

A Scalable Distributed Heterogeneous Associative Logic Programming System

StephLen W. Ryan and Arvind K. Bansal
Departmen!t of Mathematics and Computer Science
Kent State IJniversity, Kent, OH 44242 - 0001, USA

E-mail: sryan@iJmcs. kent. edu and arvind@mcs. kent. edu

Abstract

This paper describes a distributed implementation of a
scalable heterogeneous associative logic programming
model, and describes an abstract instruction set for the
distributed version of the model. Associative
computation exploits data parallel computation. The
implementation uses PVM for architecture
independence, and uses object oriented programming for
modularity and portability. Performance results on a
cluster of IBM RS 6000 are presented.

Kewords: Artificial intelligence, 14ssociative
computing, Data-parallel computing, IDistributed
Computing, Heterogeneous computing, Logic
programming, Knowledge base, Scalalble high
performance computing, Symbolic computing

1. Introduction

The advent of fast distributed networks has made it
possible to distribute large knowledge bases over multiple
computer systems, and to partition complex computing
tasks by distributing sub-tasks over multiple processors.
Different types of sub-tasks, a symbolic versus a numeric
task for example, can be mapped onto processors of
diIIerent architectures according to their capability. This
is known as heterogeneous distributed computing.

In this paper, we describe an architechtre and a
distributed implementation of a heterogeneous
distributed associative logic programming model based
upon the theory developed in [4]. In this model, the
Logic programming Paradigm, heterogeneous
computing, the associative computing paradigm, and the
object oriented paradigm have been integrated. Logic
programming provides a declarative pro,gmmming
model, the PVM message passing library provides
architecture independence, the low level implementation

using the object oriented paradigm provides modularity,
and associative computing integrates data parallel
computing with associative search by content.

The distributed heterogeneous associative model
distributes knowledge on multiple servers either based
upon the different domains or to exploit data parallelism.
A coordinator is used for coordinating and collecting data
from servers, while major processing is done within the
servers.

I I

We believe that the model is suited for complex
computation involving knowledge retrieval from
distributed sources and the integration of symbolic and
numeric computing. The distributed model consists of
multiple cells each executing a sub-component of a
complex computation. Each cell consists of a coordinator
and multiple servers where the servers could be suited
either for knowledge retrieval, symbolic computing or
numeric computing.

The main contributions of this paper are as follows:
1. The model is mapped to a heterogeneous set of

architectures in a user transparent manner.
2. The model supports modularity, and is scalable to

any number of machines.

2. Background and Definitions

In this section, we briefly describe the related concepts
of four paradigms: associative computing, heterogeneous
computing, logic programming, and object-oriented
p2lldiglU.

37
1082-3409/97$10.00O1997IEEE

Proceedings of the 9th International Conference on Tools with Artificial Intelligence (ICTAI '97)
1082-3409/97 $10.00 © 1997 IEEE

uting searches and selects data
g according to their contents [9,
distributed among the processors,
allel fields or associated vectors

ements in associated vectors are
e same index value. Vectors are

c~~sly by broadcasting a single
The results of the

a new associated vector. A filter
an values resulting
. Filter vectors are

used to select recor
ng refers to simultaneous
computation on multiple data
computing refers to the

of co

programming paradigm is well

‘objects’. An object acts

rver by replying to the client

e (I’VMJ [12] is a library of
which allows processes on a
of computer systems to

ansfer and network communication

ming [S] is a popular declarative
paradigm suitable for high-level reasoning and
knowledge representation. In a logic program,
knowledge is represented by a set of facts and rules
which describe relat.icPnships between data objects.

2.1. The Heteroeeneous Associative Model

The heterogeneous associative logic programming
model [4] exploits associative search to match the clause-
heads with the query in a data parallel manner, and
exploits compiled execution of clause bodies.

The data structures in this model are: the program
representation - an associative table with parallel fields
for the uames and arguments in the clause heads, a data
parallel environment associated with the program
representation, a set of global registers, an associative
control stack, and an associative table to handle aliasing
of logical variables. The global registers are analogous

to those in the Warren Abstract Machine [13], and are
used to store pointers to variable bindings. The control
stack contains information about the current state of
execution and uses associative vectors to facilitate fast
backtracking. Variable aliases are indicated by filter
vectors and are tracked by the alias management table. A
detailed explanation of this model and the corresponding
abstract instructions is given in [2, 3,4].

