

 57

TANDEM – Transmitting Asynchronous Non Deterministic and
Deterministic Events in Multimedia Systems over the Internet

Angela Guercio and Arvind K. Bansal

Department of Computer Science
Kent State University, Kent, OH 44242

guercioa@hiram.edu and arvind@cs.kent.edu
Tel. 330-672 9035 Fax. 330-672 7824

Abstract
Internet is being used more pervasively for multimedia retrieval,
multimedia transmission and rendering. However, little work
has gone on the Internet based multimedia modeling integrating
user interaction, asynchronous and non-deterministic multimedia
events, multiple multimedia streams, and their synchronization.
In this paper, we describe a new and novel XML based
multimedia language ‘TANDEM’ which supports the integration
of user interaction, asynchronous non deterministic multimedia
events, multiple multimedia streams, and their synchronization.
More specifically, we describe ‘event constructs’, ‘stream
grouping constructs’, ‘transformation constructs’, and
‘synchronization constructs’. We illustrate the constructs with
relevant examples.

Keywords: asynchronous, event, Internet, language,
modeling, multimedia, nondeterministic, synchronization

1. Introduction

As the Internet becomes pervasive, the multimedia
knowledge base on the Internet will become source for
the Internet based multimedia modeling application based
upon user interaction. For an effective use of distributed
multimedia data over the Web, we need to develop a
series of tools and languages that can help programmers
to create such applications.

Current multimedia languages [9] are evolving, and
are limited in their capability to model real world
phenomenon which needs integration of multimedia
reactivity, asynchronous events, computability, event-
based triggering, dynamic altering of multimedia
attributes, and synchronization of multiple streams.
Languages for modeling distributed multimedia systems
must support asynchronous events, loose ordering of
events, and automated dilation of time-scale in a group of
streams to preserve synchronization.

This paper introduces TANDEM ― an XML based
distributed multimedia language for Transmitting
Asynchronous Non-deterministic and Deterministic
Events in Multimedia systems. The language supports the
development of distributed multimedia systems which
integrate deterministic and asynchronous non-
deterministic events over the Internet. The language is
based on a conceptual model that has a trigger —
mechanism which controls the reaction to multimedia

content in multimedia streams as the event generator
which instructs the transformers for the appropriate
reaction. A trigger accepts multimedia streams (both
periodic and aperiodic) as input along with the
associated media contents, and generates one or more
event. The language provides constraints-based
synchronization facilities with dynamic scaling for
groups of multimedia streams, which have a clock
associated with them to control their synchronization.
Context-related reactions to situations are detected by an
active repository, as well as reactions to the external
world. The use of a persistent repository takes care of
partial conditions and the change in the order of
nondeterministic conditions since the truthfulness of
partial and nondeterministic conditions can be archived
in the active repository.

The major contributions of this paper are:

(1) The language allows the integration of asynchronous
events, deterministic multimedia events, and
multimedia event based triggering commands.

(2) The language supports temporal and spatial
synchronization of the complex media objects.

(3) The language separates and integrates five major
components of distributed multimedia reactive
systems: triggers, active repository, transformers,
grouping of media streams, and synchronization.

(4) The language allows dynamic scaling of the
multimedia time base for implicit synchronization

(5) The language incorporates commands that interrogate
the active repository for partial conditions
verification as well as pattern detection, oblivious
data and context-based conditions.

The paper is organized as follow. Section 2 describes
briefly related concepts in distributed reactive
multimedia systems. Section 3 describes the conceptual
model for TANDEM. Section 4 describes the constructs
for multimedia events, stream grouping for
synchronization, synchronization and transformation
constructs. Section 5 presents related works. The last
section concludes the paper. Due to the space limitation,
the grammar for the language and a description of a
major nontrivial application will be presented elsewhere.

