

 831

 Server Coordinated Predictive Buffer Management Scheme to Reduce
Bandwidth Requirement for Synthetic Multimedia Movies over the Internet

Arvind K. Bansal and Rahul Pathak
Department of Computer Science

Kent State University, Kent, OH 44242, USA
E-mail: arvind@cs.kent.edu and rpathak@cs.kent.edu

Phone: +1.330-672-9035, FAX: +1.330-672-7824

Abstract

Currently, for the display of synthetic and archived
multimedia movies and clips, buffers are managed at the
server end (push mode), at the client end (pull mode), or
in the push-pull mode to avoid excessive server side disk
access time, avoid hot spots for multiple disk accesses for
the same media objects, and/or to smoothen the effect of
variations in transmission delay. However, the current
schemes suffer from the lack of static analysis and the
coordination between server and the clients to reduce
jitters. In this paper, we describe a server coordinated
predictive buffer management scheme for mobile devices
that integrates static analysis of frame based synthetic
movies and server directed client side management to
reduce the retransmission of reusable multimedia objects
over the Internet. Performance evaluation shows that the
scheme reduces the jitter significantly while maintaining
the needed QoS, and the scheme outperforms popular
rendering formats.

Keywords: buffer, Internet, multimedia, movie, XML

1. Introduction

The demand for digital multimedia libraries and
synthetic movies accessible over mobile devices is
growing exponentially. People are using the Internet to
retrieve archived media more than ever. The rate of
increase in the demand for high quality rendering and
transmission is much faster than the rate of increase of the
transmission bandwidth in the Internet. With the new
initiative of Mpeg-7 standards [6] cross-cultural exchange
of multimedia objects will increase significantly, and will
lead to real time collaborative multimedia modeling and
information retrieval [8].

In order to maintain QoS in a video clip, at least 15 -
20 frames per second should be transmitted in addition to
sufficient quality description of objects. Assuming a
compressed data of 8KB/frame, a throughput of 160
KB/sec is needed to serve just one client. A simple sixty

minute show will require around one GB of data transfer
for just one client.

To reduce the excessive overhead for the repeated
access of the same objects and to avoid hot spots server
side push buffers [1, 9] have been used. Push buffer
management uses a look-ahead scheme along with server
side active buffer to interleave disk access and prefetching
[10]. In order to restrain the bandwidth overload, client
side pull buffers [1, 4, 10] have been used to cache and
reuse the retrieved objects. However, little has been
developed to coordinate the server side and client side
buffers. This problem becomes severe to display movies
and clips over mobile devices and PDAs which have
limited processing and memory capabilities.

In our previous work, we had proposed and
demonstrated a STMD ? Single Transmission Multiple
Display ? model [3] to reduce bandwidth requirement
for high resolution synthetic movies. STMD model
extends MPEG-7’s [6] object based representation by
further decomposing a complex object as a hierarchical
graph of reusable multimedia subcomponents, and the
high quality realistic images are superimposed on the
nodes and edges of the graphs. In STMD model, the
multimedia subcomponents are transmitted once by a
server, archived by the client, and retrieved at the client
end when needed reducing the need for the retransmission
of the subcomponent files comprising a complex media
object. However, memory in mobile devices is restricted
despite the recent increase. This constraint enforces
deletion of media objects at client end in the case of
buffer overflow resulting into retransmission of
multimedia objects.

The goal of this research is to reduce jitters and
maintain QoS by reducing the frequency of
retransmission of previously transmitted subcomponents.
In this paper, we describe a server directed buffer
management scheme to display synthetic movie. The
scheme is based upon the following criterion:
1) A movie is divided into multiple scenes. Each scene

consists of multiple frames. Frames are represented
using XML [11]. A server side static analysis is done

Post-Proceedings of the International Conference on Internet Computing, Volume II, June 2003,
Las Vegas, Nevada, August 2003, © CSREA Press, pp. 831-837

 832

to analyze the frequency of reusable multimedia
subcomponents in different scenes.

2) Based upon the static analysis of a movie and the
look-ahead analysis at runtime, the multimedia
objects are transmitted and archived in the client-end
buffer for future retrievals.

3) The server keeps a local map of the archival state of
each client and updates the corresponding local map
after transmitting each frame. Based upon the
analysis of the local map and the knowledge of
memory capability of each client, and the available
transmission bandwidth, the server directs each client
to update their buffer. Based upon the direction of the
server, a client retains or deletes an object from its
buffer, or moves objects from active to passive
buffer.

