

 1

A Scalable Distributed Associative Multimedia Knowledge Base System for the Internet

Stephen W. Ryan and Arvind K. Bansal

Department of Mathematics and Computer Science

Kent State University, Kent, OH 44242 - 0001, USA

E-mail: sryan@mcs.kent.edu and arvind@mcs.kent.edu

Abstract
This paper describes a system to retrieve multimedia knowledge on a cluster of heterogeneous

architectures distributed over the internet. In this system, knowledge is represented using facts and rules in
an associative logic-programming model. Associative computing facilitates search by content and exploits
data parallel computation. It also provides a flat data model that can be easily mapped onto heterogeneous
architectures. The implementation uses a message-passing library for architecture independent
communications, uses object oriented programming for modularity and portability, and employs Java to
provide a graphical user interface, multimedia capability, and accessibility via the internet.
Keywords: distributed associative heterogeneous Internet knowledge retrieval

1. Introduction
During the design of complex objects such as

combustion engines or automobiles engines, the model
has to be continuously and incrementally modified to
incorporate changes based upon new simulation results
[9]. An interactive system to facilitate the design process
needs to be intelligent and graphically based to relieve the
designer from low level coding and to cut down on design
cycle time. A large library of components along with
their attributes is needed so that matching components can
be retrieved from a multimedia knowledge base in
realistic time, facilitating software reuse. A system for
designing complex objects therefore depends on three
major factors: high performance retrieval from very large
knowledge bases to retrieve best matching components,
intelligent abstract modeling to interconnect simulations
of various components, and high performance scientific
computing for precise simulation. Since the architectures
of computers are very different and are continuously
changing, we need a system that is architecture
independent, scalable, and portable.

With the recent advances in fast internet connectivity,
it has become possible to share heterogeneous resources
such as multimedia knowledge bases, applications, and
computing power across arbitrary distances and among a
large number of users. Ideally, one would like to be able
to access a desired resource transparently, regardless of
where on the network or on what type of computer system
it resides. By doing so, the entire internet can be treated
as a large virtual computer: distributed resources can be
accessed simultaneously over the internet in a realistic
time.

In this paper, we describe a system which integrates
the logic-programming paradigm [12], heterogeneous
computing [8, 19], the associative computing paradigm
[16, 17], the object-oriented paradigm, and Java [6] to

provide a multimedia knowledge retrieval system for
heterogeneous clusters of computer systems distributed
over the internet.

In this paper, we extend our work on a distributed
associative knowledge based system [18] by providing an
internet interface, multimedia capability, and remote
loading of knowledge domains. The current system
provides a web based multimedia tool for efficient
multimedia knowledge retrieval on the internet, and can
be invoked using a web browser from anywhere on the
internet.

The model distributes knowledge on multiple servers
either to utilize different knowledge domains or to exploit
data parallelism on a distributed knowledge domain. A
coordinator is used to coordinate and collect data from
multiple servers. Major processing is done either within
the servers or at the client site to reduce the overhead of
data transfer. The model is suited for internet based
cluster computation involving multimedia knowledge
retrieval from distributed sources, the use of internet as a
large virtual multimedia computer, and the integration of
intelligent reasoning and scientific computing.

In the knowledge base, components and their attributes
are represented as logical facts and rules. Logic
programming [12] provides a declarative programming
model and intelligent reasoning capability. A message
passing library [8, 19] provides architecture independence
within a local cluster of knowledge servers. The object
oriented implementation provides modularity and
portability. Associative computing [5, 16, 17] facilitates
search by content of a large knowledge base of
components and data parallel computing on a cluster of
knowledge servers in a distributed knowledge domain.
The associative data representation [5, 16] provides a
uniform mechanism to represent complex data structures
across heterogeneous architectures, and reduces the

In the Proceedings of the 8th International Conference on Intelligent Systems, Colarado, USA, June
1999, pp. 1- 6

 2

overhead of linearization of complex data structures. The
scheme is illustrated in Figure 1.