Exanmle 1:
P(l, 2). P(2,3). P(3,4). PK y> :- sor, x).

q(2, 1). q(% 2). N43). q(% 4).

r(2,2). r(X, Y) :- PK Xl), qW, y>.
Example 1 illustrates a simple logic program. The

corresponding compiled abstract instruction code is given
in Figure 3. A symbol <P,,> denotes a procedure, a
symbol <Un> denotes a universal filter vector, a symbol
CL,> or <DPd denotes a program label, a symbol <B,>
denotes the binding filter vector, a symbol <G> denotes a
clause filter vector, and a symbol <A,> denotes the nth
argument of the current predicate.

DPo:

Lo:

R3:

DP1:

match-register-arg
test_and_backtrack
match-register-arg
test-and-backtrack
and-bit-vectors
store-vector id
store vector:id
com&nent-bit-vector
and-bit-vectors
test-and-return
try-me-else
copy-logical-register
copy-logical-register
call
return
match-register-arg
test-and-backtrack
match-register-arg
test-and-backtrack
and-bit-vectors
store-vector id
store vector:id
com$ment-bit-vector

Ao, uo
uo
Al, Uo
uo
Fo,Uo, Bo
Bo, A0
Bo, AI
Fo, Tl
TI, Uo, Co
Bo, Llo
co
AL Ao, PI
Ao, AI, PI
DPo, PI

Al, uo
uo
Al, Uo
uo
Fo, Uo, 330
Bo, A0
Bo, A1
Fo, Tl

38

Proceedings of the 9th International Conference on Tools with Artificial Intelligence (ICTAI '97)
1082-3409/97 $10.00 © 1997 IEEE

and-bit-vectors Tl, Uo, Co
test-and-return Bo, Lz5

L25: try-me-else co
DPz:

L36:

RI:

L41:

LD:

match-register-arg
test-and-backtrack
match-register-rug
test-and-backtrack
and-bit-vectors
store-vector-id
store vector-Id
com&nent-bit-vector
and-bit-vectors
test-and-return
try-me-else
copy-logical-register
load-new-variable
call
continue
load-new-variable
copy-logical-register
call
return
loadgrogram
loadgrogram
loadgrogram

Al, UC1
uo
Al, UC’
uo
Fo, Uo, Bo
Bo, AQ
Bo, AI
Fo, TI
Tl, Uo, Co
Bo, Lri
co
lb, Ao, PO
AI, V4, PO
DPo, PO
L40
Ao, v5, Pl

Al, AI., P1
DPo, P1

I-2

PR2

PR2

Figure 3: The compiled code for Example 1

We describe the general behavior of the instructions
as follows.

There is one entry point in the code for each
procedure in the logic program. First ihe goal ;arguments
are matched with the arguments of the clause :heads in a
data parallel manner. The resulting filter-vector UO is
ANDed with the filter-vector FO which annotates the
ground facts. The resulting binding filter vector BO
indicates the bindings of the goal arguments. The clause
heads of rules are annotated by a claulse filter-vector CO.
If facts were found, then control is returned\. In the
absence of matching facts or upon a request for more
solutions, the compiled code for the rules is executed.

The compiled code for rules copies the goal
arguments in global registers [3, 41 and calls the
subgoals. The three loadgrogram instructions load the
three procedures in the program representation.

3. Obiect Oriented Imdementakion

This section describes an object model needed to
provide modularity in the distributed execution of the
heterogeneous associative logic program system

3.1. Class Hierarchy

There are two primary classes in the object model: the
abstract-machine class and the program class. The

abstract-machine class represents an abstract machine,
and the program class encapsulates the associative
representation of a logic program. Figure 4 illustrates the
overall class structure.

Figure 4: An object-oriented data representation

The public interface of the abstract-machine class
allows for loading a program, solving a goal, requesting
alternate solutions, and retrieving binding information
for the goal arguments. The private member functions of
the abstract-machine class include functions for
executing the instruction code of the program, including
the implementation of the abstract instruction set, and
functions for backtracking and controlling the flow of the
program. The two major subclasses of the ubstract-
machine class encapsulate the registers and the control
stack.