 58

2. Distributed Reactive Multimedia Systems

Multimedia systems provide interaction involving text,
graphics, audio and video. The interaction is obtained via
multimedia streams and aperiodic signals. A multimedia
stream is a sequence of nested tuples and data values. A
multimedia stream can be:
(1) a continuous stream as produced by sensors
(2) a periodic stream where data is associated with a

periodic signal, or
(3) an aperiodic stream where the data is associated with

an aperiodic signal generated by an event or external
interaction.

A multimedia stream S has two components: attribute-set
and data. Three attributes periodic or aperiodic, number
of data elements per unit time, and type of data (such as
audio or video or music or audiovisual etc.) are essential.
Other attributes are specific to the streams, and vary with
different types of multimedia streams.

Example 1: The data for the audio stream is a sequence
of sampled packets with the attributes: (a0=periodic,
a1=audio, a2 = 44100 samples/second, a3 = no. of channels
= 4, a4 = 16 bits per sample, a5 = media length, …).

Each multimedia media stream has its own clock
which is synchronized to a common, and is played
according to the playback rate R of the media type.

In distributed reactive multimedia system [2], a
number of multimedia streams and aperiodic signals are
produced in one location (local or remote) and are
consumed in another location. Multiple streams are
synchronized with each other, are transformed, and the
system reacts to asynchronous events. An aperiodic signal
interacts with other streams or signals, transform a stream
(or group of streams), and trigger another chain of events.
Media types react to external stimuli (user intervention) or
their own content, or to some other media type content.
The repetition of the same actions does not guarantee the
same reaction due to the change in context, past events, or
the order of events.

Distributed reactive multimedia systems must be able
to react when certain conditions are met. The reaction of
the system consists of the generation of one or more
events that “respond” appropriately to the presence of
some previous phenomena, which consists in the
satisfaction of a set of Boolean conditions.

In distributed reactive multimedia system interactions
with remote locations is a necessity. Consider an on-line
conference in which participants draw on a shared
whiteboard object. The drawing must be visible to all the
participants immediately. Actions, which do not directly
require media stream's attributes modification, should be
able to deal with network issues, mobile users, security
and alarm exceptions and resource managements.

3. The Conceptual Model of TANDEM

The application module of TANDEM is based on the
conceptual model for the creation of distributed reactive
multimedia systems introduced in [5]. The distributed
multimedia application is modeled as reaction graphs
(see Figure 1) as follows:

(i) Media generation points are modeled as sources, and
a media rendering (or archival) points are modeled
as sinks. Sources and sinks can be local or remote. A
sink is a URI where the multimedia stream is
rendered or stored.

(ii) Transformer nodes (see Figure 2) apply
transformation functions to modify the attributes of
the multimedia stream. For example, transformers
change the rendering rate of a group of streams,
multiplex streams, or reduce the number of channels
of a video for rendering.

(iii) Triggers provide a general mechanism for actions
after a set of Boolean conditions are met. Trigger
nodes control the media streams and initiate reaction
to the streams. A trigger is associated with sets of
multimedia stream groups and a set of conditions.
Triggers activate events in response to the
satisfaction of a set of conditions. A trigger reaction
includes monitoring of external sensors,
transforming the attributes of multimedia streams,
redirecting a stream to a different destination,
starting a new thread of computation, or a cascade
of triggers and events. A trigger reaction might
require a computation which involves the input
streams; in that case the input streams are pre-
transformed by one or more transformer modules.

(iv) Active repository nodes are associated with triggers.
Active repository samples and analyzes the media
content for the required conditions, and transmits
the outcome to the triggers. An active repository
detects and archives partial conditions to match the
conditions in loose order of occurrence.

Figure 1. The conceptual execution model

Source

Streams
Transformern Multimedia

stream

Trigger

Active
Repository

Aperiodic

Source

Transformer1

Multimedia
stream

Procedure

 59

We distinguish two types of triggers: event-based
triggers and periodic triggers. Event-based triggers fire
when some constraints (or conditions) are satisfied. For
example, the alarm activation of a surveillance camera
fires a trigger when a human figure is detected. Periodic
triggers fire periodically. For example, a biologist
capturing the blooming of a flower will capture and
transmit pictures periodically. Triggers are also classified
as continuous or discrete. Continuous triggers do not
require resetting, while discrete triggers are reset every
time they go off. Triggers are associated with zero or
more streams and aperiodic signals. The trigger
communicates with an active repository to archive and
retrieve partial conditions and allow nondeterministic
order of conditions in multiple streams If the reaction
requires a computation which does not involve the input
streams, the trigger generates an aperiodic signal which
causes a procedure-call associated with the activated
event, shown by the gears.

