI is a quadruple of the form (Identifier sequence, 

State, Action, Counter).  The identifier-sequence is used 
to bind with the trigger-sequences from other agents or 
other domains within the same agent, state is either on or 
off or suspended, and a counter provides the transition 
back to original state after a certain time.  The counter is 
decremented each time an event occurs.  An action could 
be splitting the corresponding gene at a particular domain, 
suspending the domain activity, deleting the domain, 
fusing two adjacent domains, or attaching domains in an 
incoming message to the gene to modify the functionality 
of the agent. 
 The interaction between the domains within an agent is 
modeled by an N X N affinity matrix where N is the 
number of domains in the agent.  The first domain of an 
agent reads the input data from the corresponding 
blackboard or input buffer, and the last domain writes the 
data to the corresponding blackboard or output buffer.  
The interaction is based upon an affinity value Dij 
between the domains Di and Dj. 
 
3.1  Affinity matrix modifications 
 
The affinity matrix changes dynamically in response to a 
domain-domain interaction.  Affinity matrix is modified 
using (1) insertion/deletion of a domain, (2) domain 
duplication, (3) domain splitting, (4) fusion of two 
domains (5) suspension of a gene, and (6) built in timed 
internal modification within a domain as explained in 
Example 3.  All these operations could be either in 
response to an event communicated through a message, or 
built in the counter in the control-segment of the 
corresponding domain.  Except deletion which is a 
permanent operation, all other operations such as 
suspension, insertion, fusion, duplication, and splitting 
can be temporally constrained and could be transient.  A 
system is transient if the system gradually recovers its 
original state over a period of time after the condition that 
caused the change is no more present. 
 When a gene is inserted/deleted, the affinity matrix 
and the promoter area are dynamically modified: In case 
of insertion, the affinity matrix becomes (N + 1) X (N + 
1`) matrix, and in case of deletion the affinity matrix 
becomes (N – 1) X (N – 1) matrix.  Duplication of a 
domain is treated as insertion with an exception that there 
are no edges between the original node and the duplicated 
node.  Similarly, fusion reduces the size of the matrix by 
1, and creates an entry in a dynamic virtual table of 
composite functionality which refers to sequence of 
functions in the built-in function table. 
 
Example 3  Consider an image processing agent which 
takes a raw image and compresses it.  There are four 
domains in the gene: Domain 1 reads an image file, and 
passes the file to Domain 2.  Domain 2 performs lossy 
compression of the incoming image by 60% every cycle.  
Domain 3 performs lossless compression every 10th cycle, 



 765

and the Domain 4 writes the compressed image every 
cycle to the output buffer.  All four domains are controlled 
by a promoter comprised of four segments one for each 
domain.  The control-segment for Domain 3 counts the 
incoming messages, and enhances the affinity of the 
corresponding domain(s) every 10th cycle temporarily for 
one cycle making it maximum affinity.  The control 
segment can also be controlled by messages transmitted 
by other agents or other domains within the same agent.  
Note that every control-segment is pre-programmed to 
take a predefined action.  The overall gene with initial 
affinity matrix is given in Figure 3. 
 According to the affinity matrix, the input domain has 
maximum affinity for Domain 2, and Domain 2 has 
maximum affinity for the output domain.  Every 10th 
cycle, the matrix changes for the next cycle such that 
Domain 1 has maximum affinity for Domain 3, and 
Domain 3 has maximum affinity for the output Domain 4. 

 

0 9 6 0 
0 0 0 9 

0 0 0 9 
0 0 0 0 

 
Figure 3.  Domain affinity matrix in a bio-agent 

 
 