4) Client uses a back-channel (in a restricted manner) to
inform the server about media objects lost during the
original transmission.

The major advantages of the scheme are :

1) Static analysis of the movie optimizes the buffer
management by identifying the exact memory
requirement for future objects,

2) There is a coordination between the server and the
client resulting into an optimum retransmission and
retention of the reusable media subcomponents,

3) Criterion using the exact occurrence of objects in
near future based upon static analysis and the
knowledge of the size of the objects are used to
decide the retention (and retransmission) of a
reusable object in the client-end buffer.

4) The scheme is suitable for movies using MPEG-7
standards and schemes using XML based
descriptions such as STMD model [3].

The major contributions of this paper are:

1) A static analysis of the object based movies using
look-ahead windows has been proposed for better
buffer management, and

2) A server directed scheme has been proposed for
better coordination between server and clients for
better memory management at the client end.

The scheme has been implemented as part of the
STMDL (Single Transmission Multiple Display
Language) project using Java, and supports object based
streaming at the frame level.

The paper is organized as follows. Section 2 describes
some background and new definitions needed for the
static analysis of synthetic movies based upon STMD

model. Section 3 describes the overall scheme. Section 4
explains the implementation at an abstract level. Section
5 describes the performance evaluation, and the last
section concludes the paper.

2. Background

In this section, we briefly describe the previous
approaches for buffer management, and introduce new
definitions used in the static analysis.

2.1 Buffer management schemes

In any multimedia system, the delays are introduced

during the disk access at the server end, during
transmission caused by bandwidth saturation/ fluctuation,
due to retransmission caused by packet loss, and during
the rendering of objects. Bandwidth saturation is caused
by excessive admissibility of the clients and/or variation
of the client end demand resulting into hot spots. A
multimedia stream consists of both large size still images
and continuous media objects. A jitter occurs when the
frame can not be rendered at the client end during the
regular course of time.

In order to avoid seek time delays, in the past, many
look-ahead schemes have been used for disk accesses [7,
9, 10]. The data is pushed by the server on the Internet in
an optimized fashion to avoid the delay of data at the
client end. A server performs analysis to identify the time
to access and send the large size still-images or
continuous media objects to reduce the delay caused by
bandwidth variations.

In a movie being broadcasted on a frame basis, client
side archiving after rendering a frame is needed if
previously rendered media objects needs to be rendered
again such as in STMD model or MPEG-7. In the
absence of coordination from the server, client side
discards incoming frames or discards archived frames
without any knowledge of future data. The lack of
coordination and the lack of look-ahead mechanism
enforce retransmission of the same media objects multiple
times. This bottleneck may cause unexpected jitters or
result into compromise in the QoS if frames are
duplicated (or reconstructed) to reduce the jitter.

Previous buffer management schemes have used
standard MRU, LRU, and other algorithms [7] at the
server end to predict the objects, and can be easily
extended to manage the client end buffer to discard
inactive objects. However, none of the techniques use
static analysis of the synthetic movie to predict the buffer
usage at the client end by future scenes.

 833

2.2 Definitions

A movie is a sequence of scenes. A scene is a

sequence of frames. Scenes are characterized by a
common background or set of interacting objects.

Request time (TL) is the time for which the client will
wait before using the backchannel for requesting the
server to retransmit a lost media object. Transmission
delay (TD) is the time duration for the server to receive a
request for data retransmission from the client. Rendering
time (TR) is the total time taken by the client to render an
object in the current frame. TS is the seek time to transfer
a media object from secondary memory to the server side
buffer.

Unlike the notion of ‘MRU’ that is based upon
predicting future by analyzing the frames rendered in the
past, we use the notion of immediacy − frames to be
rendered in near future − based on exact static analysis of
the entire set of consecutive frames to be rendered in
future. Since we are interested in rendering archived
synthetic movies, such a static analysis is possible.

A look -ahead window is a subsequence of frames
(starting from the current frame) which are analyzed for
the presence of active multimedia objects. An object is
active if it occurs in multiple frames in a lookahead
window or in the current scene. An object is volatile if
the last occurrence of the object is only in the current
frame being transmitted for rendering. An object is
persistent if it occurs in more than one scene.

A client side active buffer contains active objects, and
client side passive buffer contains passive objects –
objects which do occur in future scenes yet missing in the
current lookahead window and in the current scene.