Figure 1: A model for multimedia distributed

knowledge base retrieval on the internet

The main contributions of this paper are as follows:
1. A multimedia knowledge base can be stored on and

retrieved from clusters of high performance
processors in a distributed fashion. A needed
multimedia knowledge domain can be loaded from
the server to the client’s workstation to reduce the
overhead on the server.

2. To the best of our knowledge, this is the first attempt
to intelligently simulate a complex object using a
virtual intelligent computer on the internet.

3. The use of the message passing paradigm and the
associative model of computing makes distributed
knowledge retrieval transparent to the user.

4. The coordinator based knowledge engine distributes
computation on a cluster of servers connected
through a message passing library to reduce the data
transfer overhead.

Although, our application is for the intelligent design

of complex objects, the project can also be used as an
intelligent broker to collect information from multiple
commercial search engines and perform advanced queries
on the resulting data to prune undesired results.
 The paper is organized as follows: Section 2
describes briefly the heterogeneous associative model of
logic programming. Section 3 describes a distributed
version of the model. Section 4 describes the Java
interface that provides multimedia capability, and
explains the multimedia capability through a simple
example. Section 5 describes the object-oriented
implementation of the distributed model and an object
oriented implementation of the Java based graphical user
interface. Section 6 describes the related works, and
Section 7 concludes the paper.

2. Background - The Heterogeneous Associative Model

In this section, we describe the heterogeneous
associative logic programming model for knowledge base
systems. This model [1, 2, 3] exploits associative search

to match the clause heads with a query in a data parallel
manner, with execution of compiled clause bodies. In this
model, data is represented as an indexed association of
fields to facilitate search by content. The presence of
associative memories in hardware, although not
necessary, automatically improves the efficiency of the
model. Our model is based upon the efficient software
implementation of associative operations, and indexing
based upon compile time storage of vectors having same
value in a specific field. Low level implementation
details, however, are outside the scope of this paper.

In the implementation of the associative logic
programming model, the left hand side of a logic program
is represented as a two dimensional associative table with
parallel fields for the names and arguments in the clause
heads. The right hand side of the program is compiled
into low level abstract instructions.

A data parallel binding environment is generated
during unification of a goal with the corresponding clause
heads or during the execution of built-in predicates. It
consists of a sequence of frames, each containing a set of
associative Boolean vectors to mark unifiable facts. The
model also uses a set of global registers for holding the
bindings (or pointer to binding vectors) of arguments in
the current goal, an associative control stack to store
states of computations for previous procedure
invocations, and an associative table to handle aliasing of
logical variables. The global registers are analogous to
those in the Warren Abstract Machine [21]. The control
stack is an association of time stamps with previous states
of execution. Each state is represented as an associative
frame, and uses associative vectors to facilitate fast
backtracking. Variable aliases are indicated by Boolean
vectors and are tracked by an alias management table.
The alias management table is an associative table using
bit vectors and logical ORing of bit vectors to derive the
union of two sets of aliased variables in case members of
two sets are aliased by an instruction. A detailed
explanation of this model and the corresponding abstract
instructions is given in [2, 3].

Figure 2: The heterogeneous associative model

3. Distributed Heterogeneous Knowledge Base System

The distributed system consists of two types of abstract
machine: the associative abstract machine described

 Coordinator Abstract Machine

Server
Table

Remote machine
Interface 1 PVM

Remote machine
Interface N

Internet
Java GUI

Java Parser Coordination
Table

Server interface 1

Knowledge Server 1

Server interface 1

Knowledge Server 1
PVM

C o m m u n ic a t io n A s s o c ia t io n

A lia s t a b le

A b s t ra c t in s t ru c t io n s

G lo b a l
r e g is t e r s

C o n t ro l
s ta c k

H e a p

D a t a p a ra lle l e n v iro n m e n t P r o g ra m

 3

above and a coordinator abstract machine (see Figure 1).
The coordinator launches server processes on a local or
remote host. Each server contains an associative abstract
machine as illustrated in Figure 2, with the ability to
receive goals and send solutions to the coordinator using a
message-passing interface such as PVM [19] or MPI [8].

3.1 Abstract Data Structures

The coordinating abstract machine needs three data
structures that supplement those in the base abstract
machine. They are an associative server table, a
coordination table, and an associative binding area.

