


 53 

VOICE BASED INTERACTIVE MODIFICATION OF WEB BASED MOVIES 
 

Bonita Simoes and Arvind K. Bansal 
Distributed Multimedia and Cognition Laboratory 

Department of Computer Science 
 Kent State University, Kent, OH 44242, USA 

Email: bsimoes@cs.kent.edu and arvind@cs.kent.edu 
Phone: +1.330.672.9035, FAX: +1.330.672.7824 

 
 
ABSTRACT 
The Internet is becoming a massive knowledge resource 
for 3D multimedia information such as movies, news 
clips, and children’s stories.  Multimedia information can 
be interactively modified using multimodal interfaces for 
entertainment to incorporate subjective perception in a 
scenario and to analyze situations using many what-if 
scenario modifications.  In this paper we describe an 
XML voice interaction model for 3D XML movies 
retrieved over the Internet.  This voice model can be used 
to dynamically and interactively modify and edit 3D 
movies and archive or transmit them to others over the 
Internet.  Performance analysis has been presented. 
 
KEY WORDS 
3D movies, human-computer interfaces, Internet, voice 
interaction, web movies, XML 
 
 
1.  Introduction 
 
The demand for interactive and next-generation 3D 
characters and 3D movies is growing tremendously.  The 
designing and rendering of realistic 3D interactive 
characters and movies has become a reality. With 
distributed object databases spanning across the Internet, 
it has become easier for users to combine and reuse 
resources like textures, sounds and 3D movies, from 
various databases distributed over the Internet. 

The integration of a generic Internet based language 
such as XML, multimedia technologies, Internet, and 
voice recognition technologies makes many applications 
possible that were considered science fiction ten years 
ago.  For example, children could download movies 
across cultures using the Internet, interact with and 
modify the animated characters to suit their culture to live 
up to their fantasy for the ultimate entertainment 
experience; lawyers could modify and recreate in real 
time a new story of a crime scene based upon a generic 
story giving multiple possibilities; airline agencies could 
interactively modify a plane crash scenario to see multiple 
possibilities; a chemist could model and interact with 3D 
cell models in real time using voice commands.   

There is a need for a scheme to dynamically modify 
realistic 3D movies over the Internet based upon voice 

controlled interaction.  Speech input is a natural choice of 
interaction since speech recognition engines of today 
achieve high accuracy rates. 

A lot of research has been done in the areas of voice 
recognition, avatars – animated computer characters [1], 
social agents [2], interactive movies [3], story telling, [4] 
and Internet based modeling [5].  There are also 
interactive schemes for helping children learn through 
interaction [6].  We have been influenced by these 
systems in developing our model. 

This dynamic voice interaction model is part of a large 
3D XML based interactive model [7] developed and 
implemented by the authors. Figure 1 shows the overall 
model of the system.  The server end consists of an XML 
representation of a 3D movie.  The client end parses XML 
movie; interacts with uses using voice module, 
interactively extends the XML based movies, composes 
scenes dynamically, and renders the animated characters 
in real time.  A script interpreter parses text commands 
sent to the voice sub-system via a speech emulator. 

 

 

Figure 1.  A model for voice modifiable movies 

In this paper, we describe the real time voice interaction 
model.  The scene description and animation of 3D 
objects is described in [7].  The major contributions of 
this paper are as follows: 

1) A voice-based real time control of 3-D animated 
characters has been developed for XML movies.  

2) The XML files are modified using voice-based 
commands used to interactively generate new 
variations of an Internet based movie. 

Proceedings of the Eighth IASTED International Conference  
INTERNET & MULTIMEDIA SYSTEMS & APPLICATIONS 
August 16-18, 2004, Kauai, Hawaii, USA 
© ACTA Press, Calgary, Canada 
 

427-030 



 54 

The paper is organized as follows.  Section 2 briefly 
describes  background concepts and definitions.  Section 
3 introduces the voice interaction model and describes the 
voice grammar used to build voice commands.  The 
system implementation is described in Section 4.  A 
performance analysis is presented in Section 5.  Section 6 
describes some related work in animation and scripting 
movies.  The last section concludes the work and 
discusses some future work.   
 
 
2.  Background and Definitions 
 
A hierarchical graph is a multilayered graph such that a 
sub-graph might be embedded inside a node or an edge.  
Each layer is an abstraction of embedded sub-graphs. An 
edge represents one or more edges between the embedded 
sub-graphs. The graph at the lowest layer containing 
media objects is called an object graph.  