Figure 2. Application of transformers

 Groups are used to perform operations on sets of
related multimedia streams. Operation on multimedia
streams can be either 'isolated' or 'joint'. Isolated
operations do not affect individual media streams in a
group. Joint operations affect every member of the group.
Synchronization of streams is a joint operation. Multiple
groups can be associated with a trigger. Although a part
of triggers, aperiodic signals are not part of groups.
 Together with the input signals, i.e. groups of
periodic multimedia streams (audio, video, text,
audiovisual etc.) or aperiodic signals, and active
respository, the trigger forms the basic building block to
generate an event. The generated events, represented by
the dotted links in the above figure, perform the reaction
to the specific conditions verifications. Event definitions
in the trigger define all the conditions that must be
verified for the event to occur. The destination of an event
can be a transformer, a procedure, or a sink. A procedure
is activated when computations (other than stream
transformation) are required. Synchronization is required
after detecting a required pattern(s) in the active
repository. The active repository signals the trigger for the
verification of the partial conditions, and the action.

4. TANDEM: Framework and Constructs

In this section we introduce generic constructs. Since
TANDEM is an Internet language the constructs follow
the XML style; however, constructs are generic.

A distributed reactive multimedia application is
constructed by specifying the sources, the sinks, the
triggers, the transformers, the active repository, and the
events. We first define the streams involved in the
application. The streams will be input to one or more
triggers. Each trigger will contain the description of the
groups that participate in the trigger, the loop constructs
that we apply to the input streams, the events that the
trigger will handle and the destinations of those events.
We describe the destinations of each event in the trigger.
The outline of an application framework is:

<application ...>

we describe all the media streams
<mediastream ... > # mediastream 1 </mediastream>
...
<mediastream... > # mediastream M </mediastream>

 # we drescribe all the triggers
 <trigger ...>

define all the loops involving media streams
<loop ...> ...#loop1 </loop>
...
<loop ...> ... #loopN </loop>

define all the groups
<group ...> . #group 1 </group>

 ...
<group ...> . #group G </group>

 #define events, conditions and trigger destinations

<event ...> . #event 1 </event>
 ...
 <event ...> .# event E </event>

 #describe transformers, actions and destinations
 <transformer ...> . #transformer 1 </transformer>
 ...
 <transformer ...> . #transformer S </transformer>

 #describe all the procedures required
 <procedure ...> .#procedure1 </procedure>
 ...
 <procedure ...> .#procedure P </procedure>

</trigger>
...
<trigger>... #trigger T </trigger>

</application>

Figure 3. An outline of application framework

The definition of the multimedia streams in the trigger
provides a way to collect information about all the
sources (remote or local) needed for the application. For
example, a remote source that is sending an audio at a
44,100 samples/sec. rate collects the data and values of
the attributes as follows:

<media_stream name = "mm1">
<source name = "source1" URI = "192.168.2.102" />
<type> <audio name = "audio.wav"

samples_per_sec = "44100" no_of_channels = "2"
bits_per_sample = "16"
scaling_constraint = "[0.5, 2]" />

</type>
</media_stream>

Stream1

File
Transformer1p

Streamn

Transformer11

MM Player1

 60

Repetition of streams is performed in the loop
construct. The construct contains the name of the loop
and defines the elements which participate in the loop.
For example, the following construct defines a repetition
of stream mm1 3 times.

 <loop name = "mm1loop" times = "3">
 <loop_element name = "mm1" /> </loop>
Nested loops are defined by referencing the name of a
predefined loop. The following code repeats mm1loop
five times.

