

 - 553 - 553

Transmitting High Quality Archived Object-based Movies with Reduced
Bandwidth Requirement

Arvind K. Bansal* and Rahul Pathak

Department of Computer Science
Kent State University, Kent, OH 44242

E-mail: arvind@cs.kent.edu

Abstract

With the exponential increase in the integration of
mobile communication devices with media
communication over the Internet, the need to transmit
high quality archived media clips and movies over
limited bandwidth connections has increased.
Archived movies have immense use for entertainment
such as cartoon movies, news clips, and Internet based
mobile instructions. In this paper, we describe an
XML based Internet language for frame based
transmission of object based movies over the Internet
using STMD (Single Transmission Multiple Display)
paradigm. The language and its implementation have
been described, and the performance results for the
implementation have been presented. The
implementation benefits from the integration of static
analysis of the movie and the predictive buffer
management. The benchmark shows that the
bandwidth requirement reduces significantly.

Key-words: Bandwidth, Buffer management, Internet,
Information, Movies, MPEG-7, Multimedia, QoS,
XML

1. Introduction

As the Internet becomes faster and more integrated, the
number of archived large multimedia knowledge bases
[14] and peer-to-peer communication is increasing.
Multimedia clips are retrieved, reprocessed, and
transmitted over the Internet in a user transparent way.
Recent advances in the Internet transmission
standardization using MPEG (Motion Picture Expert
Group) [3, 8, 9] and standard Internet based languages
such as XML (http://www.w3.org/XML) have made
possible ease of movie transmission and cross cultural
exchanges of multimedia objects, archived video and
audio clips. People are using and demanding the
Internet to transmit higher resolution digital multimedia
such as multimedia news items, multimedia financial
bulletins, music, AV clips, movies, kiosks on mobile
platforms such as laptops, PDAs, and devices attached
to their means of transportation such as automobiles,
airplanes etc. The future society will have a seamless

integration of multimedia interaction and multimedia
knowledge bases with the Internet.

The advances in the usage and the increasing
demand for jitter free high-resolution multimedia clips,
has put extra burden on available bandwidth. The rate
of increase in the demand for high quality rendering
and transmission is much faster than the rate of increase
in the transmission bandwidth of the Internet.

In the past, in order to circumvent the problem of
bandwidth requirement, many techniques such as
archiving the files at the client end cache, compression
of video and audio, transmitting frame level delta
changes with respect to a reference frame as used in
MPEG-4 [3], client end text to speech conversion [4],
progressive meshes [6, 10], and XML based modeling
of the 3D objects as in VRML97 [16], have been used.

In our previous research [1], we proposed the idea
of integrating the notion of hierarchical graphs to model
the motion of complex 2D-objects extending the notion
of scene-graph based modeling proposed in MPEG-7
[8, 9]. In this model, the image of the subcomponents
is superimposed on nodes and edges, and nodes or
edges themselves are mapped to an underlying
hierarchical graph.

In this paper, we integrate hierarchical graph based
modeling, statistical analysis of archived media objects,
and predictive sever coordinated client end buffer
management. We also extend the model to integrate
incremental matrix based background information, and
present a grammar and syntax of an intermediate level
XML based language called STMDML – A Single
Transmission Multiple Display Multimedia Language –
for the transmission of synthetic and archived movies.

The major advantages are as follows:

i) The number of transmission of images of the

moving components is reduced significantly as it
can be archived after the first transmission and
retrieved from the client end archive.

ii) Details of a component of the complex object can
be stitched to the existing description without a
need for the retransmission of the complete object.

Proceedings of the 2nd IASTEAD International Conference COMMMUNICATIONS, INTERNET, & INFORMATION TECHNOLOGY,
Scottsdale, Arizona, November 2003, pp. 553-560,
"© 2003 ACTA Press. Personal use of this material for academic purposes is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse
any copyrighted component of this work in other works must be obtained from the ACTA Press."

iii) Unlike VRML, this approach relies on photo-
realistic images thus providing more realism in
animation, lighting and shadow effects.

iv) The subsequent frames can be better reconstructed
since the data file of the subcomponents is already
cached at the client end.

v) Our buffer management system provides a tight
integration of server side management of client
side cache based upon frame lookahead and static
analysis of archived frames. This integration
reduces the bandwidth requirement, and reduces
the problem of jitter caused by limited processing
power of PDAs and facilitates reduced data
transfer [2].

