

 749

TOWARDS LARGE SCALE VOICE ACTIVATED DYNAMIC AND
INTERACTIVE INTERNET BASED ANIMATION AND MODELING

Angela Guercio, Bonita Simoes, and Arvind K. Bansal
Distributed Multimedia and Cognition Laboratory

Department of Computer Science
 Kent State University, Kent, OH 44242, USA

Email: guercioa@hiram.edu, bsimoes@cs.kent.edu and arvind@cs.kent.edu
Phone: +1.330.672.9035, FAX: +1.330.672.7824

ABSTRACT
Multimedia communication over the Internet has gained
popularity in recent years. An efficient means of
communication is vital for multimedia movies to reach
consumers who can use voice commands to interactively
modify XML based animations and movies depending on
their subjective need. However, the initial modeling of an
XML based multimedia movie is low level, time
consuming, and not suitable for large scale multimedia
animation and modeling. In this paper, we integrate the
concept of dynamically modifiable XML scripts and the
TANDEM language — a high level XML based Internet
multimedia modeling language to transmit asynchronous,
nondeterministic, and deterministic events to model and
communicate web based multimedia streams over the
Internet — to model dynamically modifiable Internet
based interactive multimedia animated movies. The
integration has been illustrated using a realistic example.

KEY WORDS
Dynamic XML, Internet computing, modeling languages,
multimedia communications, voice interaction, web
movies.

1. Introduction

With the availability of high-speed Internet, the
pervasiveness of PDA’s as multimedia communicating
devices, and the availability of XML [1] and MPEG-4 [2],
the demand for multimedia communication is exploding.
People to people multimedia communication and web
based collaboration is increasing in addition to
multimedia news clips, web based multimedia
instructions, and the availability of web based archives of
multimedia clips, games, children stories, and movies. In
the near future, the availability of ubiquitous multimedia
communication will be used to model scenarios involving
multimedia movies, virtual animation of 3D realistic
models of human and animate characters, and also modify
them subjectively according to a client’s need. An off-
the-shelf library of such movies will be created which can
be altered easily to meet a customer’s requirements based

on voice activated modification by the customer.
These demands require the development of a high level

multimedia programming paradigm that will provide user
friendly integration of 3D virtual characters, Internet
based media stream manipulation, computability, event
based modeling with a notion of loose temporal
constraints, dynamic grouping and synchronization of
media streams and 3D virtual objects as well as the
flexibility of modeling real world phenomena.

In this paper, we describe our effort to develop such a
paradigm. Our paradigm integrates our recent efforts to
develop voice activated dynamic modification of Internet
based movies [3] and the development of a new high level
Internet based multimedia modeling language TANDEM
[4, 5] that can model real world phenomena involving
tandem events with a notion of loose temporal
constraints, asynchronous user interactions,
transformation and synchronization of Internet based
media streams, and computability. We show that
manipulation of the media stream can be performed
through the use of the transformer, and animation can be
simulated and rendered both through the use of the
original predefined script commands as well as a set of
commands given from live voice. The movie is altered
dynamically both during rendering and in the original file
description, by dynamically generating XML code.

The TANDEM language is in the advanced stage of
implementation, and the voice activated XML script
modification system has been implemented.

The major contributions of this paper are:
i. Integration of voice based interactive modification

of multimedia movies, dynamic modification of
XML scripts, Internet based multimedia stream
transformation, and computability.

ii. Dynamically modifiable XML scripts have been
introduced as a paradigm to describe interactive
modifiable multimedia movies.

iii. TANDEM language has been applied to model the
dynamically modifiable XML based movies.

The paper has been organized as follows: Section 2
describes the background related to multimedia modeling,
multimedia movies, and multimedia streams. Section 3
describes the TANDEM execution model. Section 4

Proceedings of the IASTED International Conference on
Software Engineering and Applications (SEA 2004)
Cambridge, MA, USA, 2004

436-177

 750

describes the relevant TANDEM language constructs.
Section 5 describes the modeling of XML based movies.
Section 6 describes the voice based modification of
multimedia movies involving 3D virtual characters and
script modification. Section 7 gives an example
application of a TANDEM system. Related work is
discussed in Section 8 and Section 9 concludes the work.