4.  Building Bio-intelligent Agents 
 
 Like biological system, the domain signature is a 
sequence of characters taken from the alphabet {A, C, G, 
T}. The advantage of a signature is to create rules for (1) 
specific pair-wise dynamic interaction between multiple 
domains, (2) to provide identification mechanism in the 
domains so that intruders could be avoided or destroyed, 
and (3) to provide indexing to look up the corresponding 
built-in function corresponding to a domain. 
 The alphabet has been modeled as 4-bit combination 
{0011, 0110, 1001, 1100}.  Each 4-bit combination is two 
Hamming distance away to avoid ambiguity in error 
detection and error correction if one of the bits is 
corrupted.  It can be seen that the pairs 0011 and 1100 are 
complement of each other under Boolean logic, and pairs 
0110 and 1001 are complement of each other.  Two 
characters are complements if the result of their logical-
AND is 0.  In order to emulate the double stranding for 
signature repair, each byte contains the information in the 
pair form (X, ~X).  where X ∈  {0011, 0110, 1001, 1100}, 
and ~X is the complement of X.  A corrupted bit is 
corrected by identifying the character X that is not an 
element of the alphabet, and replacing X by the 
complement of character ~X stored along side.  Every 
domain is terminated by a sequence of repeats of the same 
character such as ‘AAAAAAAAAA’.  Like biological 

systems, repeat characters are used to avoid any 
misinterpretation or loss of information due to frame shift 
caused by character deletion.  At the same time, they 
allow for variable length domains caused by domain 
fusion/splitting. 
  An operon is modeled as a (P, Γ1, Γ2, …, ΓM) where M 
denotes the number of  genes, and each subscripted ΓI 
represents the ordered set of domains in a gene. The 
control-unit is modeled as a pair of (Global control, 
ordered set of segments controlling domains in the 
genes).  The global control shuts off or switches on all the 
genes, while individual segments provide individual 
control of the segments. 
 A domain in a gene is controlled by (1) interaction of 
message identifier and control segment identifier, or (2) 
internal clock controlled interaction.  There is a built-in 
association table which describes the interaction between 
two domains.  After a message is transmitted, all the 
control segments receiving the message check against the 
binding association table to match pair of binding 
patterns.  After a successful match, the corresponding 
control segment reacts by binding to the identifier 
sequence of the message.  Otherwise, the message is 
purged. 
 An agent-team is connected to other neighboring 
agent-teams within the same pathway (or other related 
pathways) through input-output relationships for 
processing the incoming data and sending the output data. 
 
 
5.  Overall Behavior 
 
The pathways are distributed on a system of processors.  
The initial preference is to keep all the agents occurring in 
the same pathway on the same processor to reduce the 
communication overhead.  Each pathway consists of 
multiple agent-teams cooperating towards a common 
goal.  All the agents within an agent-team communicate to 
each other using the shared blackboard.  In addition to 
information exchange, the blackboard stores the beliefs of 
individual agents in the agent-team, log of all the actions 
performed on the agents, the log about the information 
processed, the input and output buffer from multiple 
agents within the same agent-team, logical clock and the 
port details for the set of neighboring agent-teams, the 
types of actions requested by other agents, the association 
tables that keep the information about the domain-domain 
interaction, and the association table of (domain symbol, 
index of the function) to invoke functions in response to 
the domains present in the agents.  The overall structure 
of an operon is given in Figure 4. 
 The adaptability is incorporated using the combination 
of sensor pathways and stress pathways.  There are 
multiple types of sensors in an intelligent system such as 
temperature senor, pressure sensor, humidity sensor, 
traffic congestion sensor, intrusion/attack sensor (when 

D1 

D2 

D3 

D4 

6 

9 

9 

9 



 766

number of messages with unidentified identity tags 
increases beyond a threshold), image analysis sensor such 
as identification of an object in the database.  Once these 
sensors indicate an event, a trigger is activated.  The 
trigger itself is in the form of a message, and is either 
broadcast, multicast, transmitted using agent to agent 
communication event within the same operon, or 
transmitted through domain to domain communication 
within the same agent.   
  
 
 
 
 
 
 
 
 