Figure 1: The overall model

The STMDML version 1.0 (including parser,
compositor, buffer manager, and renderer) has been
implemented using Java and other tool set such as
DOM for parsing (http://www.alphaworks.ibm.com
/tech/xml4j), Java Swing (http://java.sun.com/products
/jfc/) and graphics libraries for rendering.

The paper is organized as follows. Section 2
briefly describes the and relevant features of MPEG-7.
Section 3 describes STMDML (Single Transmission
Multiple Display Multimedia Language), a
representation of complex objects in STMDML, a
grammar for the language, and scene representation
using the grammar. Section 4 describes an example for
XML based representation. Section 5 describes the

implementation including a brief description of the
parser, the renderer, and the predictive buffer
management scheme. Section 6 describes the
performance evaluation and compares the work with
other popular formats. Section 7 discusses the relevant
related works. The last section concludes the work.

2. Background and Definitions

A hierarchical graph (possibly directed) [5, 15] has
multiple layers of abstraction. Each level of abstraction
represents a subgraph (at the lower level of abstraction)
having a common attribute/function into a single node.
Each node at a higher level of abstraction is a simple
node or corresponds to an embedded graph at a lower
level of abstraction. The edge between two nodes VI
and VJ represents one or more edges between the
embedded subgraphs corresponding to the nodes VI and
VJ. A complex media object can be defined in the form
of a hierarchical graph with each node of the graph
representing a sub-component. An edge between two
nodes can represent either a relationship between the
corresponding sub-components or another component.

MPEG-7 (http://www.chiariglione.org/mpeg/index.
htm) [8, 9] has recently become a new industrial
standard to represent audio, visual or audiovisual
content. MPEG-7 represents a scene as a graph called a
scene graph. Every media object or a group of media
objects is mapped to a node of the scene graph.
Additional information is accompanied with it to
provide spatial and temporal synchronization.

3. STMDML Description

STMDML — Single Transmission Multiple Display
Multimedia Language ? is a continuously evolving
high level XML based language for displaying archived
movie over the Internet with an enhanced reuse of
components of an object at the client end.

A movie is modeled as a sequence of scenes. A
scene consists of multiple frames, and each frame has
multiple interacting media objects or group of media
objects. Scene representation is a mechanism to
spatially locate individual objects and group of media
objects that form a scene.

To provide and maintain this realistic environment
through out the scene, the background has to be altered
at every frame in the scene. During the motion of one
or more objects, the background changes incrementally
between consecutive frames. Completely changing the
background causes jitter due to excessive data transfer,
and reduces the QoS. To avoid the drop in the QoS, the
background is represented as a matrix of images, and
only previously untransmitted matrix blocks are sent.

 buffer
manager

Object
declaration
in XML

Static analysis

Scene
description
in XML

Media
objects

Frame Buffer

Augmented Scene
description in XML

STMDML parser

Scene compositor

Player

Active buffer

Passive buffer

buffer
manager

Media buffer

Internet

 554

This reduces the total data that is transmitted and thus
improves the Quality of Service.

3.1 Representing complex objects

Each node in the graph represents a part of a media
object. The edges between nodes define relationships
between nodes or connecting objects or constraints
related to the connected nodes. A subgraph or a
complex_object could be embedded inside a node since
each graph is a hierarchical graph. Each subgraph has
an attribute CG (center of gravity). All nodes within
the embedded subgraph use relative coordinates with
respect to the center of gravity of the higher level node.

An object is superimposed on a node or an edge. A
media object can be of type text, audio, image or
complex_object. Multiple media objects are
superimposed on a single node (or edge), by embedding
multiple object tags within the node tag. This is useful
for imposing an image and audio on a single node. A
practical example is where a node represents a face of a
cartoon object and the audio stream associated with it.