2. Background

A multimedia stream S is defined having two
components: attribute-set and data. Each attribute is a
nested tuple. The attribute set varies according to the
different media types. An animated movie is a
multimedia stream composed of meaningful sequence of
scenes. Each scene is a sequence of frames derived using
dynamic composition of computationally generated
animated objects (possibly mixed with other multimedia
streams such as audio and text) that can be grouped
together to maintain a common attribute such as
synchronization, frame rate etc. or selected
programmatically based upon an event or computation.
Each frame represents a group of spatially constrained
multimedia objects at a particular instance of time.

Each multimedia object is composed of a hierarchical
graph based representation referred to as the object graph
[3]. A 2D object has the same graph based representation
as 3D objects except that 2D objects are represented as
spatially constrained sets of pixels, and 3D objects are
represented as spatially constrained sets of meshes.

Each node or edge in the object graph represents a part
of an object. Each edge represents the relationship
between the two nodes involved. A sub-graph is
embedded inside a node, and could represent another
complex object. Each sub-graph has a center of gravity
attached to it. The center of gravity of child nodes is
relative to the center of gravity of the parent node, and
follows the motion and transformation of the parent node.

Streams coming from a source in a multimedia system
can be periodic or aperiodic. The pressing of a button or
a voice command are examples of aperiodic signals.
Users interact with the system by generating aperiodic
signals, which may cause reactive events to start. An
event is a user defined temporally constrained set of
conditions, which starts a trigger when the conditions are
satisfied. A trigger reacts by invoking an appropriate
action. For example, an event can preempt or abort
rendering of a media stream, start another event, start a
computation, or transform attributes of a stream or a
group of streams. Grouped streams work in lock-step
fashion and reflect the synchronization constraints on
objects of the same group. A sync point is an explicit
annotation (user defined or automatically generated) to
rendezvous two or more media streams to maintain
synchronization.

3. TANDEM Execution Model

TANDEM (Transmitting Asynchronous Nondeterministic
and Deterministic Events in Multimedia Systems) is an
XML based high level language used to model reactive
distributed multimedia systems [5]. It supports content-
based analysis of multimedia streams, hierarchical
grouping of multimedia streams, loose synchronization of
complex events, and asynchronous signals from the
external environment (which may cause preemption of
multimedia streams), dynamic transformation of
multimedia attributes, and calls to computational units.
TANDEM applications are based on the conceptual
model depicted in Figure 1. In Figure 1, the * next to the
entity name indicates multiple occurrences of the entity.

Figure 1. TANDEM execution model

Sources and sinks are respectively origins and
destinations of media streams. The reactivity (satisfying
real-time constraints) and the interactivity (allowing user
interaction) are supported by the trigger, which is
associated with sets of input multimedia streams, a set of
partial conditions (the constraints to satisfy), and an active
repository (the data processing and storage unit).

An active repository [5] is a persistent database that is
responsible for archiving user defined conditions, read-
only content-based analysis of the multimedia streams,
and verifying the occurrence of conditions in multimedia
streams based on content based analysis. The active
repository generates one or more internal signals to the
trigger in response to the satisfaction of pre-defined
conditions describing an event. The persistent archiving
and retrieval of past analysis allows for loose ordering of
events (tandem events) to occur [5].

 The events generated by the trigger are directed
either to other triggers for cascading chain of events, or to
procedures for generic computation, or to transformers for
attribute modification of the multimedia streams.
Transformers perform computations that change the
attributes of input streams. For example, transformers are
used to change the rendering rate of a group of streams, to
multiplex streams, to reduce the number of channels of a
video for rendering purposes or to change the motion of
animated components. A procedure performs generic
computation. For example, procedures are used to
compute the traffic over the Internet, to perform voice
interpretation, or to sort objects. The output of a
procedure is returned to the trigger, the output of the
transformer is transmitted to either the trigger or another
transformer or a sink that archives the multimedia stream
for later use or renders the multimedia stream.

 751

4. TANDEM Language Constructs

In this section we give a quick overview of the TANDEM
constructs and we refer the reader to [4, 5] for more
details. A TANDEM application contains many streams
and multiple triggers. Each trigger performs operations
on one or many groups of input multimedia streams.
Periodic multimedia streams can be audio, video, text,
animation of 3D objects, and so on. Aperiodic signals are
also part of a trigger but not part of groups.

A media stream provides the source name, its URI, the
media type as well as the specific attribute constraints that
the media must satisfy. For example, the following
TANDEM excerpt describes an audio stream, transmitted
at 44,100 samples/sec from a remote source.