Figure 4.  Basic structure of an agent-team 
 
  Each message is a 10-tuple of the form (originating 
agent, originating agent-team, originating processor, 
destination-agent, destination agent-team, logical-time-
stamp, identification key, data-type, data/action).  The 
destination agent-team is a wild-card in the case of an 
action which can be applied to many agent-teams.   
 A managing agent in each host computer decrypts the 
identification key and matches against the keys allocated 
to the originating agent-team.  After matching the key, the 
destination is matched against the currently active agent-
team in the database.  If the agent-team is active, the 
message is written to the destination channel.  In case of 
an action that needs to be broadcasted, first it is checked 
whether originating-agent team has the privileges to 
broadcast the action.  The originating agent-teams 
involved in stress pathways have such capability.  
However, simple data processing agents such as image 
processing agent-teams do not have such capabilities. 
 Each information unit sent to other agent-teams is 
logically time-stamped as described in Subsection 2.3.  
After the information is generated and transmitted to the 
intended logical neighbor, the comparison of the time-
stamps of incoming message and the transmitted message, 
can ascertain the receipt of the message by the intended 
agent.  If the time-stamp of transmitted message precedes 
the time stamp of incoming message then the intended 
agent has received the message [5].  After a message is 
received, the identifier sequence in each control segment 
is matched with the identifier sequence in the incoming 
message.  After a match is verified, the corresponding 
action is taken by the built-in function.  The action 
invokes the corresponding function after the domain of the 
message and domain of a control segment matches. 
 
 

6.  Implementation 
 
The system contains a master boot process, a boot up 
engine, a genome representation of interacting pathways, 
a program transformation engine, a check point engine, 
and pathway engines one for each pathway.  The master 
boot starts a watchdog process and a boot-engine process.  
The watchdog process restarts another copy of master 
boot in case the master boot process fails.  The boot 
engine starts a program transformation engine that 
analyzes the genetic code (shown as circle in Figure 5) to 
identify the input-output relationship between various 
agents and agent-teams, to identify separate pathways, 
and builds up two association files that contain mappings 
of the form (domain-domain interaction  action  meta 
program) and (domain-identifier  built-in function) 
respectively.  The genetic code of different pathways and 
their relationships are also separated.  The boot engine 
then starts a Prolog engine for each pathway. 
 Each pathway engine analyzes their genetic code to 
identify the connectivity of the agent-teams, and builds up 
a shared file which contains input-output connectivity 
between different agents.  Each pathway engine starts 
multiple processes one each for an agent-team.  These 
processes communicate to each other using a separate 
port. 
 

 
Figure 5. An implementation architecture 

 Each agent–team executes a meta program.  The meta 
programs for each agent-team has additional built-in 
agents (1) to verify the identity of the incoming message 
(2) to insert (or strip) the time-stamps, identity, and 
destination to the outgoing messages.  The meta program 
looks up the corresponding genetic code for the agent-
team, analyzes the messages to dynamically change the 
affinity matrix, and executes the built-in functions 
associated with the domains in an agent.  Each meta-
program also builds an association table in its blackboard 
that stores mappings of the form (domains, corresponding 
code reference) to extract the built-in function for each 
agent.  Each agent-team contains its own log file to record 

Master 
boot 

Boot up engine 

Program  
transformation  
engine 

Domain-code 
map 

Meta program 

Association 
maker 

Pathway engine1 

Dynamic code/ 
Associations 1 

Dynamic code/ 
Associations N 

Engine fire up 
 

Genome  and pathway 
associations 

Pathway engine N 

Checkpoint 

Engine monitor Code 

Watch 
dog 

Input 
buffer Promoter Agents Output 

buffer 

Blackboard 

Data 



 767

the changes in the domains and the corresponding affinity-
matrix.  As the meta-programs for agent-teams executes, 
the definition of genes and the corresponding dynamic 
matrix changes.  The log file is altered every time affinity 
matrix corresponding to the agent-team is altered.  These 
changes are transformed back to the genomic form 
periodically and are check-pointed to provide future 
recoverability of the changed system. 
 
 
7.  An Application 
 
We have tried the system on an image capture and image 
processing system [15].  The image capture and 
processing system has six major information processing 
pathways: camera control, image capture, image 
compression, image segmentation, texture analysis to 
identify images, and image transmission.  In addition to 
these pathways, there are sensor related pathways as 
described earlier which will temporarily slow down or 
shut down the processing unit in the presence of 
environmentally unsafe condition. 
 The adaptability in this system comes from five 
aspects: resolution, bandwidth limitation, the time and 
memory overhead of processing high quality images, and 
handling the system in extreme environmental conditions. 
 