Figure 2. A graph based model of a cartoon

3.2 Scene representation

A movie in STMDML is divided into two parts: ‘object
description’ and ‘scene description’. The ‘object
description’ is used for storing a library of graph-based
templates for objects and association of a symbolic
name for the template. The ‘scene description’ gives
frame-by-frame description of a movie. Once a media
object is archived at the client end, the subsequent
frames refer to the media object by the corresponding
identifier.

Frame rate is dynamically altered. The keyword
‘total_frames’ is used to assign the total number of
frames a movie. A world groups the entire environment
of a movie. The properties associated to a world can be
scenes, backgrounds, and media objects. This helps in
changing the environment just by referring to a pre-
defined world_id. The scene-id uniquely defines the
scene. A loop construct is used to repeat a set of
frames. A unique background identifier allows the

reuse of the same background in multiple frames or
scenes.

The animation of a 2D-object (or group of objects)
is modeled by transmitting incrementally (based upon
the rendering) only once (and reused later using a client
end cache) a finite sequence of images, and
background. To facilitate incremental change,
background is modeled as a matrix of background
images. The server dynamically computes the matrix
elements needed for the lookahead frame, and transmits
the image files for previously untransmitted matrix
blocks. Similarly, client associates the matrix element
with the correspondingly image file in the cache to
retrieve the images.

STMDML uses implicit frame based
synchronization to represent temporal relationships.
The frames are built statically at the server end before
transmitting the movie. A simplified grammar for
STMDML has been given in Figure 3.

4. Implementation

The scheme proposed in this thesis is implemented in
Java. A parser was implemented using Document
Object Model (DOM), A renderer was implemented
using Java and various libraries like swing and graphics
and multithreading libraries with Java API. The buffer
management was implemented using Java.

4.1 STMDML parser

The STMDML parser is implemented in Java using
DOM. Upon receiving an XML frame, the objects are
parsed, and a DOM tree is formed. Once a scene node
is found it parses the DOM tree further to store all the
attributes associated with the node scene using global
variables. These global variables are used in scene
composition and rendering.

 The objects are stored in the object database. The
object database consists of tables for objects and
frames. The object table stores a tuple for every object.
The object tuple consists of {object_id,
object_coordinates, object_source, object_size,
object_description}.

<movie> :: ‘<movie’ {<movie_attributes>}* ‘>’
 {<scene>}* ‘</movie>’
<movie_attributes> :: frame_rate = <integer>
 total_frames = <integer>
<scene> :: ‘<scene’ world_id = <integer>
 (scene_id = <integer> ‘>’
 {<frame>}* ‘</scene>’
<frame> :: ‘<frame’ frame_id = <integer>‘>’
 {<object>}* ‘</frame>’
<loop> :: ‘<loop [duration = <integer>] ‘>’ {frame}*‘</loop>’ |
 ‘<loop>’ [duration = <integer>]{Scene}* ‘</loop>’

 555

<object> :: <complex_object> | <background> |<image>|
 <audio> | <text> | <simple_object>
<complex_object> :: ‘<complex_object’ object_id = <integer>
 motion = <animate> ‘>’
 {graph}* ‘</complex_object>’
<animate> :: ‘moving’ |‘still’
<graph> :: ‘<graph graph_id = <integer>
 node_count = <integer> ‘>
 {<graph_elements>}* ‘</graph>’
 <graph_elements> :: <edge> | <node>
<edge> :: ‘<edge’ edge_id = <integer>
 node_pair = (<integer> <integer>)
 {<edge_attributes>}* ‘>’
 {<embedded>}* ‘</edge>’
<edge_attributes> :: descr = <string> |
 coord = (<integer> <integer>)
 (<integer> <integer>)
<node> :: ‘<node’ node_id = <integer>
 {<node_attributes>}* ‘>’ {<embeded>}* ‘</node>’
<node_attributes> :: descr = <string>
 coord = <integer> <integer>
 adj_nodes = ({<integer>}*)
 edges = ({<integer>}*)
<embedded> :: {<object>}* | {<subgraph >}*
<background> :: ‘<background’ background_id =<integer> ‘>
 {<background_elem>}* ‘</background>’
<background_elem> :: ‘<block’ dimension = <integer>
 <integer> size = (<integer><integer>)
 format = <format_type>
 path = <string>) ‘/>’
<image> :: ‘<image’ image_id = <integer>
 format = <image_format>
 coord = (<integer>, <integer>)
 path = <string>‘>’
<audio> :: ‘<audio’ audio_id = <integer> format =
 <audio_format> [duration = <integer>]
 path = <string> ‘>’
<text> :: ‘<text’ (text_id <integer>) (coord = (<integer>
 <integer>) {text_attribute}* ‘>’ <string> ‘</text>’
<text attributes> :: size = <integer> | color = <color_type>
 | font <string>
<format_type> :: <audio_format> | <video_format>
<video_format> :: ‘jpeg’ | ‘mpeg’ | ‘gif’ | ‘png’
<audio_format> :: ‘wav’ | ‘avi’
<simple_object> :: ‘<simple_object’ object_id =<integer>
 style = <solid> | <circle> | <rectangle>
 color = <color_type>
 size = (<integer> <integer>
 coord = <integer>, <integer> ‘>’