The program class has two subclasses: progdatu and
proginst. The subclass progduta represents an
associative table of clause-heads. The subclass proginst
represents the compiled code for the clause bodies. The
subclass progdatu has two subclasses: predtable and
proctable. The subclass predtable maps predicate names
to a numeric predicate-id. The subclass proctuble is used
for fast lookup of the predicate and the entry point in the
compiled code for each procedure. All of the components
of the program class are public and manipulated directly
by the abstract machine.

The associative data types are encapsulated in the two
classes associative-jilter and associative-vector. The
associative-filter class represents an associative filter
vector. It supports logical operations and assignment.
The associative-vector class is used to represent
associative data vectors. It is implemented using the C++
template facility to support arbitrary data types.
Functions are provided to manipulate the associative
vector using associative techniques.

4. The Distributed Heterogeneous Svstem

The Distributed system consists of two types of
abstract machines: a coordinator abstract machine and a
server abstract machine (see Figure 5). The coordinator
launches the server processes on a local or remote host.
Each server has a heterogeneous associative abstract

39

Proceedings of the 9th International Conference on Tools with Artificial Intelligence (ICTAI '97)
1082-3409/97 $10.00 © 1997 IEEE

machine as described in Subsection 2.1, with the
additional ability to receive goals and send solutions to
the coordinator via a message passing paradigm. In
addition, all servers share a procedure table with the
coordinator.

Distributed abstract machine
Abstract machine

I
lgure 5: A distributed heterogeneous system

4.1. Abstract Data Structures

Two additional data structures - an associative
server table and an associative binding area - are
needed in the distributed model.

The associative server table stores the information
about the predicates processed by the servers. For each
server/procedure pair there is an entry of the form
(server-id, procedure-id, clause-count) in the server
table. The server-id uniquely identifies a server process.
The procedure-id is a reference to the entry in the
procedure table which describes a goal. The cluuse-
count is the number of clauses the server has that match
the goal.

The associative binding area stores the bindings
incrementally as they are received from the servers. The
data elements in associative binding area are server-id,
time-stamp, variable-id, and the value and type of each
bound argument. A filter vector associated to this table
is used to identify the vectors bound to a register at a
given time-stamp.

4.2. The Execution Model

A schema file prepared by the user specifies a list of
remote hosts and the file names of the logic programs to
be loaded onto the various hosts. The coordinator reads
the schema file and initiates the server processes. After
each server process has been successfully initialized and
has loaded its program, it reports back to the coordinator
with a list of the procedures it is able to serve. The
coordinator builds up the server table from these reports.

To solve a goal, the coordinator performs au
associative search on the server table to obtain a filter
vector identifying all servers which have clauses that
match the goal. The goal is broadcast to these servers.
Upon receiving the message, each server first searches its
facts and then its rules for a solution. After finding a set

of solutions, the server waits for further instructions from
the coordinator.

After broadcasting the goal, the coordinator queries
each matching server for solutions. Each server, when
prompted, transmits the bindings for the goal arguments
to the coordinator. Anticipating further requests, the
servers backtrack to find additional solutions.
Meanwhile, the coordinator stores the received bindings
in the associative binding area along with the current
time-stamp and the server-id.

After collecting the solutions from all of the matching
servers, the coordinator reports the solutions to the user.
Upon further request from the user, the coordinator
requests a new set of solutions from the matching servers.
Additional bindings received from the servers are added
to the associative binding area. A server sends a failure
in the absence of additional solutions. After receiving a
failure, the coordinator removes that server from the list
of matching servers. This process is repeated until the
list of servers is empty. When this occurs, the
coordinating process backtracks and tries other rules.

4.3. Serving Multiole Subvoals

At a particular instance, a‘ server might have solutions
for more than one subgoal. After receiving a request to
solve a subgoal, a server generates initial solutions. Upon
request, the server sends the resulting bindings to the
coordinator, and proceeds to generate alternate solutions.
However, the coordinator’s next request may be to solve
the next subgoal instead of requesting the alternate
solutions. The sewer then saves its state, including the
alternate solutions to the first subgoal, and proceeds to
solve the second subgoal. If the coordinator backtracks, it
first requests more solutions to the second subgoal. After
reporting failure to the coordinator, the server reverts
back to its previous state with the alternate solutions to
the first subgoal. The coordinator receives the failure
message and removes this server from the list of servers
for the second subgoal. If the list of servers becomes
empty for the second subgoal, the coordinator backtracks
and requests the alternate solutions to the first subgoal.