Local frequency (denoted as LF) of an object is the
number of frames in a scene in which the object has
occurred. Global frequency (denoted as GF) of an object
is the total number of frames in a movie in which the
object has occurred. Future local frequency (denoted as
FLF) of an object is the number of frames in a scene in
which the object will occur after rendering the current
frame. Future global frequency (denoted as FGF) of an
object is the total number of frames in a movie in which
an object will occur after the current frame. An
immediacy-count (denoted by ‘IC’) of an object is defined
as the number of frames in the current look-ahead
window containing the object such that those many
frames can be transmitted without causing a jitter at the
client end. IC is calculated based on the bandwidth and
size of transmitted objects. The information about FLF
and IC is needed to decide the active and volatile objects,
and FGF is needed to retain the object in a passive buffer

(secondary storage in mobile devices, if available) even
after the objects are removed from the active buffer.

Buffering time (BT) is the total time for which the
client should have the data to continue rendering in case
of transmission delay and network congestion. Buffering
time BT and BS ? total buffer space at the client end ?
are related by the equation BT = (BS / b) * scaling factor
where ‘b’ the bandwidth. The scaling factor depends
upon the speed of rendering and the random variation of
the transmission rate over the Internet. In the case of fast
forward, the scaling-factor > 1 since the frames are being
rendered at a faster rate needing more buffer space to
reduce jitters. Similarly in the case of slow rendering the
scaling factor < 1 since there is more time for
transmission. For the Internet communication fluctuating
randomly the scaling factor > 1 to accommodate the
congestion over the Internet.

3. The overall scheme

In this section, we will describe the overall scheme of
predictive buffer management at an abstract level.

The whole scheme contains a push buffer at the server
end and a buffer at the client end. The server side map
has two types of data structures for each client: an object
map and a scene-map. An object map is a dynamic array
of a 12-tuple < object-id, frame-id list, object-type, size,
LF, GF, FLF, FGF, IC, active / passive buffer bit,
transmitted-bit, buffered-bit >. A scene map is an array of
triples <scene-id, start-frame, end-frame>.

The active/passive bit indicates the presence of the
object in the active or passive buffer, the transmitted-bit is
set to true after transmitting the object for the first time,
and the buffered-bit is set to true after the media object is
loaded from the secondary memory to the server side
buffer, and turned to false after the object is deleted from
the server buffer. This bit is necessary for the
synchronization since there are two threads: main thread
analyzes the object map, signals to start filling the server
side buffer, and transmits the server side buffer; the
second thread seeks the object from the secondary
memory and fills up the server side buffer as explain in
Section 4.

The server analyzes the object map to update the
counts, identifies the objects to be deleted, and identifies
the objects to be transferred from active to passive mode.
The scene map along with the object map is used to
reason about the hot spots where an object will be
rendered frequently by the client, and should be
maintained in an active buffer. Based upon the analysis
of the object map and scene map, the server sends the
buffer management instructions to client. Client upon the

 834

receipt of the analysis of the server takes appropriate
buffer management actions.

After admitting a client, the server receives the
information about the capability of the client based upon
the message transmitted by the client during its request.
Based upon this information, the server decides the buffer
size, strategy to transfer the objects from active to passive
buffer or to discard objects from the client side
active/passive buffers.

The media stream from the server to the client consists
of two types of information: media and control. Media
information consists of video and audio files. Control
information contains two types of frames: object
description frames and command frames. Object
description frames consists of XML description of the
complex media objects using graph representations and
object-id (for identification and synchronization) of the
media objects. The command frames contain the
commands to manage the client end buffer. The
commands are to insert an object in the active buffer,
delete an object from the active buffer, delete an object
from the passive buffer, transfer an object from active to
passive buffer or vica versa, and to increase the size of the
allocated buffer

The server also manages its own server side buffer
which is needed to reduce the seek time from the
secondary storage such as disks for the repeated requests
caused by lost packages during the transmission or to
handle hot spots.

A static analysis of the complete synthetic movie is
done to determine to initial LF, GF, FLF, FGF, and IC
for every media object comprising the movie. Initial
counts are stored in the frame before transmission, and
object map is modified at runtime after transmitting each
frame.

Before the movie starts, the server sends the size of the
required buffer using an equation Buffer-size =
minimum(transmission rate × buffering Time × scaling-
factor, allocable memory at the client’s end). The client
allocates the buffer.

The initial object map is built after the analysis of first
L frames comprising the initial look-ahead window. After
analyzing first L frames, the look-ahead window is shifted
by one frame at a time after transmitting the current frame
(see Figure 1).