Figure 3. A simplified grammar for STMDML

4.2 STMDML renderer

The renderer runs at the client side. The frame table
consists of data associated to each frame. A frame tuple
consists of {frame_id, object1_id, object2_id,
object3_id…}. Before the client starts rendering, the
frame table is populated with data for the first
lookahead number of frames. After rendering the first
frame of the movie the frame table is updated by
discarding the record for the first frame and adding a
record for the new lookahead frame. This continues
until the last frame of the movie is rendered.

The display subroutine has code segments to
handle every type of object. For example the code to
display a complex_object is different from the code to
display background. The display subroutine has a
switch for render each type of media object. When the
display subroutine is called it reads data for the current
frame id from the frame table, identifies the object_id
for the objects present in the frame, reads data for that
object from the object table.

A thread implemented in the renderer calls the
display subroutine determined by 1/frame_rate. For
example, if the frame_rate = 10 the thread calls the
display subroutine every 0.1 second. The frame id is
incremented in the thread.

4.3 Predictive look-ahead buffer management

The predictive look-ahead scheme is based upon the
concept of static analysis to identify and retain the
objects those are present in the look-ahead frames.

In addition to transmitting media files, the server
transmits two types of XML frames: media description
frames and command frames. Media description frames
are used for rendering the objects, and command frames
are used to command client to delete objects, insert
objects, or transfer the objects between client-side
active and passive buffers. Objects those are not used in
near future based upon static analysis and lookahead
analysis of frames at the server side are deleted.
Similarly, objects those are needed in near future based
upon server side static analysis and runtime lookahead
analysis are retained in the client side buffers. Objects
which will come in future but not in the near future as
decided by lookahead frames are transferred from client
side active buffer to client side passive buffer.

The initial server side object map is built after the
analysis of first L frames comprising the initial look-
ahead window. After analyzing the first L frames, the
look-ahead window is shifted by one frame at a time
after transmitting the current frame (see Figure 4).

Figure 4. Lookahead analysis for buffer management

After shifting the look-ahead window the counters

in the server side object maps are updated. Based upon
the commands transmitted by the server, the client
deletes, inserts, or transferred objects between passive
and active buffer.

The client also uses a backchannel to inform the
server if a media object is lost (or delayed) so that

rendered frame new lookahead window

lookahead frame old lookahead window

 556

server can retransmit the object for composition and
rendering in time. This analysis is done after the XML
frame is received and analyzed by the client.

Interested readers may find the detailed algorithm
for buffer management in [2].

5. An Example

In this section, we describe an example of XML based
representation for a simple cartoon movie. In this
movie each frame embeds a complex object in it. The
images superimposed on the edges and nodes of the
graph are changed based on the animation of the
complex object.