<media_stream name = "mm1">
 <source name = "source1" URI = "192.168.2.102" />
 <type> <audio name = "audio.wav"
 samples_per_sec="44100" /> </type> </media_stream>
Grouping clusters one or more media streams or groups

for synchronization. This excerpt groups two elements.
<group name = "my_group"> <member name="mm1"/>
 <member name = "mm2"/> </group>
The groups are both dynamic and hierarchical.

Elements are dynamically ungrouped in the transformer.
This transformer ungroups “my_group”.

<transformer name = "ungroup_transformer">
 <action> <ungroup>
 <elements group = "my_group"/></ungroup> </action>
 <dest name = "destination_name" /> </transformer>
The action in the transformer contains constructs to set

or modify attribute values of the media streams. Script
languages can be used to support such actions.

Events are generated by the trigger when associated
conditions are satisfied. Conditions are checked by the
active repository. All the conditions need not be satisfied
at the same instant. This supports loose ordering of
events. Events can start immediately when conditions are
satisfied, unless delay states otherwise. The syntax of an
event with default values follows.

 <event name="EventName" start="0" priority="1"…>
 <partial_condition name="cond1”>…</partial_condition> . . .
 <partial_condition name="condn"> …</partial_condition>
 <destination name = "DestinationName" … /> </event>
TANDEM supports nested loops, concurrency, and

preemption [4, 5]. Loops are used to execute a stream
multiple times. Abort commands can be inserted in a
loop when preemption or suspension of the stream(s) is
required. In the following excerpt, rendering of the stream
is suspended when Button1 is pressed and restarted when
the ReleaseButton1 is pressed.

<loop times = "1">
 <abort when = "Button1" type="strong"
 suspend="true" resume="ReleaseButton1"/>
 <loop_element name = "mm1" /> </loop>
Abortion modeling has been inspired by [6]. However,

it is quite different due to the delay caused by multimedia
rendering until sync points. There are two types of
abortion: strong and weak. Strong abortion aborts the
loop right after the multimedia sync point while weak
abortion aborts after the current clip has been rendered.

Detailed TANDEM constructs and semantics are omitted
due to space limitation.

5. Modeling 3D Object Based Movies in XML

An XML movie has attributes such as the number of
frames per second, the frame size, and the position of a
display window. An excerpt of a movie is illustrated in
Figure 2. Each frame is associated with a time instance
and is a collection of media objects modeled as
hierarchical graphs [3]. Each object has a name, and the
corresponding object graph representation. An object
could be 3D mesh-based, a 2D image, audio or
audiovisual data. Images are used to describe inert
objects in a scene such as a wall hanging or a portrait.
Audio can be used to add sound effects to a scene such as
background music and sound effects. Audio can be
incorporated in the movie or streamed separately. Text
can be used for captions and titles.

Background is modeled as a collection of one or more
images or media streams. Surroundings consist of 3D
immovable objects modeled as meshes (i.e. a room),
lighting effects, and sound effects. The animation of
media objects is achieved using transformation matrices
associated with one or more groups of complex objects.
During rendering, the scene graph is traversed starting
from the root node, so that the appropriate transformation,
clipping and lighting can be applied to the objects. An
action represents a complex sequence of animations or a
sequence of low level actions. An action could be
repetitive such as walking (a repetitive loop of steps).

The camera is represented by the scene perspective,
field of view, and by its position and rotation [2]. The
animation speed describes the rate of rendering, and
movement speed describes how fast the actual motion of
the object occurs in relation to other motion. We refer the
reader to [3] for more details.

<movie fps="30" width="640" height="480" xpos="0" ypos="10"
 style="window" num_scenes="1" caption="My story">
 <scene id="1" name= “Scene1” num_objects="5"
 texfname="Scene" music="song.mid" height="32.0">
 <background background_id="1">
 <background_type>matrix</background_type>
 <texture_type>jpg</texture_type>
 <num_images>6</num_images>
 <rows>2</rows><columns>3</columns></background>
 <resources>…</resources>
 <perspective fov="0.6021124" aspect="1.3333"
 near="10.0" far="20000.0" /> …
 <scene-mesh scene-name="SceneMesh1">
 <scene-vertices total="229">…</scene-vertices>
 <scene-faces total="325" sides="3">…</scene-faces>
 <scene-materials num-materials="2"> …
 <features> … </features>…
 </scene-materials> </scene-mesh>
 <objects> <object3D object-id="0" object-name="Tiny">
 <graph graph-id="0" node-count="47">…</graph>
 <object-mesh object-meshname="Tiny" meshnum="0"
 attach_to_graph="0" attach_to_node="Body"> …
 </object-mesh>
 <sets-of-animations>
 <animation-set setname="Walk" looping="true"
 animationspeed="4" movementspeed="0.15">

