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Abstract 

This paper describes a distributed implementation of a 
scalable heterogeneous associative logic programming 
model, and describes an abstract instruction set for the 
distributed version of the model. Associative 
computation exploits data parallel computation. The 
implementation uses PVM for architecture 
independence, and uses object oriented programming for 
modularity and portability. Performance results on a 
cluster of IBM RS 6000 are presented. 

Kewords: Artificial intelligence, 14ssociative 
computing, Data-parallel computing, IDistributed 
Computing, Heterogeneous computing, Logic 
programming, Knowledge base, Scalalble high 
performance computing, Symbolic computing 

1. Introduction 

The advent of fast distributed networks has made it 
possible to distribute large knowledge bases over multiple 
computer systems, and to partition complex computing 
tasks by distributing sub-tasks over multiple processors. 
Different types of sub-tasks, a symbolic versus a numeric 
task for example, can be mapped onto processors of 
diIIerent architectures according to their capability. This 
is known as heterogeneous distributed computing. 

In this paper, we describe an architechtre and a 
distributed implementation of a heterogeneous 
distributed associative logic programming model based 
upon the theory developed in [4]. In this model, the 
Logic programming Paradigm, heterogeneous 
computing, the associative computing paradigm, and the 
object oriented paradigm have been integrated. Logic 
programming provides a declarative pro,gmmming 
model, the PVM message passing library provides 
architecture independence, the low level implementation 

using the object oriented paradigm provides modularity, 
and associative computing integrates data parallel 
computing with associative search by content. 

The distributed heterogeneous associative model 
distributes knowledge on multiple servers either based 
upon the different domains or to exploit data parallelism. 
A coordinator is used for coordinating and collecting data 
from servers, while major processing is done within the 
servers. 

I I 

We believe that the model is suited for complex 
computation involving knowledge retrieval from 
distributed sources and the integration of symbolic and 
numeric computing. The distributed model consists of 
multiple cells each executing a sub-component of a 
complex computation. Each cell consists of a coordinator 
and multiple servers where the servers could be suited 
either for knowledge retrieval, symbolic computing or 
numeric computing. 

The main contributions of this paper are as follows: 
1. The model is mapped to a heterogeneous set of 

architectures in a user transparent manner. 
2. The model supports modularity, and is scalable to 

any number of machines. 

2. Background and Definitions 

In this section, we briefly describe the related concepts 
of four paradigms: associative computing, heterogeneous 
computing, logic programming, and object-oriented 
p2lldiglU. 
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ming [S] is a popular declarative 
paradigm suitable for high-level reasoning and 
knowledge representation. In a logic program, 
knowledge is represented by a set of facts and rules 
which describe relat.icPnships between data objects. 

2.1. The Heteroeeneous Associative Model 

The heterogeneous associative logic programming 
model [4] exploits associative search to match the clause- 
heads with the query in a data parallel manner, and 
exploits compiled execution of clause bodies. 

The data structures in this model are: the program 
representation - an associative table with parallel fields 
for the uames and arguments in the clause heads, a data 
parallel environment associated with the program 
representation, a set of global registers, an associative 
control stack, and an associative table to handle aliasing 
of logical variables. The global registers are analogous 

to those in the Warren Abstract Machine [13], and are 
used to store pointers to variable bindings. The control 
stack contains information about the current state of 
execution and uses associative vectors to facilitate fast 
backtracking. Variable aliases are indicated by filter 
vectors and are tracked by the alias management table. A 
detailed explanation of this model and the corresponding 
abstract instructions is given in [2, 3,4]. 

Exanmle 1: 
P(l, 2). P(2,3). P(3,4). PK y> :- sor, x). 

q(2, 1). q(% 2). N43). q(% 4). 

r(2,2). r(X, Y) :- PK Xl), qW, y>. 
Example 1 illustrates a simple logic program. The 

corresponding compiled abstract instruction code is given 
in Figure 3. A symbol <P,,> denotes a procedure, a 
symbol <Un> denotes a universal filter vector, a symbol 
CL,> or <DPd denotes a program label, a symbol <B,> 
denotes the binding filter vector, a symbol <G> denotes a 
clause filter vector, and a symbol <A,> denotes the nth 
argument of the current predicate. 