The code for the scene description for the movie in
sync_tazo.xml begins with the <movie> tag definition.
The <movie> tag defines the ‘frame_rate = 10’ and
‘total_frames = 40’. This determines the duration of the
movie as 4 seconds. The <scene> tag defines the
beginning of the scene. The attributes ‘world_id = 1’
and ‘scene_id = 1’ define the environment and the
scene identifier. The <frame> tag defines the contents
of the frame of the movie. The <complex_object> tag
defines the complex object.

The attribute ‘animation = moving’ defines that the
complex object is moving. The graph is defined within
the <graph> tag. This graph structure defines a complex
object. The attribute ‘graph_id = 1’ defines the graph
identifier, and the ‘node_count = 7’ defines that there
are 7 nodes in the graph. The value ‘coord = (180, 10)’
define the coordinates of the root node. The tags
‘edge_id’ and ‘node_pair’ define the node-identifiers
and nodes connected by this edge. The attribute value
‘descr = head’ describes the edge, and the attribute
value ‘coord = (180, 10), (0, 40)’ defines the
coordinates of the two connected nodes. Nodes are
defined within the <node> tag. The attribute value
‘node_id = 1’ defines the first node of the graph. The
attribute value ‘descr = head’ describes the
superimposed image. The attribute value ‘coord =
(180, 10)’ defines the position of display of the image
‘head’ within the frame. The attribute ‘adj_nodes = 2’
shows that the adjacent node has ‘node_id = 2’. The
attribute ‘edges = 1’ defines that the edge with ‘edge_id
= 1’ is connected to this node. The ‘image_id’ of the
superimposed image is ‘1’. The location of the image
file is defined by ‘path = tazos1_001’. The attribute
‘node_id = 2’ defines the node. The attribute ‘descr =
connector’ defines no object is superimposed on it.

The attribute ‘coord = (0, 50)’ defines the position
of the node. These coordinates are relative to the center
of gravity coordinates. The attribute ‘adj_nodes = (1, 3,
4, 5)’ defines that this node has four adjacent nodes.
The attribute ‘edges = (1, 2, 3, 4)’ defines that four
edges are incident on this node. All the other edges are

defined in the same fashion. The graph is terminated
by the </graph>. In the similar fashion all other frames
in the movie are defined.

<!DOCTYPE movie SYSTEM "stmdml.dtd">
<movie frame_rate = 10, total_frames = 40>
 <scene world_id = 1 scene_id = 1>
 <frame id = 1>
 <complex_object object_id = 1 type = moving>
 <graph graph_id = 1 node_count = 7 coord = (180, 10) >
 <edge edge_id = 1 node_pair = (1, 2) descry = head
 coord = (180, 10), (0, 40)>
 <node node_id = 1 descr = head coord = (180, 10)
 adj_nodes = 2 edges = 1>
 <image image_id = 1 path = tazos001_1
 format = jpg/> </ node>
 <node node_id = 2 descr = connector coord = (0,
50)
 adj_nodes = (1, 3, 4, 5) edges = (1, 2, 3, 4) />
 </ edge>
 <edge edge_id = 2 node_pair = (2, 3) descr = hand
 coord = (0, 40), (-18, 66)>
 <node node_id = 2/>
 <node node_id = 3 descr = hand coord = (-18, 66)
 adj_nodes = 2 edges = 2>
 <image image_id = 2 path = tazos001_2
 format = jpg/> </ node> </ edge>
 <edge edge_id = 3 node_pair = (2,4) descr = hand
 coord = (0, 40),(18, 32)>
 <node node_id = 2/>
 <node node_id = 4 descry = hand coord = (52, 35)
 adj_nodes = 2 edges = 3>
 <image image_id = 3 path = tazos001_4
 format = jpg/> </ node> </ edge>
 <edge edge_id = 4 node_pair = (2, 5) descr = body
 coord = (0,40), (52, 32)>
 <image image_id = 4 path = tazos001_3 format =
jpg/>
 </ edge>
 <edge edge_id = 5 node_pair = (5,6) description = leg
 coord = (52, 32), (-20, 148)>
 <node node_id = 5/>
 <node node_id = 6 descr = leg coord = (-20, 148)
 adj_nodes = 5 edges = 5>
 <image image_id = 5 path = tazos001_5
 format = jpg/> </ node> </ edge>
 <edge edge_id = 6 node_pair = (5, 7) descr = "leg
 coord = (52, 32),(35, 148)>
 <node node_id = 5/>
 <node node_id = 7 descr = leg coord = (35, 148)
 adj_nodes = 5 edges = 6>
 <image image_id = 6 path = tazos001_6
 format = jpg/> </ node> </ edge>
 </ graph> </ complex_object>
 </ frame>
….
 <frame_id = 2>
 . . .
 </ frame>
 <frame_id = 3>
 . . .
 </ frame>
 . . .
</ scene>
…..
</ movie>