4.4. Distributed Abstract Instructions

There are four new abstract instructions in the
coordinating abstract machine [121: get-servers,
broadcast_goal, receive-binding, and repeat-else-try
that facilitate distributed processing.

The get-servers instruction takes a procedure-id as an
argument and returns a filter vector which identifies the
servers that can solve that goal.

40

Proceedings of the 9th International Conference on Tools with Artificial Intelligence (ICTAI '97)
1082-3409/97 $10.00 © 1997 IEEE

The broadcast_goal instruction broadcasts a goal to
the servers indicated by a server filter vector.

The receive binding instruction is executed
repeatedly to retr&e the bindings from the servers. The
arguments for a receive-bindings instruction are a server
vector and a binding vector. The bindings from each
server in the server table are adde:d to the associative
binding area. The binding filter vector points to the new
binding vectors. If all the matching servers transmit
failure, this instruction releases the repeat label from the
control stack, and the coordinator backtracks.

The abstract instruction repeat-else-try enables the
repeated execution of the receive-bindings instruction
with the capability to backtrack in the absence of
bindings. It puts a repeat label and try-me-else label on
the control stack which control the execution of the
receive-bindings instruction.

5. A Distributed Lopic ProPram ExamDIe

In this section, we present the execution trace
simple logic program distributed over two servers.

of a

Server 1 2 Server
P(L2). P&3). P(3,4). ~(134). PC&~). ~(3,o).
P(X,Y) :- qor,x). s,ame as server 1.

a& 1). m 2). q(4,3). m 4).
q&o). q(K7). q(4,8). q&9).

r(%2). r(% 3).
r(X, Y) :- p(X, Xl), q(X2, Y). same as server 1.

To simplify the trace, the programs in ‘both servers
have the same structure and differ only in their facts.
The distributed compiled code is given in Figure 7.

DPo: get-servers PO, uo
test-and-backtrack UO
broadcast_goal PO, uo
repeat-else-try 4, L9

4: receive-bindings Uo, Bo
store-vector id
store-vector:id

Bo, Argo
Bo, A1

test_and_backtrack BO
return

L9: try-me-else Ro
RJ: copy-logical-register Al, Ao, PI

copy-logical-register Ao, AI, PI
call DPo, PI
return

DP1: get-servers Pl, uo
test_and_backtrack UO
broadcast_goal Pl, uo

repeat-else-try LlS, L23

LlS: receive-bindings Uo, Bo

L23:

DP2:

L28:

L33:

RI:

LB:

LD:

store-vector id
store-vector:id

Bo, A0
Bo, AI

test-and-backtrack Bo
return
try-me-else RI
get-servers Pz, uo
test_and_backtrack UO
broadcast_goal Pz, uo
repeat-else-try L28r L33

receive-bindings Uo, Bo
store-vector-id Bo, A0
store-vector-id Bo, AI
test-and-backtrack Bo
return
@me-else Ro
copy-logical-register Ao, A~J, PO
load-new-variable AL V4, PO

call DPo, PO
continue L37

load-new-variable &, Vs, PI
copy-logical-register Al, Al, PI
call DPo, P1
return
loadqrogram PR2

loadgrogram PR2

loadgrogram PR2

Figure 7: The distributed compiled code

5.1. The Distributed Abstract Machine

To create a distributed abstract machine, a schema file
with the host and path-name for each program is
prepared as follows:

hostldomainl /path/on/hostl/programraml
host2.domain2 /pathlon/host2/program2

The command Valps program schema” initiates the
coordinator process. The first argument (the file name of
the coordinator’s program) is used to create a program
object. A distributed abstract machine is then
instantiated to execute the program. The coordinator
process reads the schema file, and creates a server process
for each entry.

Every server is implemented individually as a remote
abstract machine object. The remote abstract machine
spawns a server process on the specified host using PVM,
loads the specified program into the server, and then acts
as a communication interface between the coordinator
and the server.