DPo: 

Lo: 

R3: 

DP1: 

match-register-arg 
test_and_backtrack 
match-register-arg 
test-and-backtrack 
and-bit-vectors 
store-vector id 
store vector:id 
com&nent-bit-vector 
and-bit-vectors 
test-and-return 
try-me-else 
copy-logical-register 
copy-logical-register 
call 
return 
match-register-arg 
test-and-backtrack 
match-register-arg 
test-and-backtrack 
and-bit-vectors 
store-vector id 
store vector:id 
com$ment-bit-vector 

Ao, uo 
uo 
Al, Uo 
uo 
Fo,Uo, Bo 
Bo, A0 
Bo, AI 
Fo, Tl 
TI, Uo, Co 
Bo, Llo 
co 
AL Ao, PI 
Ao, AI, PI 
DPo, PI 

Al, uo 
uo 
Al, Uo 
uo 
Fo, Uo, 330 
Bo, A0 
Bo, A1 
Fo, Tl 
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and-bit-vectors Tl, Uo, Co 
test-and-return Bo, Lz5 

L25: try-me-else co 
DPz: 

L36: 

RI: 

L41: 

LD: 

match-register-arg 
test-and-backtrack 
match-register-rug 
test-and-backtrack 
and-bit-vectors 
store-vector-id 
store vector-Id 
com&nent-bit-vector 
and-bit-vectors 
test-and-return 
try-me-else 
copy-logical-register 
load-new-variable 
call 
continue 
load-new-variable 
copy-logical-register 
call 
return 
loadgrogram 
loadgrogram 
loadgrogram 

Al, UC1 
uo 
Al, UC’ 
uo 
Fo, Uo, Bo 
Bo, AQ 
Bo, AI 
Fo, TI 
Tl, Uo, Co 
Bo, Lri 
co 
lb, Ao, PO 
AI, V4, PO 
DPo, PO 
L40 
Ao, v5, Pl 

Al, AI., P1 
DPo, P1 

I-2 

PR2 

PR2 

Figure 3: The compiled code for Example 1 

We describe the general behavior of the instructions 
as follows. 

There is one entry point in the code for each 
procedure in the logic program. First ihe goal ;arguments 
are matched with the arguments of the clause :heads in a 
data parallel manner. The resulting filter-vector UO is 
ANDed with the filter-vector FO which annotates the 
ground facts. The resulting binding filter vector BO 
indicates the bindings of the goal arguments. The clause 
heads of rules are annotated by a claulse filter-vector CO. 
If facts were found, then control is returned\. In the 
absence of matching facts or upon a request for more 
solutions, the compiled code for the rules is executed. 

The compiled code for rules copies the goal 
arguments in global registers [3, 41 and calls the 
subgoals. The three loadgrogram instructions load the 
three procedures in the program representation. 

3. Obiect Oriented Imdementakion 

This section describes an object model needed to 
provide modularity in the distributed execution of the 
heterogeneous associative logic program system 

3.1. Class Hierarchy 

There are two primary classes in the object model: the 
abstract-machine class and the program class. The 

abstract-machine class represents an abstract machine, 
and the program class encapsulates the associative 
representation of a logic program. Figure 4 illustrates the 
overall class structure. 

Figure 4: An object-oriented data representation 

The public interface of the abstract-machine class 
allows for loading a program, solving a goal, requesting 
alternate solutions, and retrieving binding information 
for the goal arguments. The private member functions of 
the abstract-machine class include functions for 
executing the instruction code of the program, including 
the implementation of the abstract instruction set, and 
functions for backtracking and controlling the flow of the 
program. The two major subclasses of the ubstract- 
machine class encapsulate the registers and the control 
stack. 

The program class has two subclasses: progdatu and 
proginst. The subclass progduta represents an 
associative table of clause-heads. The subclass proginst 
represents the compiled code for the clause bodies. The 
subclass progdatu has two subclasses: predtable and 
proctable. The subclass predtable maps predicate names 
to a numeric predicate-id. The subclass proctuble is used 
for fast lookup of the predicate and the entry point in the 
compiled code for each procedure. All of the components 
of the program class are public and manipulated directly 
by the abstract machine. 

The associative data types are encapsulated in the two 
classes associative-jilter and associative-vector. The 
associative-filter class represents an associative filter 
vector. It supports logical operations and assignment. 
The associative-vector class is used to represent 
associative data vectors. It is implemented using the C++ 
template facility to support arbitrary data types. 
Functions are provided to manipulate the associative 
vector using associative techniques. 