Figure 5. An example of cartoon movie in STMDML

 557

6. Performance Evaluation

Various performance characteristics in this section
show that the model significantly reduces the data
transmission requirement thus reducing the jitter at the
client end. The factors that are important in
transmitting multimedia data over a network are:
bandwidth at which the data can be transmitted, total
data that is transmitted from the server to the client
during a multimedia presentation, and the resolution of
the transmitted media objects.

We used a simple cartoon movie using a cartoon
character ‘Tazo’ for the performance evaluation. The
‘tazo’ cartoon has seven nodes and six edges. The
movie has 42 frames. Objects are superimposed on 5
nodes and 1 edge. There are a total of 6 objects
superimposed on the graph in each frame. The objects
are changing in each frame to create animation in the
movie. The object database is 206 KB in size. The size
of objects ranges from 5 – 9 KB.

Figure 6 shows a graph for data transferred at each
frame against lookahead scope. This is a three
dimensional graph with frame id on the x-axis, data
transfer in Kbytes on the y-axis and lookahead number
of frames on the z-axis. The data shows that the data
transfer required at every frame reduces as the movie
progresses with the increase in the number of lookahead
frames. The data transferred saturates after a certain
lookahead number of frames. For this movie the
saturation point is 20 lookahead frames. The saturation
varies for different movies depending on the theme and
the occurrence of animated characters.

Figure 7 shows that total data transmitted to the
client reduces with the increase in the number of
lookahead frames.

Figure 8 shows a comparison of client clean up at
each frame for different buffer space. This analysis is
important since mobile devices and PDAs have limited
processing power and memory. While, these devices
cannot afford extra memory, they will get into jitters if
buffer cleaning up goes beyond a threshold. It is
observed that the overall clean up time is comparatively
less when the client buffer size increases. However,
beyond a buffer size, the clean up time for the larger
buffer occasionally leads to jitters. For example, for the
buffer size 150 KB, the buffer cleanup after Frame 31 is
significant.

MRU (Most Recently Used) — one of the popular
schemes for buffer management ? retains current
objects under the assumption that the recent past is a
good indicator of unknown future. The limitation of
MRU scheme is that 1) it retains those objects too that
will never be used in the future, and 2) gets into jitter
problem if the scene changes suddenly.

Figure 6. Lookahead analysis vs data transfer

Figure 7. Lookahead vs. overall data transfer in KB

Figure 8. Buffer size vs. buffer clearance rate

We can statically analyze the future objects since

we deal with archived movies. The lookahead
mechanism retains objects only if the objects are used
in the future frames. Figure 9 shows the comparison of
the performance of MRU scheme against our predictive
push buffer management scheme with a lookahead
framesize = 10. The graph clearly shows that data
transferred for a lookahead = 10 frames is much less
than the data transferred using MRU.

Figure 10 shows a comparison of STMDML with
QuickTime, AVI and MPEG formats. The y-axis shows
the total data transferred by server. The movie used to
generate the data is shown in the appendix. The same
movie was converted into quicktime (.mov), avi (.avi)
and mpeg (.mpg) formats. A utility networx v2.1
(http://www.softperfect.com/) was used to track the
incoming network traffic and to determine total data
transferred during the playback of the movie in
different formats. All movies were played from the
same remote server with very light network load; hence

 558

all networking and transmission overheads can be
neglected. The bar graph in Figure 10 shows that,
despite textual XML based frame representation, the
data transferred for STMDML (see the rightmost bar) is
much less than AVI (third bar from the left) and MPEG
(second bar from the left) and is somewhat better than
QuickTime (leftmost bar) for a lookahead frame size =
15.