The associative server table stores information about
the predicates handled by the servers. For each
server/procedure pair there is an entry of the form (server-
id, procedure-id, clause-count) in the server table. The
server-id uniquely identifies a server. The procedure-id
is a reference to an entry in the procedure table. The
clause-count is the number of clauses the server has that
match the goal. The coordination stack is a sequence of
coordination-vectors, Boolean vectors marking the
executable procedures that have not returned the bindings
for the current goal, associated with the server table. The
association with the server table facilitates the marking of
servers that have yet not returned their bindings. Initially
the Boolean vector is the same as the server capability
vector. Upon receiving a failure signal from a server, the
corresponding bit in the coordination vector is reset. The
coordinator backtracks to a previous coordination vector
when the current coordinator vector becomes empty. The
associative binding area stores the bindings incrementally
as they are received from the servers. The data elements
in the associative binding area are (server-id, time-stamp,
variable-id, value, type) for each bound argument. A
Boolean vector associated to this table is used to identify
the vectors bound to a register at a given time stamp.

3.2 Distributed Abstract Instructions

There are four abstract instructions in the coordinating
abstract machine that facilitate distributed processing.
They are: get_servers, broadcast_goal, receive_binding,
and repeat_else_try

The get-servers instruction takes a procedure-id as an
argument and returns a coordination vector that identifies
the servers that can solve the goal and which have not yet
sent all the bindings for the goal. The broadcast_goal
instruction sends a goal to the servers indicated by a
server filter vector. The receive_binding instruction is
executed repeatedly to retrieve the bindings from the
servers. The arguments for a receive-bindings instruction
are a coordinating vector and a binding vector. The
bindings from each server in the server table are added to
the associative binding area. The binding filter vector
points to the new binding vectors. If all the matching
servers transmit failure, the coordinator backtracks. The
abstract instruction repeat_else_try enables the repeated
execution of the receive_bindings instruction with the

capability to backtrack in the absence of a binding. A
detailed explanation of the abstract instruction set is given
in [18].

3.3 The Execution Model
A schema file prepared by the user specifies a list of
remote hosts and the file names of the knowledge bases to
be loaded onto the various hosts. The coordinator reads
the schema file and initiates the server processes. After
each server process has been successfully initialized and
has loaded its data, it reports back to the coordinator with
a list of the available procedures. The coordinator builds
up the server table from these reports.

To solve a goal, the coordinator performs an
associative search on a server table to obtain a filter
vector identifying all servers that have the corresponding
procedure. The result of this search initializes the
corresponding coordination vector. The coordinator
broadcasts a goal to the servers using an abstract
instruction broadcast_goal.

Upon receiving a goal, each server first concurrently
searches its facts and then its rules for a solution. After
finding a set of solutions, the servers wait for further
instructions from the coordinator. After broadcasting a
goal, the coordinator queries each matching server for
solutions. The coordinator polls one server at a time. Each
server, when prompted, transmits the bindings for the goal
arguments to the coordinator. Anticipating further
requests, the servers backtrack to find additional
solutions. Meanwhile, the coordinator stores the received
bindings in its associative binding area along with the
current time-stamp and the server-id.

After collecting the first set of solutions from the
servers, the coordinator reports these solutions to the user.
Upon further request from the user, the coordinator
requests a new set of solutions from the matching servers.
Additional bindings received from the servers are added
to the associative binding area. A server sends a failure
in the absence of additional solutions. After receiving a
failure, the coordinator removes that server from the list
of matching servers by resetting the corresponding bit in
the coordination vector. This process is repeated until the
list of servers is empty. This condition corresponds to an
empty coordination-vector. When the coordination vector
becomes empty, the coordinating process backtracks and
tries other rules to solve the goal.