4. The Distributed Heterogeneous Svstem 

The Distributed system consists of two types of 
abstract machines: a coordinator abstract machine and a 
server abstract machine (see Figure 5). The coordinator 
launches the server processes on a local or remote host. 
Each server has a heterogeneous associative abstract 
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machine as described in Subsection 2.1, with the 
additional ability to receive goals and send solutions to 
the coordinator via a message passing paradigm. In 
addition, all servers share a procedure table with the 
coordinator. 

Distributed abstract machine 
Abstract machine 

I 
lgure 5: A distributed heterogeneous system 

4.1. Abstract Data Structures 

Two additional data structures - an associative 
server table and an associative binding area - are 
needed in the distributed model. 

The associative server table stores the information 
about the predicates processed by the servers. For each 
server/procedure pair there is an entry of the form 
(server-id, procedure-id, clause-count) in the server 
table. The server-id uniquely identifies a server process. 
The procedure-id is a reference to the entry in the 
procedure table which describes a goal. The cluuse- 
count is the number of clauses the server has that match 
the goal. 

The associative binding area stores the bindings 
incrementally as they are received from the servers. The 
data elements in associative binding area are server-id, 
time-stamp, variable-id, and the value and type of each 
bound argument. A filter vector associated to this table 
is used to identify the vectors bound to a register at a 
given time-stamp. 

4.2. The Execution Model 

A schema file prepared by the user specifies a list of 
remote hosts and the file names of the logic programs to 
be loaded onto the various hosts. The coordinator reads 
the schema file and initiates the server processes. After 
each server process has been successfully initialized and 
has loaded its program, it reports back to the coordinator 
with a list of the procedures it is able to serve. The 
coordinator builds up the server table from these reports. 

To solve a goal, the coordinator performs au 
associative search on the server table to obtain a filter 
vector identifying all servers which have clauses that 
match the goal. The goal is broadcast to these servers. 
Upon receiving the message, each server first searches its 
facts and then its rules for a solution. After finding a set 

of solutions, the server waits for further instructions from 
the coordinator. 

After broadcasting the goal, the coordinator queries 
each matching server for solutions. Each server, when 
prompted, transmits the bindings for the goal arguments 
to the coordinator. Anticipating further requests, the 
servers backtrack to find additional solutions. 
Meanwhile, the coordinator stores the received bindings 
in the associative binding area along with the current 
time-stamp and the server-id. 

After collecting the solutions from all of the matching 
servers, the coordinator reports the solutions to the user. 
Upon further request from the user, the coordinator 
requests a new set of solutions from the matching servers. 
Additional bindings received from the servers are added 
to the associative binding area. A server sends a failure 
in the absence of additional solutions. After receiving a 
failure, the coordinator removes that server from the list 
of matching servers. This process is repeated until the 
list of servers is empty. When this occurs, the 
coordinating process backtracks and tries other rules. 

4.3. Serving Multiole Subvoals 

At a particular instance, a‘ server might have solutions 
for more than one subgoal. After receiving a request to 
solve a subgoal, a server generates initial solutions. Upon 
request, the server sends the resulting bindings to the 
coordinator, and proceeds to generate alternate solutions. 
However, the coordinator’s next request may be to solve 
the next subgoal instead of requesting the alternate 
solutions. The sewer then saves its state, including the 
alternate solutions to the first subgoal, and proceeds to 
solve the second subgoal. If the coordinator backtracks, it 
first requests more solutions to the second subgoal. After 
reporting failure to the coordinator, the server reverts 
back to its previous state with the alternate solutions to 
the first subgoal. The coordinator receives the failure 
message and removes this server from the list of servers 
for the second subgoal. If the list of servers becomes 
empty for the second subgoal, the coordinator backtracks 
and requests the alternate solutions to the first subgoal. 

4.4. Distributed Abstract Instructions 

There are four new abstract instructions in the 
coordinating abstract machine [ 121: get-servers, 
broadcast_goal, receive-binding, and repeat-else-try 
that facilitate distributed processing. 

The get-servers instruction takes a procedure-id as an 
argument and returns a filter vector which identifies the 
servers that can solve that goal. 
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The broadcast_goal instruction broadcasts a goal to 
the servers indicated by a server filter vector. 

The receive binding instruction is executed 
repeatedly to retr&e the bindings from the servers. The 
arguments for a receive-bindings instruction are a server 
vector and a binding vector. The bindings from each 
server in the server table are adde:d to the associative 
binding area. The binding filter vector points to the new 
binding vectors. If all the matching servers transmit 
failure, this instruction releases the repeat label from the 
control stack, and the coordinator backtracks. 