Figure 9. A comparison between MRU and predictive

buffer management

Figure 10. Comparison of data transmission
requirement with other popular formats

7. Related Works

Currently, many research works are going on the
Internet based delivery of multimedia clips. Most
notable are SMIL (http://www.w3.org/AudioVideo/)
based extensions, VRML97 based languages such as
X3D (http://www.web3d.org/) based extensions such as
X3D and Java3D (http://java.sun.com/products/java-
media/3D/), MPEG-7 (http://www.chiariglione.org/
mpeg/ index.htm) []. Our research benefits from the
research on these models, and should be taken as
complimentary to these models.

MPEG-7 achieves bandwidth savings as follows:
1) MPEG-7 retains the identity of the moving objects
and uses motion vectors to reconstruct the objects in the
following frames, 2) MPEG-7 uses MPEG-4’s
bandwidth saving by predicting frames (P-frames and
B-frames) based upon incremental changes (at macro
block level) over a reference frame, 3) MPEG-7 uses
scene graphs for the reuse of the objects in a scene.

However, MPEG-7 does not use hierarchical graphs at
the component level. In addition, the loss of reference
frames will cause inaccuracies in predicted frames.

VRML97 uses hierarchical graphs and group-
objects during object declaration and client end
reconstruction to save bandwidth. VRML has many
features for virtual reality and 3D modeling. For
example, VRML supports event based triggering,
collision avoidance etc. However, VRML’s approach of
using client end object reconstruction using synthetic
objects, lacks realism in form, shape, lighting effects,
and to achieve near realism, computationally expensive
rendering schemes are required. In addition, VRML
does not support frame level synchronization. VRML
browser also needs additional processing due to 3D
modeling which may restrict its use in mobile devices
with limited processing power.

SMIL has synchronization constructs to render
multiple media objects either concurrently or
sequentially using simple programming constructs.

Our model is object based, and has all the benefits
of MPEG-7. Our model further enhances MPEG-7 [8,
9] and reduces bandwidth requirement by integrating
the objects representation as a hierarchical graph at
subcomponent level, by performing static analysis of
archived movies for better caching, and by the use of
server coordinated predictive buffer management to
avoid jitters caused by limited memory and processing
power of mobile devices. This enhancement also gives
the power to incrementally integrate the detailed
image/animation of a smaller focused part of the object
with the overall part of the object without retransmitting
the image of the overall object.
 The scopes of VRML and STMDML are different.
VRML is a client end virtual reality language, and is
unsuitable for the transmission of multimedia movies
due to the lack of frame level finer synchronization.
Our aim is to transmit multimedia photo-realistic
archived movies (including cartoon movies) over the
Internet.

Compared to SMIL based extensions [13], our
language is frame based and supports frame level
synchronization such as lip synching which is difficult
to achieve in SMIL due to low level of tolerance (30
ms) needed for lip syncing.
 3D XML based languages such as X3D and
3D tool sets such as Java3D (are still not suitable for
mobile devices due to heavy bandwidth requirement for
transmitting high quality 3D images even with the
availability of innovative concepts as progressive
meshes [6]. However, this scenario may change in near
future with the introduction of high speed Internet.
Even in 3D movies, the implementation techniques and
the concepts of STMDML will be very useful in
reducing the bandwidth requirement, and these
concepts can be built on top of JAVA-3D.

 559

8. Conclusion and Future Work

In this paper, we have described an XML based
language for the transmission of 2D cartoon movies
over the Internet. The language integrates SPMD
(Single Transmission Multiple Display paradigm) [1],
static analysis for more accurate retention of objects in
the client end cache, and the predictive buffer
management scheme based upon tight coordination
between a server and the corresponding client to reduce
the overall bandwidth requirement. Extensive
benchmarks show that data transfer is reduced
significantly, and for lookahead frame size = 10, the
scheme performs much better than MRU scheme.
Similarly, it outperforms other popular format for a
lookahead frame size = 15.
 Currently, our system can handle only cartoon
and synthetic movies due to the unavailability of
automated authoring tools. We are developing an
automated translator to translate archived movies to
object based XML format.