3.4 Serving Multiple Subgoals

After receiving a request to solve a subgoal, a server
generates initial solutions. Upon request, the server sends
the resulting bindings to the coordinator, and proceeds to
generate alternate solutions. However, the coordinator's
next request may be to solve the next subgoal instead of
requesting the alternate solutions. The server then saves
its state, including the alternate solutions to the first
subgoal, and proceeds to solve the second subgoal. If the
coordinator backtracks, it first requests more solutions to

 4

the second subgoal. After reporting failure to the
coordinator, the server reverts back to its previous state
with the alternate solutions to the first subgoal. The
coordinator receives the failure message and removes this
server from the list of servers for the second subgoal. If
the list of servers becomes empty for the second subgoal,
the coordinator backtracks and requests alternate solutions
to the first subgoal.

4. Web Based Multimedia Interface

In this section, we describe the implementation of the
Java graphical user interface and front end to the
Distributed Associative Logic Programming System.
Included in this front end are the following:

1. a lexical analyzer and a parser for the input of
logical goals and assertions,

2. a compiler to generate instruction code and data
for the Associative Logic Program engine,

3. communication routines for configuring and
communicating with the distributed logic engine,

4. a graphical user interface. This interface provides
the ability to retrieve multimedia knowledge bases
(including image and sound) easily from the
internet via URLs.

The Java interface is shown in Figure 3. It consists of
a text window for viewing the text of a logic program and
a text entry field for entering new facts, rules and goals.
From the File menu, existing programs are opened either
from a local file or from the internet by specifying a URL.
A compiled version of the program can also be saved to
the local disk by selecting the Compile menu. The
program is automatically compiled when launching a
server. The first option on the Servers menu will spawn a
server process on any host in the currently configured
cluster, compile the current program, and load it into the
new server.

Figure 3: Launching a knowledge server

We demonstrate the use of the system through a small

knowledge base about famous artists and their paintings.
The knowledge base contains two types of facts and one
rule as follows:
 painted(Artist, Paintings).

picture(Painting, URL).
pictureby(Artist,Picture) :-
 painted(Artist,Painting), picture(Painting,Picture).

The rule will match the artists in the multimedia
knowledge base with images of their work on the internet.
There may be several sites on the internet which store
paintings of the great artists. With this system, it would
be possible to access this distributed multimedia
knowledge, create a server for each individual knowledge
base on a local high performance computer cluster and
query the knowledge transparently as if it were a single
local knowledge base.

5. Object Oriented Implementation
This section describes an object model needed to provide
modularity in the distributed execution of the
heterogeneous associative logic program system and the
object model for the Java based graphical user interface.

5.1 Class Hierarchy

There are two primary classes in the object model: the
abstract-machine class and the program class. The
abstract-machine class represents an abstract machine,
and the program class encapsulates the associative
representation of a logic program. Figure 4 illustrates the
overall class structure.

bindings abstract machine

goal registers stack

alias filter

program

progdata proginst

proctable predtable

subclass hierarchy
interaction

Figure 4: Object-oriented data representation

The public interface of the abstract-machine class
allows for loading a program, solving a goal, requesting
alternate solutions, and retrieving binding information for
the goal arguments. The private member functions of the
abstract-machine class include functions for executing the
instruction code of the program and for backtracking and
controlling the flow of the program. The two major
subclasses of the abstract-machine class encapsulate the
registers and the control stack.

The program class has two subclasses: progdata and
proginst. The subclass progdata represents an associative
table of clause-heads. The subclass proginst represents
the compiled code for the clause bodies. The subclass
progdata has two subclasses: predtable and proctable.
The subclass predtable maps predicate names to a
numeric predicate-id. The subclass proctable is used for
fast lookup of the predicate and the entry point in the
compiled code for each procedure. All of the components
of the program class are public and manipulated directly
by the abstract machine

 5

The associative data types are encapsulated in the two
classes associative-filter and associative-vector. The
associative-filter class supports logical operations. The
associative-vector class is used to represent associative
data vectors. It is implemented using the C++ template
facility to support arbitrary data types.

5.2 Object Oriented Implementation of Java Interface

The structure of the Java application is shown in
Figure 5. The user interface is integrated with a parser
(the ALParser class) and an array of RemoteAbsMachine
objects that provide the interface for communicating with
server processes, encapsulated by the ALPServer class.