 752

 <node-properties>
 <graph-node node-name="Root"
 numinstances="62" key-type="matrix" />…
 </node-properties>
 <time-instance value="0">
 <node node-name="Root" transform="…"/> …
 </time-instance>
 <time-instance value="80">
 <node node-name="Root" transform="…"/>…
 </time-instance>
 </animation-set>
 </sets-of-animations>
 <object-controller>
 <default-anim-speed>6</default-anim-speed>
 <default-motion-speed>0.15</default-motion-speed>
 <default-animation>Walk</default-animation>
 <move x="-100.0" y="0.0" z="10.0" />
 <scale x="0.25" y="0.25" z="0.25" />
 <rotate x="-1.57" y="1.57" z="1.57" />
 </object-controller> </object3D>
 <object3D objectid="1" objname="Zombie">
 …</object3D>…<voicecommands>……<script>…

Figure 2. A fragment of “movie.xml”

6. Voice Commands and Dynamic Scripts

An XML movie has a predefined script associated with it.
The system has the capability of disambiguating between
multiple objects and actions, and supports aliasing for
user-friendliness. An excerpt of the voicecommands tag
and the script tag for a movie is shown in Figure 3. In the
rule name person the names “Zombie” and “Monster”
represent the same object. Similarly, synonymous actions
“move” and “go” lead to the same set of low level
animations.

The second auxiliary rule contains a list of auxiliary
commands used to help the user with terminating the
movie player or with help about the structure of the voice
commands. An animation that loops such as walking will
have an amount to specify the number of steps the object
should walk. This implementation is designed to have
looping animation make use of the amount rule whereas
non-looping animations do not.

The script defined in a movie plays initially in the sink.
However, the system can be interrupted, and the movie
can be archived by user interaction using a menu selection
‘Start Recording’. From that point on, the rest of the
script is discarded and the voice commands from the
microphone form the basis of interaction. Each voice
command that is recognized by the speech engine and the
low level script corresponding to the action is recorded in
memory. The user can save the modified script after
interacting with the objects in the movie.

Assume that the user speaks the following commands
into the microphone after the second command in Figure
3 was executed: (i) “Tiny walk right five”, (ii) “Zombie
move left”, (iii) “Zombie jump”, and (iv) “Tiny walk left
one”. The third command in the above list will be
discarded as an invalid command since jump is not
recognized as a valid action. After command (iv) above
is executed, the user saves the XML file from the menu
selection either to a new file or overwrites the existing

XML movie file. The resulting script tag will be changed
to reflect the interaction as shown in Figure 4.

<voicecommands>
 <RULE ID="1" NAME="commands" TOPLEVEL="ACTIVE">
 <RULEREF NAME="person" />
 <RULEREF NAME ="action" />
 <RULEREF NAME ="direction" />
 <o><RULEREF NAME ="amount" /> </o> </RULE>
 <RULE ID="2" NAME="auxiliary" TOPLEVEL="ACTIVE">
 <LIST>
 <PHRASE propname ="actions"> actions</PHRASE>
 <PHRASE propname ="actions">commands</PHRASE>
 <PHRASE propname ="close">close</PHRASE>
 </LIST> </RULE>
 <RULE NAME="person">
 <LIST><PHRASE propname ="Tiny ">Tiny</PHRASE>
 <PHRASE propname ="Zombie">Zombie</PHRASE>
 <PHRASE propname ="Zombie ">Monster</PHRASE>
 </LIST> </RULE>
 <RULE NAME="action">
 <LIST><PHRASE propname ="Walk ">move</PHRASE>
 <PHRASE propname ="Walk ">go</PHRASE>
 <PHRASE propname="Idle ">stand idle</PHRASE>
 </LIST> </RULE>
 <RULE NAME="direction">
 <LIST><PHRASE propname ="right ">right</PHRASE>
 <PHRASE propname ="left ">left</PHRASE>
 <PHRASE propname ="up ">up</PHRASE>
 <PHRASE propname ="down ">down</PHRASE>
 </LIST> </RULE>
 <RULE NAME ="amount">
 <LIST>
 <PHRASE propname="1">one</PHRASE>
 …
 <PHRASE propname="20">twenty</PHRASE>
 </LIST> </RULE> /voicecommands>
<script> <command>Tiny walk right one</command>
 <command>Zombie walk hurt left two</command>
 <command>Zombie move left one</command>
</script>