 <loop name = "nestedloop" times = “5”>
 <loop_element name = “mm2” />
 <loop_element name = "mm1loop" /> </loop>

4.1 Event constructs

An event is generated when specific conditions are
satisfied. An event has a destination according to the
action that the event must perform. The events are either
tightly integrated with the spatial and temporal constraints
or they may loosely coupled. In a tightly integrated
constraint the order of the events is very specific and the
temporal and spatial constraints are strictly followed.
Loosely coupled events may have non-deterministic order
of events with more relaxed constraints.

In the following code fragment, the event
"start_video" starts a video clip if all the partial conditions
are satisfied. The partial conditions verify the presence of
two aperiodic signals: user's right-clicking and the end of
another video clip. After both the conditions are satisfied
the event is generated. The destination of the event is the
"transformer-1", which takes as input data stream from
the source = "video1".

<application name = "example">
...
 <event name = "start_video"

 Start = "immediately" priority = "1"... >
<condition name = "cond1"
 signal_type = "rightclick"
 presence = "present" ... />

<condition cond_name = "cond2"
 signal_type = "video2_end"
 presence = "present" ... />

 <destination name = "transformer1"
 Source = "video1"... />

 </event>
...
</application>

In TANDEM, the generated events can involve
multiple sources or multiple groups of multimedia
streams. A generated event is sent to one or more
destination(s). Remote location interaction can be
performed by using multiple remote destinations. The
ordering of the events in an application is handled by an

optional priority value. The priority, when specified,
guarantees the partial order of the events.

4.2 Group constructs

Grouping clusters one or more media streams or groups
for synchronization. The groups are both dynamic and
hierarchical. Groups are an elegant and efficient way to
specify synchronization on multiple streams as follows:

<group name = "soprano">
<member name = "mm1"/> <member name = "mm2"/>

</group>

The construct creates the group "soprano" which groups
two media streams, mm1 and mm2. Groups can be
modified dynamically by a transformer using group
actions as follows:

(i) ungroup, to separate an existing group,
(ii) add_group, to add elements to a group

(iii) delete_group, to eliminate elements from a group
(iv) regroup, to incorporate elements into a new group

In the example described below, the transformer
“ungroup-soprano” ungroups the elements mm1 and
mm2 of the group soprano. After ungrouping the group
soprano does not exist. Regrouping is needed for group
reconstruction before further use.

<transformer name = "ungroup-soprano">
<action >
 <ungroup > <elements group = "soprano"/>
 </ungroup>
</action>

 <destination name = "player1" />
</transformer>

4.3 Synchronization constructs

Synchronization in multimedia requires the ability to
relate the elements involved in the multimedia
application both spatially and temporally. The
synchronization specifies how those elements will to be
presented in a specific spatial or temporal order on the
rendering device. The required synchronization can be
influenced by the events caused by the user interacting
with the multimedia system.

The synchronization constructs (i) provide
synchronization in the presence of external constraints,
such as user interactions, (ii) provide synchronization in
the presence of system environmental constraints, such
as network traffic or resource availability, and (iii)
provide synchronization for user defined media groups.

A trigger activates an event every time specific
conditions are satisfied. The activation can be started
immediately or delayed. In the construct (1) the trigger
starts the event immediately, in the construct (2) the

 61

delay is 9 units. The delay can be determined by a
computation as shown in the construct (3).