The abstract instruction repeat-else-try enables the 
repeated execution of the receive-bindings instruction 
with the capability to backtrack in the absence of 
bindings. It puts a repeat label and try-me-else label on 
the control stack which control the execution of the 
receive-bindings instruction. 

5. A Distributed Lopic ProPram ExamDIe 

In this section, we present the execution trace 
simple logic program distributed over two servers. 

of a 

Server 1 2 Server 
P(L2). P&3). P(3,4). ~(134). PC&~). ~(3,o). 
P(X,Y) :- qor,x). s,ame as server 1. 

a& 1). m 2). q(4,3). m 4). 
q&o). q(K7). q(4,8). q&9). 

r(%2). r(% 3). 
r(X, Y) :- p(X, Xl), q(X2, Y). same as server 1. 

To simplify the trace, the programs in ‘both servers 
have the same structure and differ only in their facts. 
The distributed compiled code is given in Figure 7. 

DPo: get-servers PO, uo 
test-and-backtrack UO 
broadcast_goal PO, uo 
repeat-else-try 4, L9 

4: receive-bindings Uo, Bo 
store-vector id 
store-vector:id 

Bo, Argo 
Bo, A1 

test_and_backtrack BO 
return 

L9: try-me-else Ro 
RJ: copy-logical-register Al, Ao, PI 

copy-logical-register Ao, AI, PI 
call DPo, PI 
return 

DP1: get-servers Pl, uo 
test_and_backtrack UO 
broadcast_goal Pl, uo 

repeat-else-try LlS, L23 

LlS: receive-bindings Uo, Bo 

L23: 

DP2: 

L28: 

L33: 

RI: 

LB: 

LD: 

store-vector id 
store-vector:id 

Bo, A0 
Bo, AI 

test-and-backtrack Bo 
return 
try-me-else RI 
get-servers Pz, uo 
test_and_backtrack UO 
broadcast_goal Pz, uo 
repeat-else-try L28r L33 

receive-bindings Uo, Bo 
store-vector-id Bo, A0 
store-vector-id Bo, AI 
test-and-backtrack Bo 
return 
@me-else Ro 
copy-logical-register Ao, A~J, PO 
load-new-variable AL V4, PO 

call DPo, PO 
continue L37 

load-new-variable &, Vs, PI 
copy-logical-register Al, Al, PI 
call DPo, P1 
return 
loadqrogram PR2 

loadgrogram PR2 

loadgrogram PR2 

Figure 7: The distributed compiled code 

5.1. The Distributed Abstract Machine 

To create a distributed abstract machine, a schema file 
with the host and path-name for each program is 
prepared as follows: 

hostldomainl /path/on/hostl/programraml 
host2.domain2 /pathlon/host2/program2 

The command Valps program schema” initiates the 
coordinator process. The first argument (the file name of 
the coordinator’s program) is used to create a program 
object. A distributed abstract machine is then 
instantiated to execute the program. The coordinator 
process reads the schema file, and creates a server process 
for each entry. 

Every server is implemented individually as a remote 
abstract machine object. The remote abstract machine 
spawns a server process on the specified host using PVM, 
loads the specified program into the server, and then acts 
as a communication interface between the coordinator 
and the server. 

After creating the remote abstract machines, the 
distributed abstract machine requests each server to 
transmit a list of its procedures. This information is 
inserted into the server table as shown in Table 1. 
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Table 1. The server table for Example 2 
IProcedure-list 
I , , 

5.2. An Execution Trace of the Coordinator 

Let us suppose that the user enters the goal p(X Y), 
The distributed abstract machine initializes registers for 
the arguments X and Y, and starts executing the 
instructions from the label DPo. 

The get sewers instruction performs an associative 
match against the server table with the procedure PO. 
The resulting universal filter vector UO represents 
matching servers. The test-and-backtruck instruction 
tests UO. In the absence of servers, this instruction 
triggers a backtrack of the coordinator. In this example, 
the filter vector UO identifies two servers. 

The broadcust_goal instruction builds a goal 
consisting of procedure PO and the two unbound 
arguments, and broadcasts the goal to the servers 
indicated by the universal filter vector UO. 