After creating the remote abstract machines, the
distributed abstract machine requests each server to
transmit a list of its procedures. This information is
inserted into the server table as shown in Table 1.

41

Proceedings of the 9th International Conference on Tools with Artificial Intelligence (ICTAI '97)
1082-3409/97 $10.00 © 1997 IEEE

Table 1. The server table for Example 2
IProcedure-list
I , ,

5.2. An Execution Trace of the Coordinator

Let us suppose that the user enters the goal p(X Y),
The distributed abstract machine initializes registers for
the arguments X and Y, and starts executing the
instructions from the label DPo.

The get sewers instruction performs an associative
match against the server table with the procedure PO.
The resulting universal filter vector UO represents
matching servers. The test-and-backtruck instruction
tests UO. In the absence of servers, this instruction
triggers a backtrack of the coordinator. In this example,
the filter vector UO identifies two servers.

The broadcust_goal instruction builds a goal
consisting of procedure PO and the two unbound
arguments, and broadcasts the goal to the servers
indicated by the universal filter vector UO.

The repeat-else-try instruction puts the repeat label
L4 on the control stack. After the return instruction sees
the label L4 on the stack, the program counter is reset to
L4, and the execution of the following code is repeated.
A fry-me-else label is also placed on the stack to handle
failure. Upon backtracking, the control is transferred to
the location given by the fry-me-else label. The
receive-bindings instruction is used to report the
bindings for the goal arguments from each eligible
server. The initial set of received bindings corresponds
to the ground facts. In this example, server 1 returns the
bindings p(I,2), p(2,3) and p(3,4); and server 2 returns
the bindings p(1,4), ~(2,5) and p(3,6). The distributed
abstract machine adds these bindings to its associative
binding area as illustrated in Table 2.

The distributed abstract machine builds a binding
vector BO against the associative binding area by
matching against the current timestamp 0. The next two
store-vector-id instructions store a pointer to the
binding vector B. in the registers for both the arguments.
The test and-backtrack instruction would backtrack for
empty binding vector Bo; and the control would be

transferred to the try-me else label Ls. Since BO is not
empty, the return instruction places the repeat label L4 in
the program counter and returns. The distributed abstract
machine reports the current bindings to the user and
waits. Upon further request from the user, the distributed
abstract machine resumes execution at label L4, and
requests bindings from the servers. The bindings for the
rule J&Y, Y) :- q(Y, X) are added to the associative binding
area at timestamp I as illustrated in Table 3.

9

The distributed abstract machine again builds a new
binding vector BO by matching against the timestamp 1.
The instructions store-vector-id, test-and-backtrack and
return are executed as before, and the new bindings are
reported to the user. Upon further request from the user,
the control is transferred to the repeat label Ld. This time
the receive-bindings instruction fails in the absence of
additional solution’ for p/2 from the servers. The repeat
label is removed from the control stack, and control is
transferred to the try-me-else label Ls. The @y-me-else
instruction transfers control to the code for the rule at the
label RS. The copy-logical-register instructions allocate
new registers for the arguments to the subgoal q(Y, X).
The cull instruction then transfers control to the label
DPI - the entry point for the compiled code of the
procedure q/2. Both the servers are requested to solve the
goal q/2. The bindings from their ground facts are added
to the associative binding area. Requests for further
bindings result in failure, and the execution terminates.

5.3. An Execution Trace of the Servers

Here we trace the execution of the servers. The code
executed by the servers is illustrated in Figure 3, and the
various states of the servers are illustrated in Table 4.

Let us assume that a user gives the goal r(X; Y) to the
coordinating process. The distributed abstract machine
broadcasts the goal to the matching servers. Upon
receiving the goal, the servers load their registers with
the given arguments and start executing their instruction

42

Proceedings of the 9th International Conference on Tools with Artificial Intelligence (ICTAI '97)
1082-3409/97 $10.00 © 1997 IEEE

code at label DPz. First the match-register-arg
instruction identifies all of the matching clauses. For the
first server, the filter vector points to the fact r(2, 2) and
the rule r(X I’) :- p(X Xl), q(X2, Y). The resulting filter
vector is AND’ed with the fact filter, FO, and the result is
stored as the binding for the two1 argumsnts. The
complement of this filter vector, w’hich represents the
matching rules, is saved for further processing. The
binding filter vector is then tested. Since the binding
vector is not empty, the program returns the control.
The server waits in state 1 for further instructions.