Figure 1: An overall lookahead scheme

After shifting the look-ahead window the counters in
the server side object maps are updated. Based upon the
command by the server, the media objects (archived at the
client ends) are deleted, inserted, or transferred between
passive and active buffer.

After transmitting the current frame, a buffer overflow
is performed on the object map. Based upon the overflow
check, the server issues commands to delete volatile
objects, transfer least active objects to passive buffer,
delete small objects with least FGF, and delete some of
least active objects in favor of large still images to avoid
data transfer overhead. All these commands are inserted
in a command frame which is transmitted right after
processing the current XML frame. These commands are
executed by the client side manager after rendering the
corresponding frame.

The information about each frame are transmitted in
the order (Object-description frame, set of media objects
in the frame previously not transmitted, command frame)
for each frame. Set of media objects to be transmitted is
decided after the analysis of the object map.

The process is repeated until all the frames have been
transmitted to the client end.

3.1 Object map utilization and management

An object-id is needed for the reusability of an object to
render objects in a frame and to access an object across
multiple frames and scenes. The size of an object is
needed to make a decision to discard the object in the
presence of newly transmitted objects. If the size of an
active/passive object is very large (such as still images),
the object is preferentially retained over the smaller more
active (with higher FLF and/or higher IC) objects to
reduce the jitter caused by excessive data transfer
overhead.

After the analysis and transmission of the current
frame, the lookahead window is moved forward by one
frame. The FLF and IC and FGF counters of all the
objects in the transmitted frame are decremented by one.
The FLF and IC counters of all objects occurring in the
new look-ahead fra me are incremented by one. An object
with FLF = 0 and IC = 0 and FGF = 0 is a volatile object,
and is immediately removed. The objects with max(IC,
FLF) > 0 are retained as active objects. The notion of
identifying max(IC, FLF) is useful for objects belonging
to adjacent scenes near the scene boundaries. An object
with FLF as 0 and IC as 0 and FGF > 0 is transferred
from the client side active buffer and retained in the client
side passive buffer unless there is not enough memory at
the client end to retain the object. The information about
the objects newly added in the lookahead frame (those

current frame
new lookahead window

new lookahead frame old lookahead window

 835

objects which are absent in the object map) is transmitted
from the server to the client. A passive object becomes
active if it is present in the newly added look-ahead frame
(IC = 1 or FLF = 1). An active object becomes passive
after the shifting the look ahead window if IC = 0 and
FLF = 0 and FGF > 0.

The total buffer requirement at the client end is given
by the sum of the memory requirement of the active
objects. If the sum of the memory requirement of the
active objects is more than the buffer size, then depending
upon the system configuration at the client end, one or
more of the following actions are taken:

1) The server issues a command to increase the client
end buffer size,

2) Some of the active objects are pushed from active to
passive buffer if secondary memory is available at
the client end, or

3) Some of the active objects are discarded since the
cost to retransmit large size passive objects may be
significant to cause jitter in future.

Following strategies are used to make a decision:

1) The active objects with the smallest immediacy-
counts are pushed to a passive buffer (if available) to
free up the active buffer space due to the lack of
active buffer space,

2) Least persistent passive objects (decided by the
smallest FGF) are discarded in the absence of
available memory.

3) Among the objects with the same immediacy-counts
or the same FGF, the objects to be discarded are
selected to minimize the cumulative sum of seek time
+ transmission time upon re-request.

The overall abstract process is given in Figure 2. We
describe an abstract description of the process code in
pseudo-C like syntax. We denote a field of an object
using an annotation of the form object.field.

Abstract process code: server_buffer_manager
Input: A movie XML file and a database of media objects;

 A look-ahead window size L;
Output: A stream of frames transmitted to a client;
{ set up a main channel CHM and a back channel CHB;

perform stat ic analysis on movie XML file;
buffer size BM = minimum(transmit_rate × buffering_time ×
scaling, available memory in the client);
create a client buffer of the size BM , and a server buffer;
create an empty server side object map M O;

/* look ahead analysis for the first L frames*/
for (index =1; index ≤ L; index++){