<event name = "start_video" start = "0" > ... </event> (1)

<event name = "start_video" start = "9" > ... </event> (2)

<event name = "synch&start" start = "0"
 var_delay = expression > ... </event> (3)

An event might need to invoke a computation. For
example, an event might be delayed depending on
conditions of the network traffic. An event
"invoke_compute" is going to start a procedure
"compute_delay" which checks for the network
conditions and calculates the appropriate delay. This is
done within a period trigger as shown below:

<event name = "invoke_compute" start = "0">

#test the presence of the signal "procedure_start"

<condition name = "cond2" signal_type =
"procedure_start" presence = "present"/>

<destination name = "compute_delay" />
</event>

check and compute the network delay

<procedure name = "compute_delay" start = "0">
<parameters> <param name = "delay" type = "int"

 Mode = "out"/> </parameters>
</procedure>

Whenever synchronization is required an event must

be generated to activate the appropriate reaction. The
trigger identifies the specific transformer, and the
synchronization is activated. The transformer must
contain the synchronization actions to be performed.
Since transformers alter the attributes of multimedia
streams both spatially and temporally, the synchronized
actions must distinguish between spatial and temporal
synchronization. For example, consider two media
streams are played in parallel such that their start
together and end together match. Then the trigger will
start an event that will have as destination a transformer
that performs the synchronization.

In the following construct, the transformer starts the
two streams mm1 and mm2 in parallel: mm2 will start 3
units later than mm1 and will end at the same time. The
stretch required to perform the synchronization must be
compatible with the previously defined scaling
constraints. If stream scaling constraints are not verified,
no modifications will be performed on the stream. The
scaling type construct ‘Stretch’ causes the speed up or the
slow down of the playback rate of the media object.

<trigger name = "trig1" ...>
...
<event name = "parallel_start"...>
...

<destination name = "transf1"/>

</event>
...

<transformer name = "transf1">
<action >
< synchronize >
 <temporal type = "start&end" scaling = "stretch"

Reference = "mm1" start = "0" end = "0">
 <elements name = "mm2" diffstart = "3"
 Diffend = "0"/>

 </temporal>
</synchronize>

</action>
<destination name = "player1" />

</transformer>
...

</trigger>

If the parallel start is applied to a group of streams,
the group elements are related synchronously to the
reference stream. In the code fragment below, all the
media streams of group1 start 3 units later than mm1 and
terminate at the same time, while all the media streams
of group2 start after 2 units and terminate 2 units earlier
with respect to the stream mm1.

<synchronize>
 <temporal type = "start&end" scaling = "stretch"

Reference = "mm1" start = "0" end = "0" />
 <elements name = "group1" diffstart = "3"
 Diffend = "0" />
 <elements name = "group2" diffstart = "2"
 Diffend = "-2" />
 </temporal>
</synchronize>

Synchronization actions involving spatial
constraints are computed by giving the relative values.
The following code locates all the elements of group1,
on the X-axis, 3 points after the X-position of mm1.
Synchronization is handled by the synch_type =
"seq_start" as follows.

<synchronize>

<spatial type = "start&end" scaling = "stretch"
Alignment = "upper_left">

<elements name = "mm1" diffstartX = "0"
diffstartY = "0" diffendX = "0" diffendY = "0"/>

<elements name = "group1" diffstartX = "3"
diffstartY = "0" diffendX = "3" diffendY = "0"/>

</spatial>
</synchronize>

7. Related Works

The research involving synchronized multimedia streams
[8] and the use of high level distributed multimedia
language constructs such as event triggering and
synchronization constructs for flexible Internet based
modeling is evolving rapidly after the advent of the
Internet. The languages like SMIL [9], TAOML [1],

 62

VRML [10] and its XML based variants, synchronous
language Estrel [3], and distributed multimedia languages
concerned with QoS (Quality of Service) [6] have
different aspects of multimedia modeling, synchronization
constructs and event based constructs.

SMIL [9] models concurrent multimedia streams by
synchronizing start and end of the streaming at a specific
point of time relative to other streams, and supports
spatial synchronization and placement of media streams.
However, there is no comprehensive stream group
construct in SMIL, and SMIL also does not support frame
level synchronization due to the lack of synchronization
of periodic signals. The event model (used primarily for
user interaction) is independent of the timing model (used
for played back). If no events are defined by a host
language, event-timing is effectively omitted [9]. For
example, if a video is started by the left-click of the
mouse and is ended by the right-click of the mouse, in
SMIL we cannot guarantee that the left-click followed by
the right click results in the media starting and stopping.
SMIL also does not support nondeterministic order of
events and partial matching of conditions.