Table 4: Different states of the sorvera
tion-
i7i?Rzr-=-==

f

:
6
7
7
6
6
9
10
11
11
12
12
13 -

2 lbindin& from r/2 Ifirst solution
3 bindinFjs from r/2 - second soluijon
4 I no more solutlon tor rr’2
4 bindings from p/2 ground facts
5 bindings from p/2 rule
5 solution from p/2 rule
6 solution from s/2
5 second solution from p/2 rule
7 no more solution of p/2
5 second solution from p/2 rule
6 no more solution for p/2
6 no more solution for p/2
7 solution from q/2 ground facts
6 no more solutions for p/2
7 no more solution for a/2
6 Ino more solution for &2 --

Upon receiving the next request for bindings from the
coordinator, the server extracts the bindings from the
registers to get the vector of values. After transmitting
the bindings (2 and 2 in this example), the server looks
for additional solutions. In this example, the server
returns control to the try_me-else instruction at label
I&. The control is transferred to the code of the only
rule for the procedure r/2, at label RI. The server sets up
the arguments and calls the procedures p/2 and q/2. The
server finds another set of bindings for r/2, and waits in
State 2 for further instructions from the coordinator.

After receiving a request for the second set of
bindings, the server sends the bindings to the
coordinator. As before, the server resumes search for
additional solutions. This time the server backtracks,
and picks up the additional solutions derived from the
rule p(X Y) :- q(Y, X) as given by State 3.

The server sends the requested bindings, and tries for
additional solutions. This time the server (in State 4)
replies with failure. Upon receiving this message, the
coordinator uses the rule for the procedure r/2, and
requests the server to solve the subgoal p(X Y). The
server complies with the request and waits on s,tate 5.

When requested, the server sends the bindings
corresponding to its ground facts for the procedure p/2,
and searches for additional solutions given by the rule
P(X Y) :- 4(x, r).

Since the coordinator is working on the rule r(X, Q :-
p(X, X2), q(X2, y), its next request is to solve the goal
q/2. Upon receiving this request, the server increments
its register and control stack pointers and begins working
on the new goal. The second set of bindings for the
previous goal p/2 is unreported but is not overwritten due
to the incrementing of the pointers. The bindings
corresponding to the ground facts for the procedure q/2
become the new current bindings as shown by State 7.
Upon request from the coordinator, the servers report the
current bindings for q/2. Since there are no additional
solutions, the query fails as shown in State 8.

The coordinator reports the solutions of p/2 and q/2 to
the user. On a request for additional solutions, the
coordinator backtracks to the rule r(X, r) :- p(X XI),
q(X2, y), and requests additional solutions to the subgoal
q/2. The server reports failure upon the coordinator’s
request. The abstract machine of the server backtracks to
the state prior to receiving the request to solve the goal
412, and awaits the next request from the coordinator (see
State 9). The current bindings are now the second
solution previously determined for the goal p/2. The
coordinator backtracks to the subgoal p/2, and broadcasts
a request for additional bindings for p/2. After receiving
the new solutions to the subgoal p/2, the coordinator
continues execution of the rule and requests the servers
for solutions to the subgoal q/2. The servers save the
current state of the goal p/2, and compute solutions for
the goal q/2 (see State 11).

On request, the server returns the solutions for q/2.
The server fails to find additional solutions for the goal
q/2 (see State 12).

When the coordinator backtracks and requests more
solutions to the subgoal q/2, the server responds with
failure and decrements its register and control pointers
(see State 13). The coordinator continues to backtrack,
and asks the server for additional solutions for the first
subgoal p/2. The server again responds with failure, and
empties it’s control stack. The coordinator finally fails.

6. Performance Evaluation

We tested the non-distributed (single processor)
version of the abstract machine against the distributed
version using a knowledge base of 20,000 facts. For the
distributed version, we tested configurations of two, four,
six, and eight IBM RS/6000 processors (with the facts
distributed evenly on each) to study the overhead in going
to a distributed paradigm. The results are summarized in

43

Proceedings of the 9th International Conference on Tools with Artificial Intelligence (ICTAI '97)
1082-3409/97 $10.00 © 1997 IEEE

Table 5. We conclude that there is definitely a speedup
to be gained by distributing the data. The break-even
point, where the communication costs negate any further
distribution of the data, seems to be at six processors
with a granularity of 3,333 facts.