Figure 3. Voice commands and script
<script>
 <command>Tiny walk right one</command>
 <command>Zombie walk hurt left two</command>
 <command>Tiny walk right five</command>
 <command>Zombie move left</command>
 <command>Tiny walk left one</command>
</script>

Figure 4. A newly generated script

The first two commands are related to the original
script in the XML file. The third command in Figure 3 is
discarded since the user interrupted the movie at that
point. The last three commands in Figure 4 reflect the
user’s interaction that is appended to the old script. This
makes up the new script used for rendering and archiving.
Only animation related commands are written to the
script. The auxiliary commands used to help the user are
not recorded in the script.

Figure 5 shows the algorithm that replaces the old text
script in the original XML movie with a new script
containing the user’s voice command interaction. The
XML document is searched to retrieve a scene node. A
new XmlElement “script” node is then created. The script
played from the original XML file and the user’s voice
command interactions are then appended to the new script
element. This element is then written, using the

 753

XmlTextWriter class, into the new XML file denoted by
the variable newFile.

Algorithm: ReplaceScript
Input: XML Movie file
Output: A new XML Movie file, newFile
{XmlNode* root = myXmlDoc->DocumentElement;
 XmlNode* node; node = root->FirstChild; //get the root node
 while (node != 0) {
 if (a scene node is found) {
 XmlElement* elem = myXmlDoc->CreateElement("script");

 for (every script command that was executed)
 elem->AppendChild(movie script command);
 for (every valid voice command issued)
 elem->AppendChild(voice command);
 // replace old script node
 node->ReplaceChild(elem, node->LastChild);} // end if

 // keep iterating if scene is not found
 node = node->NextSibling;} // end while
 XmlTextWriter* writer; writer = new XmlTextWriter(newFile,0);
 // preserve XML indenting
 writer->Formatting = Formatting::Indented;
 // write the replaced node to the new XML file
 myXmlDocument->WriteTo(writer);} //end ReplaceScript

Figure 5. An algorithm to replace a script node

7. TANDEM Based Dynamic Movie Scripts

In this section we show how the TANDEM model is used
to describe dynamic voice modifiable XML movies.
Original movies are formed by synthesized animation and
voice input that controls the outcome of the story in the
movie. The TANDEM system analyzes the movie,
detects the components of scenes, modifies the attributes
of the movie, and renders or archives the modified movie.
A simplified version of the TANDEM application is given
in Figure 6.

The rendering of the movie starts immediately as soon
as the conditions of the invoke_compute0 event are
satisfied (i.e. when movie.xml is available). The rendering
of Scene1 will be performed 3 times in a row as required
by the loop construct. The rendering will be interrupted
when the Start Recording signal is detected, as the abort
in the loop states. The processing of the movie requires
the parsing and the interpretation of the animation
commands in the file. These are performed in the
procedure module that is activated, respectively, once by
the invoke_compute0 and a second time by the
invoke_compute1 event. The second time, the
interpret_script procedure produces data required for
setting attributes (such as component’s name, action to
perform, direction of action and duration of action). The
attributes are set by the MotionTransformer which is
activated by the invoke_compute2 event.

If live voice interaction is desired, the Start Recording
button is pressed. Voice is an animation related aperiodic
stream that instructs the trigger to activate a transformer
which in turn modifies the movie accordingly. The
processing now uses a voice sub-system [3] that consists
of a speech recognition module, and a voice command
interpreter. The speech recognition of the stream is
performed in the active repository, which performs the

content based analysis of the voice stream, as stated by
the invoke_compute3 event. Finally, the interpret_script
procedure can be initiated and the sequence proceeds as in
the previous case.

If the Save button is pressed then the invoke_compute4
event is generated and the MotionTransformerandSave
transformer is activated. The transformer sets the
attributes and has as destination the DynamicScripting
transformer which dynamically changes the scripts and
archives the new movie in a new file.

At the beginning of the application, two components of
the movie are grouped together in the trigger so that the
action identified on one component will be repeated
simultaneously by the other component. This is how
grouping is realized.