VRML [10] and its XML based variants support the
notion of events and events triggering another events,
triggering computation, and grouping of multimedia
components. The events can be modified dynamically in
VRML However, VRML also does not support
synchronization of periodic stream at the Frame level, and
does not support nondeterministic order of conditions or
archiving partial conditions.

TAOML [1] has limited expression capability. For
example, nested loop or dynamic grouping is available
neither in TAOML nor in SMIL. Other languages, such as
HQML [6] have focused their attention to the quality of
service capabilities; therefore their synchronization
abilities are very limited.

ESTREL [3] is a synchronous deterministic hardware
modeling language. Integrated with distributed
multimedia sources and sinks constructs Estrel constructs
can be used to model multimedia objects and periodic
multimedia streams, and triggering a chain of multimedia
events. However, Estrel is not an Internet based
language, and does not support explicitly grouping of
periodic streams and nondetermistic order of events or
storing of partial conditions.

6. Conclusions

In this paper, we have described a distributed multimedia
modeling language TANDEM that integrates
deterministic, non-deterministic events, asynchronous
events, and spatio-temporal synchronization. The
language is based upon a novel model [5] developed by
the authors which uses a persistent active repository. The
active repository supports pattern-based matching and

content-based analysis of media streams. The use of the
persistent active repository allows us to store partial
conditions and relax the order of events. The language
has five distinct types of constructs, namely, multimedia
definition constructs, group constructs, trigger
constructs, synchronization constructs, and transformer
constructs. We support multiple stream synchronization
using group constructs, support aperiodic signals for user
interaction, and continuous streams for sensor
information. Trigger constructs are used either to invoke
media transformers that alter the attributes of media
streams or invoke a procedure call for computation. The
language is in advanced stage of implementation.

 References

[1] T. Arndt, S.K. Chang, A. Guercio, “Formal Specification
and Prototyping of Multimedia Applications,” Int. Journal
of SEKE., vol.10, no.4, pp.377-409, 2000.

[2] J. Bacon et al., "Generic Support for Distributed
Applications", IEEE Computer, pp. 2-10, March 2000.

[3] G. Barry and G. Gonthier, “The ESTREL Synchronous
Programming Language: Design, Semantics,
Implementation,” Science of Computer Programming,
19(2), 1992

[4] X. Gu, K. Nahrstedt, "An Event-Driven, User-Centric,
QoS-aware Midleware Framework for Ubiquitous
Multimedia Applications", Proc. of ACM Multimedia,
Ottawa, Oct. 2001.

[5] A. Guercio, A. K. Bansal, "A Model for Integrating
Deterministic and Asynchronous Events in Reactive
Multimedia Internet Based Languages", to appear in IC
2004,Procs. 5th Int. Conf. on Internet Computing, Las
Vegas, June 21-24, 2004.

[6] X. Gu, et al, "An XML-based Quality of Service Enabling
Language for the Web", Journal of VLC, vol.13, no. 1, pp.
61-95, 2002.

[7] D. H. Kim, K. H. Lee An Extended Object Composition
Model for Distributed Multimedia Services, Proceedings
of the Seventh International Workshop on Object Oriented
Real-Time Dependable Systems, January 2002, pp. 279-
288.

[8] P. Venkat Rangan, S. Ramanathan, and S.
SampathKumar, Feeback Techniques for Continuity and
Synchronization in Multimedia Information Retrieval,
ACM transactions on Information Systems, Vol. 13, No.2,
1995, pp. 145-176

[9] Synchronized Multimedia Integration Language 2.0
Specification, http://www.w3.org/TR/smil20/, Aug. 2001.

[10] Virtual Reality Modeling Language(VRML) 2.0, ISO/IEC
14772,Available:http://www.web3d.org/x3d/specification
s/vrml /ISO_IEC_14772-All/index.html

[11] Extensible Markup Language-http://www.w3.org/XML