A L P S e r v e r
A L P S e r v e r

R e m o t e A b s
R e m o t e A b s

G U I

A L P a r s e r R e m o t e A b s

A L P S e r v e r

Figure 5: Structure of the Java application

The ALParser class (see Figure 6) accepts logical

statements and builds an abstract representation. Within
the parser, there is a lexical analyzer (the LexAn class), a
symbol table (the SymbolTable class), and a
representation of the logic program (the ALProgram
class).

The ALProgram class contains two representations of
the program. The first is an array of procedures, each of
which is an array of clauses. This is the representation
that is built via the parser and corresponds directly to the
text of the program. The second representation of the
program is the tabular data and instruction code that is
used by the associative logic programming engine.

A logic program is passed through the lexical analyzer
and parsed. This populates the symbol table and the
initial representation of the program in the Program class.
At compile time, the associative representation of the
program is created within the ALProgram object and then
written to disk or passed to the server via the
RemoteAbsMachine class.

The RemoteAbsMachine class masks the remote
nature of the ALPServer. Requests made to a
RemoteAbsMachine are actually packed into messages
and sent to the server process via the message passing
system. Each RemoteAbsMachine object can represent a
single server or a coordinator managing multiple
distributed servers.

ALParser

LexAn SymbolTable ALProgram

Procedure* ProgData

Clause * ProcTablePredTable

Figure 6: A Java based parser

After all servers have been launched, goals may be

submitted via the text entry line of the user interface. If
multiple servers have been launched, then the goal will be
submitted to all of those servers. Textual results of the
query will be displayed in the text window. Multimedia
results, such as images or sounds, will be displayed
accordingly on the screen.

6. Related Works

We are not aware of any other distributed associative
models for retrieving multimedia knowledge from
heterogeneous clusters. There are logic programming
models [4, 13, 15, 20] for internet programming that have
been developed. JINNI [20] is a web-oriented logic
programming system that utilizes Java. It relies on the
native BinProlog engine when high performance is
required. W-ACE [15] is a constraint-based logic
programming system that is capable of web based logic
programming. W-ACE supports active servers (servers
aware of client activity) and active clients (clients
working on a program loaded from the server).

BinProlog and ACE are some of the fastest WAM
based logic programming implementations [21].
However, they do not support content-based knowledge
retrieval. Our model supports content-based knowledge
retrieval, cluster computing, and is scalable due to the use
of associative data structures. For local concurrency
among servers W-ace exploits fine grain AND-OR
parallelism suitable for tightly coupled servers. Fine grain
parallelism may have high overhead of data transfer on a
loosely coupled network. We believe that all these models
of internet based intelligent knowledge retrieval and web
based computing will provide insight to this new,
uncharted, and fast growing field of virtual intelligent
resource sharing among computers on the internet.

Our model has evolved due to the need to model a
complex simulation on a cluster of high performance
architectures in a realistic time. It is efficient on loosely
coupled cluster of servers since coordinator based
parallelism exploits both data parallelism and coarse grain
parallelism. The use of the message-passing libraries in
our model provides a natural capability to interface with
distributed simulation software developed in other
languages.

 6

7. Conclusions and Future Work

In this paper, we have discussed the generic
architecture of an abstract machine for the distributed
execution of logic programs on a heterogeneous
collection of computers. The object-oriented
implementation is portable, flexible and extensible. The
use of message-passing libraries provides scalability and
architecture independence. The performance results show
that distributing the knowledge domain on multiple local
servers connected through a high-speed intranet provides
significant performance improvement. Similarly, porting
individual knowledge domains to the client side over the
internet also reduces data transfer and computation
overhead.

Currently, in collaboration with Javed Khan [11], we
are looking into the development of an internet based
multimedia intelligent language which supports content
based associative image retrieval [11, 14]. We are also
developing interfaces to CORBA and scientific languages
such as Fortran to interoperate with scientific computing
simulations in the field of high performance engine
design.

Acknowledgments

This research was supported in part by NASA Lewis
Research Center through a NASA Grant. The authors
also acknowledge Greg Follen for useful discussions and
continued support of this project. The authors also
acknowledge Javed Khan for useful discussions on other
applications of this work.