<application>
<media_stream name=”my_movie” >

 <source name=”source1” URI=”192.42.31.2”/> <type>
 <movie_animation name=”movie.xml”/> </type> </media_stream>

<trigger name=”trigger1”>
<loop name="Scene1_Loop" times="3">
 <abort when="Start Recording" type="strong" />

 <loop_element name="Scene1" /> </loop>
grouping causes Zombie and Tiny to act simultaneously
 <group name=”Zombie&Tiny”>

<member name=”Zombie”/> <member name=”Tiny”/></group>
triggers the movie script parsing

<event name="invoke_compute0" start="0">
<partial_condition name="cond1" signal_type="movie.xml"
 presence="present"/>
test the possibility to start a procedure
<partial_condition name="cond2"
 signal_type="procedure_start" presence="present"/>
<dest name ="parse_script"/> </event>

triggers the movie script interpretation
<event name="invoke_compute1" start="0">

<partial_condition name="cond1" signal_type="movie.xml"
 presence="present"/>
test the possibility to start a procedure
<partial_condition name="cond2"
 signal_type="procedure_start" presence="present"/>
<partial_condition name="cond3"
 signal_type="parse_script" presence = "present"/>
<dest name ="interpret_script"/> </event>

triggers the transformation that will produce the animation
<event name="invoke_compute2" start="0">

<partial_condition name="cond1" signal_type="movie.xml"
 presence="present"/>
<partial_condition name="cond2"
 signal_type="interpret_script” presence = "present"/>
<partial_condition name="cond3" signal_type="save_button"
 presence="absent"/>
<dest name ="MotionTransformer"/> </event>

triggers the speech recognition in presence of incoming voice
<event name="invoke_compute3" start="0">

<partial_condition name="cond1" signal_type="movie.xml"
 presence="present"/>
<partial_condition name="cond2"
 signal_type="StartRecording" presence="present"/>
<partial_condition name="cond3" signal_type="my_voice"
 presence = "present"/>
<partial_condition name=”cond4”>

speech recognition is applied in the active repository to the
incoming voice
<match signal_name=”my_voice” template=”WordList”

 method=”speech_recognition” threshold=”90%”/>
</partial_condition>
<dest name = "interpret_script" /> </event>

start the transformer for the animation and save the result
<event name="invoke_compute4" start="0">

<partial_condition name="cond1" signal_type="movie.xml"
 presence="present"/>
<partial_condition name="cond2" signal_type="interpret_script"
 presence = "present"/>
<partial_condition name="cond3" signal_type="save_button"
 presence="present"/>
<dest name="MotionTransformerAndSave" /> </event>

parse movie scripts

 754

<procedure name="parse_script" start="0">
…#parse the scripts…</procedure>

interpret scripts
<procedure name="interpret_script" start="0">

…#interpret the scripts…</procedure>
set the attributes before sending it to be rendered

<transformer name = "MotionTransformer”>
<action><update_attributes>

 …#code to set the attributes for the movie.
 </update_attibutes> </action>

<dest name = "XMLMoviePlayer" /> </transformer> </trigger>
set the attributes before sending it to be rendered

<transformer name="MotionTransformerAndSave">
<action><update_attributes>

 …#code to set the attributes for the movie.
 </update_attributes></action>

<dest name="DynamicScripting" />
<dest name=“ XMLMoviePlayer” /> </transformer>

#replace the old scripts in movie.xml with the new ones when voice
commands are present
 <transformer name="DynamicScripting">

<action><save_script>
 …#dynamically update movie.xml </save_script></action>

 <dest name = “newfile.xml” /> </transformer>
</application>

Figure 6. A TANDEM modeling application

8. Related Work

We have been influenced by many contemporary research
areas [6, 7, 8, 9, 10, 11] in recent years which have
focused on graphics animation [11], speech recognition
systems [10], WWW consortium research on modeling
scenes and objects in MPEG-4 [1] and the use of XML in
MPEG-7 [12]. There has also been research on avatar
based virtual objects [13], event cascading in VRML [8]
and their XML based variants [14, 15]. The concept of
synchronization and event [16] based preemption is found
in ESTREL [6]. We also built on our own research on
transmitting multimedia using graph based modeling of
complex objects [3]. However, our notion of the use of
integration of asynchronous signals, an active repository
to model tandem events with loose temporal constraints as
well as rigid temporal constraints, the integration of
computability, triggers, media attribute transformations,
dynamic selective grouping of media streams to meet
media attribute constraints such as synchronization and
dynamic modification of XML scripts are not present in
these related works to a varying extent.