S1 = set of object-tuples in current frame indexed by
‘index’;

for (every object-tuple O ∈ S1)
if (O is absent in MO){

set initial O.LF and O.GF and O.IC from static analysis;
O.FLF = O.LF; O.FGF = O.GF; o.active = true;
O.transmitted = false; O.buffered = false;
O.active = true;
insert object tuple O in the object map M O;
}

else increment O.FLF, O.FGF, O.IC by 1;
 }

/* transmit and analyze the frames incrementally */
for (index =1; index ≤ total-frames; index++){

for (every request R in the backchannel CHB)
lookup M O and transmit objects with matching obj_id;

create an empty ‘Command frame’;
transmit the current object description frame indexed by
index through CHM;
SCF = set of object-tuples in the current frame;
start seek-and-buffer thread;
for (every object-tuple O ∈ SCF) {
 /* process current frame */

if (O.transmitted = false) {
wait until O.buffered = true;
transmit the object indexed by O.obj_id in CHM;
O.transmitted = true;}

decrement O.FLF, O.FGF, O.IC by 1;
if (O.FLF = = 0 && O.FGF = = 0 && O.IC = = 0) {

insert command in the ‘Command frame’ to delete the
object indexed by ‘O.obj_id’ from the active client
buffer;
delete the tuple O from M O;}

elseif (O.IC = = 0 && O.FLF = = 0 && O.FGF > 0){
insert command in the ‘Command frame’ to move the
object indexed by ‘O.obj_id’ from the active to the
passive buffer;
O.active = false;}

}
look_ahead_index = index + L;
If (look_ahead_index ≤ total-frames) {
SNF = set of objects in new frame;
for (every object O ∈ SNF)

/* process lookahead frame */
if (O is absent in MO || O.active = = false in MO){

derive initial O.LF and O.GF and O.IC from static
analysis;
O.FLF = O.LF; O.FGF = O.GF; O.active = true;
if (O is absent in MO){

 O.transmitted = false; O.buffered = false;
insert the tuple O in the object map MO;}

else insert command in the ‘Command frame’ to move
the object from passive to active buffer;

else increment O.FLF, O.FGF, O.IC by 1;}
commands = check_overflow(object-map);
insert buffer update commands in the ‘Command frame’;
transmit the ‘Command-frame’ through the channel CHM;
}

}
Figure 2 . A server side coordinated management

 836

3.2 Client side management

At the client end, the media frames, object description
frames, and the command frames are separated. The
object frames are analyzed and media objects are archived
for rendering, and the command frame information is
used to alter the client-buffer.

After receiving an object description frame, the
references of the media objects in the frame are checked
against the received media objects after (the sum of
transmitted objects in the currently received frame
containing the object) / b where b is the transmission
bandwidth of the network. After determin ing the absence
of an object, a client waits for TL seconds before
committing for the request for retransmission to avoid
overloading the server and the Internet. Before sending a
request the absence of the object is ascertained once more.
For a jitter free rendering, the request time TL is
approximated by the equation TL < (BT − TR) − (Object-
size / network bandwidth) − TS − TD. The first term (BT −
TR) gives the overall time taken to render the frames
preceding the current frame being analyzed, the second
term gives the time taken to transfer the data from the
server to the client, TS gives the data transfer time from
the server disk to the server buffer, and the last term gives
transmission delay to send a request from the client to the
server. The request time for large size data objects is
smaller since the data transfer time is larger. A value of
TL < 0 shows unavoidable jitter if the lost packet is
requested. In such case, and the frame needs to be
reconstructed using existing data if possible.

After rendering the objects in the frame the commands
from the corresponding command frame are executed to
update the active and passive buffers.

4. An implementation

In this section, we briefly explain an abstract
implementation to manage server side buffer, update
server side map, and client side buffer. The scheme was
implemented using Java.

The management of the server side map and client side
buffer is done concurrently after the server starts
transmitting the frames to the client and before the
transmission of L frames (L > 0) comprising the initial
look-ahead window. The choice of L is decided by the
overhead of managing such a table and savings in the
overall data transmission.

After transmitting a frame, the object map is analyzed
for potential overflow conditions by a
check_overflow(object-map) routine. If the size of the
client-end buffer is less than the cumulative sum of the

archived media objects in the client buffer then the client
buffer is cleaned up. While the analysis is done at the
server end, the cleaning up is done by the client after
rendering the corresponding frame based upon the
command transmitted by the server. After the buffer
cleanup, the current frame is discarded and the
information from the next look-ahead frame is added.
The process is repeated after transmitting every frame for
rendering.

Both server side and client side have a circular queue
of buffers. Each buffer stores a media object (or part of
media object depending upon the size). The server side
has two running threads: the first thread fills in the
circular queue of buffers from the disk arrays, and the
second thread transmits the buffers of media objects (in
order) to the client. Both threads are synchronized so that
first thread waits if the buffered media objects are not
transmitted. The client side also has two threads: the first
thread receives the data from the stream, and the second
thread manages the client side active and passive buffers,
composes the scenes, and renders the scene. We found
that the use of two threads was sufficient for each client.
The overall scheme is given in Figure 3.