References
1. A. K. Bansal, and J. L. Potter, “An Associative

Model to Minimize Matching and Backtracking
Overhead in Logic Programs with Large Knowledge
Bases,” The International Journal of Engineering
Applications of Artificial Intelligence, Volume 5,
Number 3, (1992) pp. 247-262

2. A. K. Bansal, “An Associative Model to Integrate
Knowledge Retrieval and Data-parallel
Computation,” International Journal on Artificial
Intelligence Tools, Volume 3, Number 1, (1994), pp.
97 - 125.

3. A. K. Bansal, “A Framework of Heterogeneous
Associative Logic Programming,” International
Journal of Artificial Intelligence Tools, Vol. 4, Nos. 1
& 2, (1995), pp. 33 - 53.

4. P. Bonnet, S. Bressan, L. Leth, and B. Thomsen.
Towards ECLiPSe Agents on the INTERNET,
Proceedings of the 1st Workshop on Logic
Programming Tools for INTERNET Applications,
JICSLP'96, Bonn, (1996).

5. J. A. Feldman, and D. Rovner, “An Algol Based
Associative Language,” Communications of the
ACM, Volume 12, Number 8, (1969) pp. 439 - 449.

6. J. Gosling, B. Joy, and G. Steele, “The Java
Language Specification,” Addision-Wesley, also see
http://www.javasoft.com

7. D. Gries, The Science of Programming, Monograph,
Springer Verlag, New York, 1987.

8. W. Gropp, E. W. Lusk, and A. Skjellum, “Using
MPI: Portable Parallel Programming with Message
Passing Interface,” MIT Press, 1994

9. P. T. Homer and B. Schlichting, “Using Schooner to
support distribution and heterogeneity in the
Numerical Propulsion System Simulation Project,”
Concurrency Practice and Experience, Vol. 6(4),
1994, pp. 271-287

10. K. Hwang, and F. A. Briggs, Computer Architecture
and Parallel Processing, Mcgraw Hill Book
Company, New york, USA, (1984).

11. J. Khan, “Intermediate Annotationless Dynamical
Object-Index-Based Query in Large Image Archives
with Holographic Representation,” Journal of Visual
Communication and Image Representation, Vol. 7,
No 4. 1996, pp. 378 – 394

12. R. Kowalski, Logic for Problem Solving, Elsevier-
North Holland, (1979).

13. S. W. Loke, and A. Davison, Logic Programming
with the World-Wide Web. Proceedings of the 7th
ACM Conference on Hypertext, pages 235 - 245.
ACM Press, (1996).

14. V. Ogle and M. StoneBraker, “Chabot: Retrieval
from a Relational Database of Images,” IEEE
Computer 29, 1995, pp. 18-22.

15. E. Pontelli and G. Gupta, “W-ACE: A Logic
Language for Intelligent Internet Programming,”
Proceedings of the Ninth International Conference
on Tools with Artificial Intelligence, Newport Beach,
CA, USA, 1997, pp. 2 -10.

16. J. L. Potter, Associative Computing, Plenum
Publishers, New York, (1992).

17. J. Potter, J. Baker, A. K. Bansal, S. Scott, C.
Ashtagiri, “Associative Model of Computing,” IEEE
Computer, November 1994, 19 - 25

18. S. Ryan and A. K. Bansal, “A Scalable
Heterogeneous Associative Logic Programming
System,” Proceedings of the Ninth International
Conference on Tools with Artificial Intelligence,
Newport Beach, California,. November 1997, pp. 37
– 44.

19. V. S. Sunderam et. al., “PVM: A Framework for
Parallel Distributed Computing,” Concurrency:
Practice and Experience, No. 2, (1990), pp. 315 -
339.

20. P. Tarau, “Jinni: a Lightweight Java-based Logic
Engine for Internet Programming,” Proceedings of
JICSLP'98 Implementation of LP languages
Workshop, (1998)

21. D. H. D. Warren, “An Abstract Prolog Instruction
Set,” Technical Report 309, SRI International,
(1983).