9. Conclusion and Future Work

In this paper, we have described a paradigm for the high
level description of dynamically modifiable interactive
Internet based multimedia movies. The paradigm is based
on the integration of embedding 3D graph based objects
and media object commands into XML scripts and real
time voice activated dynamic modification of XML
scripts. It is also based on the use of high level media
stream grouping, dynamic transformation of media
attributes, and the use of an active repository to model
tandem events with loose temporal constraints. The
integration has been achieved using the high level
language TANDEM and a voice activated XML based

system that modifies XML based movies. Currently the
focus is on the full implementation of various constructs
of the TANDEM language so we can develop new
exciting applications using this paradigm.

References:

[1] Extensible Markup Language-http://www.w3.org/XML.
[2] H. Kalva, L. Cheok, A. Eleftheriadis, MPEG-4 systems and

applications, Proc. 7th ACM Intl. conf. on Multimedia (Part
2), Orlando, Florida, October 1999, 192-192.

[3] B. Simoes and Arvind K. Bansal, Interactive Voice
Modifiable 3D Dynamic Object Based Movies over the
Internet, Proc. 5th Intl. Conf. on Internet Computing, Las
Vegas, June 2004, 708-714.

[4] A. Guercio, A. K. Bansal, A Model for Integrating
Deterministic and Asynchronous Events in Reactive
Multimedia Internet Based Languages, Proc. 5th Intl. Conf.
on Internet Computing, Las Vegas, June 2004, 46-52.

[5] A. Guercio, A. K. Bansal, TANDEM – Transmitting
Asynchronous Non Deterministic and Deterministic Events
in Multimedia Systems over the Internet", Proc. 10th Intl.
Conf. on Distributed Multimedia Systems, San Francisco,
September 2004, to appear

[6] G. Berry, G. Gonthier, The ESTEREL Synchronous
Programming Language: Design, Semantics,
Implementation, Science of Computer Programming, vol.
19, no. 2, Nov. 1992, 87-152.

[7] Synchronized Multimedia Integration Language 2.0
Specification, http://www.w3.org/TR/smil20/, Aug. 2001.

[8] Virtual Reality Modeling Language (VRML) 2.0,
ISO/IEC14772,http://www.web3d.org/x3d/specifications/vr
ml/ISO_IEC_14772-All/part1/concepts.html,Date accessed:
07/01/2004.

[9] K. Perlin and A. Goldberg, Improv: A System for Scripting
Interactive Actors in Virtual Worlds, Proc. 23rd annual
Conf. on Computer graphics and interactive techniques,
1996, 205-216.

[10] H. Tanaka, T. Tokunaga, Y. Shinyama, Animated Agents
that Understand Natural Language and Perform Actions,
Proc. International Workshop on Lifelike Animated Agents,
(LAA), Tokyo, Japan, 2002, 89-94.

[11] eXtensible 3D(X3D), http://www.web3d.org/x3d
/overview.html, Date accessed: 07/01/2004

[12] J.M. Martinez, R. Koenen, F. Pereira, MPEG-7 – The
Generic Multimedia Content Description Standard, Part I”
IEEE Multimedia, April-June Issue, 2002, 78-87.

[13] S. Kshirsagar, N. Thalmann, A. Vuillème, D. Thalmann, K.
Kamyab and E. Mamdani, Avatar Markup Language, Proc.
Workshop on Virtual environments, Barcelona, Spain,
2002, 169-177.

[14] Z. Huang, A. Eliens and C. Visser, XSTEP: An XML-
based Markup Language for Embodied Agents, Proc. 16th
International Conf. on Computer Animation and Social
Agents, (CASA 2003), New Brunswick, New Jersey, 2003,
105-110.

[15] K. Walczak and W. Cellary, X-VRML – XML Based
Modeling of Virtual Reality, Proc. IEEE Symposium on
Applications and the Internet, SAINT’02, Nara City, Nara,
Japan, 2002, 204-213.

[16] X. Gu, K. Nahrstedt, An Event-Driven, User-Centric, QoS-
aware Middleware Framework for Ubiquitous Multimedia
Applications, Proc.ACM Multimedia Workshop on
Middleware, Ottawa, Canada Oct. 2001, 64-67