 
8.  Related Works 
 
 To the best of my knowledge, no networked intelligent 
multi-agent based system has been modeled at systemic 
level as the network of interacting pathways involving the 
integration of message, triggers and dynamic modification 
of agents using domain-domain interactions.  However, 
evolutionary computing [1, 9, 10, 11] has bio-mimicked 
self-adaptation through heuristic mutation, and immunity 
based intrusion detection researchers [4, 17] have bio-
mimicked security from biological systems with 
considerable success.  There are also successful attempts 
to model artificial life using intelligent multi-agents.[7], 
and there are many applications that use multi-agents to 
model biological pathways. 
  The notion of adaptation described in this paper is 
related to ‘adaptive control’ of systemic behavior, and is 
different from the notion of random mutation based self-
adaptability [11] used by researchers in evolutionary 
computing [1, 9, 10, 11].  The systemic adaptation as 
described in this paper uses a finite set of dynamically 
selectable component functions which are dynamically 
rearranged using event based triggers.  In contrast to 
random mutation of genes in evolutionary computing, the 
emphasis in this paper is on dynamic modification of 
interaction, triggered based insertion and deletion of 
genes, and trigger based activation or suspension of 

pathways.  This model has a finite set of domains, and 
new genes are formed by the selection of a subset of 
domains and dynamic modification of their interaction.  
In contrast to classical identifier based communication in 
current day systems, this model supports both identifier 
based communication as well as functionality based 
communication to other agents.  Functionality based 
communication frees the communicating agent to know 
the identity of the receiving agent providing extra 
flexibility as any agent can substitute for another agent 
with the same functionality, and multiple agents with the 
same functionality in different pathways can be instructed 
simultaneously 
 
 
9.  Conclusion 
 
This paper describes a hierarchical systemic biological 
model of agent based systems.  The system supports 
adaptability based upon sudden stress in response to the 
external conditions and messages that can also act as 
triggers.  This response to the message can be time bound 
or event bound.  The system of agents is regulated using 
an agent control-segment which can dynamically modify 
the functionality and interaction between the interacting 
domains in response to a trigger.  Regulating the promoter 
regulates the execution of the corresponding built in 
function in an agent.  The system supports both agent-to-
agent communication as well as domain-domain 
interaction based communication where the message is 
broadcast, and all the agents which support a specific 
function are concurrently affected by the trigger.  
 This work provides intentional function based 
adaptation of the system, and dynamic activation of latent 
pathways in response to event triggers, periodic triggers, 
or triggers generated in response to messages.  The agent 
code keeps changing in response to domain-domain 
interaction of messages.  The gene modifications are 
domain splitting, domain fusion, or suspension of a 
domain.  This modification reconfigures the functionality 
of an agent.   
  The model and the system complement evolution 
based systems.  An interesting approach will be to 
integrate trigger based adaptation described in this paper, 
evolutionary systems, and immunity based security to 
completely bio-mimick fail safe adaptation of biological 
system.  There is also a need for incorporating integrity 
constraints at the agent level to facilitate system stability.  
Currently, the genetic code is hand-coded.  There is a 
need to develop an editor to semi-automate the process. 
 The model is also being extended to handle Internet 
based biologically inspired migratory agent based 
systems, and to support immunity response [4, 17] to 
support protection against intrusion. 
 



 768

Acknowledgements 
 
This research was supported in part by Wright Patterson 
Base Subcontract # SKM-T1/F33615-97-D-1138 under 
‘Secure Knowledge Management’ project.  I thank Bill 
McQuay and Nikolaos Bourbakis to encourage a fault 
tolerant version of this model based on [5] that will be 
presented elsewhere due to space limitation.  I am also 
thankful to Darshan Patel, Cheng Lu, Ming Ming Lu, and 
Qiyu Zhang for providing the image capturing and 
analysis system [15] needed to test this model. 
 
 
References 
 
[1] P. J. Angeline,"Multiple Interacting Programs: A 

Representation for Evolving Complex Behaviors," 
Cybernetics and Systems, 29 (8), 1998,  pp.779-806 

[2] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J. D. 
Watson, “Molecular Biology of the Cell,” Third Edition, 
Publisher: Garland Publishing Inc., 1994. 

[3] R. Ashby, “Introduction to Cybernatics,” Publisher: 
Chapman and Hall Ltd, London, 1957, 
http://pcp.vub.ac.be/Books/introCyb.pdf 

[4] J. Balthrop, F. Esponda, S. Forrest and M. Glickman. 
"Coverage and Generalization in an Artificial Immune 
System," Proceedings of the Genetic and Evolutionary 
Computation Conference. (GECCO 2002), Morgan 
Kaufmann. New York, 2002, pp. 3-10. 