The repeat-else-try instruction puts the repeat label 
L4 on the control stack. After the return instruction sees 
the label L4 on the stack, the program counter is reset to 
L4, and the execution of the following code is repeated. 
A fry-me-else label is also placed on the stack to handle 
failure. Upon backtracking, the control is transferred to 
the location given by the fry-me-else label. The 
receive-bindings instruction is used to report the 
bindings for the goal arguments from each eligible 
server. The initial set of received bindings corresponds 
to the ground facts. In this example, server 1 returns the 
bindings p(I,2), p(2,3) and p(3,4); and server 2 returns 
the bindings p(1,4), ~(2,5) and p(3,6). The distributed 
abstract machine adds these bindings to its associative 
binding area as illustrated in Table 2. 

The distributed abstract machine builds a binding 
vector BO against the associative binding area by 
matching against the current timestamp 0. The next two 
store-vector-id instructions store a pointer to the 
binding vector B. in the registers for both the arguments. 
The test and-backtrack instruction would backtrack for 
empty binding vector Bo; and the control would be 

transferred to the try-me else label Ls. Since BO is not 
empty, the return instruction places the repeat label L4 in 
the program counter and returns. The distributed abstract 
machine reports the current bindings to the user and 
waits. Upon further request from the user, the distributed 
abstract machine resumes execution at label L4, and 
requests bindings from the servers. The bindings for the 
rule J&Y, Y) :- q(Y, X) are added to the associative binding 
area at timestamp I as illustrated in Table 3. 

9 

The distributed abstract machine again builds a new 
binding vector BO by matching against the timestamp 1. 
The instructions store-vector-id, test-and-backtrack and 
return are executed as before, and the new bindings are 
reported to the user. Upon further request from the user, 
the control is transferred to the repeat label Ld. This time 
the receive-bindings instruction fails in the absence of 
additional solution’ for p/2 from the servers. The repeat 
label is removed from the control stack, and control is 
transferred to the try-me-else label Ls. The @y-me-else 
instruction transfers control to the code for the rule at the 
label RS. The copy-logical-register instructions allocate 
new registers for the arguments to the subgoal q(Y, X). 
The cull instruction then transfers control to the label 
DPI - the entry point for the compiled code of the 
procedure q/2. Both the servers are requested to solve the 
goal q/2. The bindings from their ground facts are added 
to the associative binding area. Requests for further 
bindings result in failure, and the execution terminates. 

5.3. An Execution Trace of the Servers 

Here we trace the execution of the servers. The code 
executed by the servers is illustrated in Figure 3, and the 
various states of the servers are illustrated in Table 4. 

Let us assume that a user gives the goal r(X; Y) to the 
coordinating process. The distributed abstract machine 
broadcasts the goal to the matching servers. Upon 
receiving the goal, the servers load their registers with 
the given arguments and start executing their instruction 
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code at label DPz. First the match-register-arg 
instruction identifies all of the matching clauses. For the 
first server, the filter vector points to the fact r(2, 2) and 
the rule r(X I’) :- p(X Xl), q(X2, Y). The resulting filter 
vector is AND’ed with the fact filter, FO, and the result is 
stored as the binding for the two1 argumsnts. The 
complement of this filter vector, w’hich represents the 
matching rules, is saved for further processing. The 
binding filter vector is then tested. Since the binding 
vector is not empty, the program returns the control. 
The server waits in state 1 for further instructions. 

Table 4: Different states of the sorvera 
tion- 
i7i?Rzr-=-== 

f 

: 
6 
7 
7 
6 
6 
9 
10 
11 
11 
12 
12 
13 - 

2 lbindin& from r/2 Ifirst solution 
3 bindinFjs from r/2 - second soluijon 
4 I no more solutlon tor rr’2 
4 bindings from p/2 ground facts 
5 bindings from p/2 rule 
5 solution from p/2 rule 
6 solution from s/2 
5 second solution from p/2 rule 
7 no more solution of p/2 
5 second solution from p/2 rule 
6 no more solution for p/2 
6 no more solution for p/2 
7 solution from q/2 ground facts 
6 no more solutions for p/2 
7 no more solution for a/2 
6 Ino more solution for &2 -- 

Upon receiving the next request for bindings from the 
coordinator, the server extracts the bindings from the 
registers to get the vector of values. After transmitting 
the bindings (2 and 2 in this example), the server looks 
for additional solutions. In this example, the server 
returns control to the try_me-else instruction at label 
I&. The control is transferred to the code of the only 
rule for the procedure r/2, at label RI. The server sets up 
the arguments and calls the procedures p/2 and q/2. The 
server finds another set of bindings for r/2, and waits in 
State 2 for further instructions from the coordinator. 