Figure 3. An implementation

5. Performance evaluation

We evaluated the system against MRU policy for the
reuse of archived media objects, varied different size of
the look-ahead window to measure the reduction in the
overall data retransmission, and compared our scheme
against popular systems such as Quicktime, extended AVI
format, and MPEG-4 format.

Internet
socket

XML
parser

object
map

server
buffer

object
database

server buffer
manager

XML
parser

object
map

passive
buffer

client buffer manager

active
buffer

data transfer

reference
control

 837

 A short movie of a walking human character with
seven different nodes ? two legs, neck, two hands, head,
and a torso ? was transmitted over the Internet. Overall
42 frames were transmitted, and the total object database
had the size of 208 KB. The results are summarized in
Table I and Figure 4.

Table I. Lookahead size vs. data transfer

Look-ahead Window Data transfer in KB

 0
 5
10
15
20

1640
 830
 510
 400
 220

Table I shows that the increase in the size of the look-

ahead window significantly reduces the overall data
transfer. The look-ahead window size = 5 outperformed
the savings in the data transmission using MRU policy,
and the look-ahead window size of 20 gives an optimum
savings in overall data transfer.

Figure 4. Data transfer vs. lookahead values

Figure 4 shows that the savings in data retransmission
saturates after the look-ahead window size = 20 (the front
graph in Figure 4). Our system needed less overall data
transfer compared to all three formats for a look-ahead
window size = 15

6. Conclusion

In this paper, we have integrated static analysis of
synthetic movie with the server side coordination of the
client buffer to improve the bandwidth requirement and
QoS. The scheme uses look-ahead window and static
analysis of the movie to reduce the retransmission of

media subcomponents. The scheme is suitable for XML
based models such as MPEG-7 and STMD — Single
Transmission Multiple Display ? models since it can
efficiently reuse the archived objects at the client end
based upon server side analysis of the client buffer state.
The buffer management scheme is suitable for mobile
devices due to its capability of reducing retransmission
overhead.

References

[1] S. Acharya, M. Franklin, Stanley, Balancing Push and Pull
for Data Broadcast,” ACMSIGMOD 97, 1997, pp. 183-194

[2] Y. Bai, and R. Ito, “User-Oriented Fair Buffer Management
for MPEG Video Streams,” 17th International Conference
on Advanced Networking and Applications, Xi’an, China,
March 2003, pp. 241-247

[1] A. K. Bansal, T. Kapoor, and R. Pathak, "Extending XML
for Graph Based Visualization of Complex Objects and
Animation Over the Internet," Proceedings of the Second
International Conference on Internet Computing, Las
Vegas, June 2001, pp. 750-756

[2] M. Bhide, P. Deolasee, A. Kathkar, A. Panchbudehe, K.
Ramamrtitham, and P. Shenoy, “Adaptive Push-pull:
Disseminating Dynamic Web Data,” IEEE Transactions on
Computers, Vol 51, No. 6, June 2002

[3] S. Lee, H. W. Seung, and T. W. Jeon, “An Integrated
Push/Pull Buffer Management Method in Multimedia
Communication Environments,” LCTES 2000, pp. 216-220

[4] J. M. Martinez, R. Koenen, F. Pereira, “MPEG-7 – The
Generic Multimedia Content Description Standard, Part I,”
IEEE Multimedia, April-June Issue, 2002, pp. 78-87

[5] J. Nang and S. Heo, An Efficient Buffer Management
Scheme for Multimedia File System,” IEICE Transaction
of Inf. & Syst., Vol. E83-D, No. 6, 2000

[6] S. W. Ryan, A. K. Bansal, T. Kapoor, "A Distributed
Multimedia Knowledge Based Environment for Modeling
over the Internet," Proceedings of the International
Conference for Tools with Artificial Intelligence,
November 2000, pp. 140-146

[7] Y. Won and J. Srivastava, “SMDP: Minimizing Buffer
Requirements for Continuous Media Servers,” Multimedia
Systems, Volume 8, Issue 2, pp.105-117, 2000

[8] W. Wright, “An Efficient Video-on-Demand Model,” IEEE
Computer, Volume 34, No. 5, pp. 64-70, 2001

[9] “Extensible Markup Language 1.0 (Second Edition),”
http://www.w3.org/TR/2000/ REC-xml-20001006

[10] “XML Parser for JAVA,” http://www.alphaworks.ibm.com
/tech/xml4j