[5] A. K. Bansal, K. Rammohanarao, A. Rao, “A Distributed 
Storage Scheme for Replicated Beliefs to Facilitate 
Recovery in Distributed System of Cooperating Agents,” 
Fourth International AAAI Workshop on Agent Theory, 
Architecture, and Languages, Lecture Notes in Springer 
Verlag Series, LNAI 1365, 1998, pp. 77 - 92. 

[6] A. K. Bansal, “An Automated Comparative Analysis of 
seventeen Complete Microbial Genomes,” Bioinformatics, 
Vol. 15: 11, 1999, pp. 900 – 908 

[7] I. Burleigh, G. Suen, and C. Jacob, “DNA in Action! A 3D 
Swarm-based Model of a Gene Regulatory System,” In: 
Proceedings of the First Australian Conference on 
Artificial Life.  Lecture Notes in Computer Science. 
Springer-Verlag: Berlin, 2003 

[8] M. Fernandes, T. O’Brien, and J. Lis, “Structure and 
Function of Heat Shock Gene Promoters,” In the Biology of 
Heat Shock Proteins and Molecular Chaperones, R. I. 

Moromoto and C. Tissieres (eds), Cold Harbor Spring 
Press, 1994, pp. 375-393 

[9] D. B. Fogel "The Advantages of Evolutionary 
Computation," Bio-Computing and Emergent Computation, 
D. Lundh, B. Olsson, and A. Narayanan (eds.), Sköve, 
Sweden, World Scientific Press, Singapore,  1997, pp. 1-
11. 

[10] D. B. Fogel, G. B. Fogel, and K. Ohkura, “Multiple-Vector 
Self-Adaptation in Evolutionary Algorithms,” BioSystems, 
Vol. 61:2-3, 2001, pp. 155-162 

[11] M. Glickman and K. Sycara, “Evolutionary Algorithms: 
Exploring the Dynamics of Self-Adaptation,” Genetic 
Programming 1998: Proceedings of the Third Annual 
Conference, Morgan Kaufmann, San Francisco, CA, July 
1998, pp. 762-769.  

[12] C. Joslyn, "The Semiotics of Control and Modeling 
Relations in Complex Systems", Biosystems, v. 60:1-3, 
2001, pp. 131-48 

[13] S. Kumar, P. R. Cohen, H. J. Levesque, “The Adaptive 
Agent Architecture: Achieving Fault-Tolerance Using 
Persistent Broker Teams.” Proceedings of the Fourth 
International Conference on Multi-Agent Systems, Boston, 
MA, USA, July 2000, pp. 159-166 

[14] L. Lamport, “Time, Clock, and the ordering of Events in a 
Distributed Systems,” Communications of the ACM, 21:7, 
1978, pp. 558 - 565. 

[15] M. M. Lu, Q. Zhang, and C. C. Lu, “Retrieval of 
Multimedia objects using color segmentation and 
dimension reduction of features,” submitted for publication. 

[16] N. Medvidovic, R.  N. Taylor, and D. S. Rosenblum. "An 
Architecture-Based Approach to Software Evolution," In 
Proceedings of the International Workshop on the 
Principles of Software Evolution, Kyoto, Japan, April 1998, 
pp. 11-15 

[17] S. Stepney, J. A. Clark, C. G. Johnson, D. Partridge, and R. 
E. Smith, “Artificial immune systems and the grand 
challenge for non-classical computation,” Proceedings of 
the 2003 International Conference on Artificial Immune 
Systems, LNCS 2787, Springer, September 2003, pp. 204-
216. 

[18] K. Sycara, J.A. Giampapa, B.K. Langley, and M. Paolucci, 
“The RETSINA MAS, a Case Study, Software Engineering 
for Large-Scale Multi-Agent Systems: Research Issues and 
Practical Applications,” Alessandro Garcia, Carlos 
Lucena, Franco Zambonelli, Andrea Omici, Jaelson 
Castro, ed., Springer-Verlag, Berlin Heidelberg, Vol. LNCS 
2603, July 2003, pp. 232—25

  
 