Table 5: Performance results

I 8 1 25001 120 ms

These tests show that the granularity of the data (for
this test environment) should be more than 3,000 facts
per processor. The model is thus appropriate for
distributing large knowledge bases. Allowing processors
to perform more local computation will further reduce
the communication overhead.

7. Current Limitations and Future Work

It would be desirable to automate the distribution of
data and the creation of servers based on run-time
requirements.

The template-based implementation of associative
vectors has made it possible to handle complex data
types. However, implementation of complex data-types
is still underway.

It is possible to have access to a vast and widely
distributed knowledge base using loose communication
between multiple coordinators since the servers report to
their coordinator about their capabilities. The formal
model of communication between coordinators of
different cells still has to be developed.

With the addition of complex data types and further
refinement of the communication model, it will be
possible to integrate other types of servers (specializing
in numerical computation, for example).

8. Conclusion

In this paper, we have discussed a generic architecture
independent abstract machine for the distributed
execution of logic programs on a heterogeneous
collection of architectures. The object oriented
implementation is portable, flexible and extensible. The
use of the PVM message passing library provides
scalability and architecture independence. The
performance results show that distributing the data
provides significant performance improvement. More
local processing will reduce overhead due to data
transfer and can further improve performance.

AcknowledPments

The first author was supported by the summer
internship program at the NASA Lewis Research Center
in Cleveland, Ohio. We thank Greg Follen at NASA for
that support and for providing the equipment and
facilities to run the benchmarks. This work provides the
basis for further research supported by a NASA GSRP
grant from the NASA Lewis Research Center.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

A. K. Bansal, and J. L. Potter, “An Associative Model to
Minimize Matching and Backtracking Overhead in Logic
Programs with Large Knowledge Bases,” The
International Journal of Engineering Applications of
Artificial Intelligence, Volume 5, Number 3, (1992) pp.
247-262
A. K. Bansal, “An Associative Model to Integrate
Knowledge Retrieval and Data-parallel Computation,”
International Journal on Artificial Intelligence Tools,
Volume 3, Number 1, (1994) pp. 97 - 125.
A. K. Bansal, L. Prasad, and M. Ghandikota, “A Formal
Associative Model of Logic Programming and its Abstract
Instruction Set,” Proceedings of the International
Conference of Tools with Artificial Intelligence, (1994),
pp. 145-151.
A. K. Bansal, “A Framework of Heterogeneous
Associative Logic Progr asnming,” International Journal of
Artificial Intelligence Tools, Vol. 4, Nos. I & 2, (1995)
pp. 33 - 53.
J. A. Feldman, and D. Rovner, “An Algol Based
Associative Language,” Communications of the ACM,
Volume 12, Number 8, (1969) pp. 439 - 449.
D. Gries, The Science of Programming, Monograph,
Springer Verlag, New York, 1987.
K. Hwang, and F. A. Briggs, Computer Architecture and
Parallel Processing, Mcgraw Hill Book Company, New
York, USA, (1984).
R. Kowalski, Logic for Problem Solving, Elsevier-North
Holland, (1979).
J. L. Potter, Associative Computing, Plenum Publishers,
New York, (1992).
J. Potter, J. Baker, A. K. Bansal, S. Scott, C. Ashtagiri,
“Associative Model of Computing,” IEEE Computer,
November 1994,19 - 25
S. Ryan, “Scalable High Performance Distributed
Execution of Heterogeneous Associative Model of Logic
Programming,” MS Thesis, Department of Mathematics
and Computer Science, Kent State University, Kent, OH
44242, January 1996,83 pages.
V. S. Stmderam et. al., “PVM: A Framework for Parallel
Distributed Computing,” Concurrency: Practice and
Experience, No. 2, (1990), pp. 315 - 339.
D. H. D. Warren, “An Abstract Prolog Instruction Set,”
Technical Report 309, SRI International, (1983).

44

Proceedings of the 9th International Conference on Tools with Artificial Intelligence (ICTAI '97)
1082-3409/97 $10.00 © 1997 IEEE