After receiving a request for the second set of 
bindings, the server sends the bindings to the 
coordinator. As before, the server resumes search for 
additional solutions. This time the server backtracks, 
and picks up the additional solutions derived from the 
rule p(X Y) :- q(Y, X) as given by State 3. 

The server sends the requested bindings, and tries for 
additional solutions. This time the server (in State 4) 
replies with failure. Upon receiving this message, the 
coordinator uses the rule for the procedure r/2, and 
requests the server to solve the subgoal p(X Y). The 
server complies with the request and waits on s,tate 5. 

When requested, the server sends the bindings 
corresponding to its ground facts for the procedure p/2, 
and searches for additional solutions given by the rule 
P(X Y) :- 4(x, r). 

Since the coordinator is working on the rule r(X, Q :- 
p(X, X2), q(X2, y), its next request is to solve the goal 
q/2. Upon receiving this request, the server increments 
its register and control stack pointers and begins working 
on the new goal. The second set of bindings for the 
previous goal p/2 is unreported but is not overwritten due 
to the incrementing of the pointers. The bindings 
corresponding to the ground facts for the procedure q/2 
become the new current bindings as shown by State 7. 
Upon request from the coordinator, the servers report the 
current bindings for q/2. Since there are no additional 
solutions, the query fails as shown in State 8. 

The coordinator reports the solutions of p/2 and q/2 to 
the user. On a request for additional solutions, the 
coordinator backtracks to the rule r(X, r) :- p(X XI), 
q(X2, y), and requests additional solutions to the subgoal 
q/2. The server reports failure upon the coordinator’s 
request. The abstract machine of the server backtracks to 
the state prior to receiving the request to solve the goal 
412, and awaits the next request from the coordinator (see 
State 9). The current bindings are now the second 
solution previously determined for the goal p/2. The 
coordinator backtracks to the subgoal p/2, and broadcasts 
a request for additional bindings for p/2. After receiving 
the new solutions to the subgoal p/2, the coordinator 
continues execution of the rule and requests the servers 
for solutions to the subgoal q/2. The servers save the 
current state of the goal p/2, and compute solutions for 
the goal q/2 (see State 11). 

On request, the server returns the solutions for q/2. 
The server fails to find additional solutions for the goal 
q/2 (see State 12). 

When the coordinator backtracks and requests more 
solutions to the subgoal q/2, the server responds with 
failure and decrements its register and control pointers 
(see State 13). The coordinator continues to backtrack, 
and asks the server for additional solutions for the first 
subgoal p/2. The server again responds with failure, and 
empties it’s control stack. The coordinator finally fails. 

6. Performance Evaluation 

We tested the non-distributed (single processor) 
version of the abstract machine against the distributed 
version using a knowledge base of 20,000 facts. For the 
distributed version, we tested configurations of two, four, 
six, and eight IBM RS/6000 processors (with the facts 
distributed evenly on each) to study the overhead in going 
to a distributed paradigm. The results are summarized in 
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Table 5. We conclude that there is definitely a speedup 
to be gained by distributing the data. The break-even 
point, where the communication costs negate any further 
distribution of the data, seems to be at six processors 
with a granularity of 3,333 facts. 

Table 5: Performance results 

I 8 1 25001 120 ms 

These tests show that the granularity of the data (for 
this test environment) should be more than 3,000 facts 
per processor. The model is thus appropriate for 
distributing large knowledge bases. Allowing processors 
to perform more local computation will further reduce 
the communication overhead. 

7. Current Limitations and Future Work 

It would be desirable to automate the distribution of 
data and the creation of servers based on run-time 
requirements. 

The template-based implementation of associative 
vectors has made it possible to handle complex data 
types. However, implementation of complex data-types 
is still underway. 

It is possible to have access to a vast and widely 
distributed knowledge base using loose communication 
between multiple coordinators since the servers report to 
their coordinator about their capabilities. The formal 
model of communication between coordinators of 
different cells still has to be developed. 

With the addition of complex data types and further 
refinement of the communication model, it will be 
possible to integrate other types of servers (specializing 
in numerical computation, for example). 

8. Conclusion 

In this paper, we have discussed a generic architecture 
independent abstract machine for the distributed 
execution of logic programs on a heterogeneous 
collection of architectures. The object oriented 
implementation is portable, flexible and extensible. The 
use of the PVM message passing library provides 
scalability and architecture independence. The 
performance results show that distributing the data 
provides significant performance improvement. More 
local processing will reduce overhead due to data 
transfer and can further improve performance. 
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