References

[1] A. K. Bansal, T. Kapoor, and R. Pathak, "Extending
XML for Graph Based Visualization of Complex
Objects and Animation Over the Internet,"
Proceedings of the Second International
Conference on Internet Computing, Las Vegas,
2001, pp. 750 - 756

[2] A. K. Bansal and R. Pathak, “Server Coordinated
Predictive Buffer Management Scheme to Reduce
Bandwidth Requirement for Synthetic Multimedia
Movies over the Internet,” In Post-conference
proceedings of the Fourth International Conference
on Internet Computing, Las Vegas, to appear,
August 2003

[3] S. Battista, F. Casalino, C. Lande, “MPEG-4: A
Multimedia Standard for the Third Millennium,
Part 1,” IEEE Multimedia, Vol 6, No. 4, 1999, pp.
74-83

[4] S. Goose, S. Kodlahalli, W. Pechter, R. Hjelsvold,
“Streaming Speech: a Framework for Generating
and Streaming 3D Text-to-speech and Audio
Presentations to Wireless PDAs as Specified using
Extensions to SMIL,” Proceedings of the Eleventh
International Conference on World Wide Web, May
2002, pp. 37-44

[5] I. Herman, G. Melançon, M. S. Marshall, “Graph
Visualisation and Navigation in Information
Visualisation: a Survey,” IEEE Transactions on
Visualization and Computer Graphics, 6(1), 2000,
pp. 24-43

[6] H. Hoppe, ``Progressive Meshes,” Computer
Graphics, In the Proceedings of SIGGRAPH '96,
pp.99-108,

[7] H. Kosch, “MPEG-7 and Multimedia Database
Systems,” ACM SIGMOD Record, June 2002, pp.
644-646

[8] F. Nack and A. T. Lindsay, “Everything You
Wanted to Know About MPEG-7: Part 1,” IEEE
Multimedia, Vol. 6, No. 3, 1999, pp. 65-77

[9] F. Nack, Adam Lindsay: Everything You Wanted to
Know About MPEG-7: Part 2. IEEE MultiMedia
6(4), 1999, pp. 64-73

[10] R. Pajarola and J. Rossignac, “Compressed
Progressive Meshes,” IEEE Transactions of
Computer Graphics and Visualization, Vol. 6, No.
1, 2000, pp. 79-93

[11] E. Rehm, “Representing Internet Streaming Media
Metadata using MPEG-7 Multimedia Description
Schemes,” Proceedings of the 2000 ACM
Workshops on Multimedia, November 2000,
http://www1.acm.org/sigs/sigmm/MM2000/ep/reh
m/index.html

[12] S. Pfeiffer, U. Srinivasan, “TV Anytime as an
Application Scenario for MPEG-7,” in the
Proceedings of the 2000 ACM Workshops on
Multimedia, November 2000, http://www1.acm.org
sigs/simm//MM2000/ep/pfeiffer/index.html

[13] L. Rutledge, “SMIL 2.0: XML for Web
Multimedia,” IEEE Internet Computing, Vol. 5,
No.5, 2001, pp. 78-84

[14] S. W. Ryan, A. K. Bansal, T. Kapoor, "A
Distributed Multimedia Knowledge Based
Environment for Modeling over the Internet,"
Proceedings of the International Conference for
Tools with Artificial Intelligence, November 2000,
pp. 140-146

[15] I. G. Tollis, “Graph Drawing and Information
Visualization,” ACM Computing Survey, 28 A(4),
December 1996

[16] K. Walczak, W. Cellary, “X-VRML - XML Based
Modeling of Virtual Reality,” IEEE Symposium on
Applications and the Internet, Nara City, Nara,
Japan, pp. 204

[17] R. Wolfe, J. L. Lowther, C. K. Shene, “Rendering +
Modeling + Animation + Postprocessing =
Computer Graphics,” ACM SIGGRAPH Computer
Graphics, Volume 34 Issue 4, November 2000

 560