A 3D mesh is a set of faces.  Each face lies on a plane.  
The faces are made up of a set of vertices. A triangulated 
mesh is modeled as a set of faces with three vertices 
represented as (xi, yi, zi).  Realism is directly proportional 
to the number of faces.   

The animated characters have been modeled using 
hierarchical graphs and 3D meshes.  The motion of 3D 
objects is generated by dynamically changing the position 
and orientation of nodes and edges in an object graph. 

Due to the connectivity of nodes in animated skeletal 
objects, skeletal animation [8] has been used.  Skeletal 
animation provides a sequence of different positions of 
the nodes in the object graph at different time instances.  
Movement of one node also affects the movement of 
neighboring nodes. This movement effect on neighboring 
nodes is modeled by associating a unique weight wij with 
each edge.  The matrix of these weights is used to model  
effect of animation on connected nodes.  The animation 
effect is transitive. By multiplying the weights wij 
(between nodes vi and vj) and wjk (between nodes vj and 
vk), the effect of movement of a node vi on vk is computed.   

Any complex animation of 3D objects is decomposed 
into a combination of three basic operations: translation, 
rotation and scaling. These three basic operations are 
modeled using transformation matrices. Transformations 
are combined by multiplying the corresponding 
transformation matrices in a specific order. 
 
 
3.  The Voice Interaction Model 
 
The voice interaction model consists of a speech 
recognition module, voice command processor and an 
object motion controller (see Figure 2).  Every object in a 
scene is uniquely identified by a name.  Each object in a 
scene has a unique animation set and a local object 
controller associated with it.  Each animation set is an 
ordered set of time instances..  There are multiple 
attributes such as animation speed, movement speed, and 
looping that are associated with an animation set.  The 

animation speed determines rendering speed of animation 
set.  The movement speed determines how fast an object 
moves during the rendering of an animation set.  Looping 
determines if the animation repeats itself.  Animation 
speed is directly proportional to the rendering speed.   
 

 
 

Figure 2.  The voice interaction system 
 

The speech recognition module takes a voice command 
as input, denoted as an input string, and passes it to the 
voice command processor.  The voice command 
processor determines the type of the command rule, and 
transforms the input string to a set of phrases, denoted as 
an output string. 

There are two types of voicecommand rules: auxiliary 
or animation rule.  An auxiliary rule helps a user navigate 
through menus.  An example of an auxiliary command 
would be “Help me”, “Show actions” or “Close the 
player”.  An animation command instructs the local 
object controller to change the current animation of the 
corresponding object to perform an action.  All phrases to 
be recognized are specified in a list construct. The field 
property-name of a phrase contains semantic information 
about that phrase for the global object motion controller 
to understand. The recognized_text is a sequence of words 
that is mapped to the semantic value stored in the field 
property-name.  The grammar for parsing voice 
commands is given in Figure 3. 
 

<voicecommands>::= ‘<voicecommands>’ {<rule>}*  
                                    ‘</voicecommands>’ 
<rule>::= ‘<rule’ <rule_attr>‘>’{<list>}* {<rule-reference>}*{<o>}*               

                          </rule>’ 
<rule_attr> ::= [<identifier>] <name> [<rule_state>] 
<name> ::= “animation” | “auxiliary” | “person” | “action” |             
                   “direction” | “amount” 
< rule_state> ::= “active” | “inactive” 
<list> ::= ‘<list>’ {<phrase>}+ ‘</list>’ 

<phrase> ::= ‘<phrase’ <property-name> ‘>’ <recognized_text>  
                     ‘</phrase>’ 
<property-name> ::= <object-name> | <set-name> |  
                                  <direction> | {<animation_amount>}+ 
<object-name> ::= <characters> 
<set-name> ::= <characters> 
<direction> ::= “left” | “right” | “up” | “down” 
<recognized-text> ::= <characters> 
<rule-reference> ::= ‘<rule-reference’ <name> ‘/>’ 
<o> ::= ‘<o>’ <rule-reference> ‘</o>’ 

 

Figure 3.  Voice grammar for the system 
Each output string is a quadruple of the form (object-

name, action, direction, amount).  An object-name 



 55 

uniquely refers to an animated object.  To enhance user 
friendliness multiple input strings might refer to the same 
object using aliases.  All aliases of the same object map to 
the same object-name in the output string.  An action 
refers to one or more animation sets.  An action could be 
simple or composite.  A simple action refers to an 
animation set.  A composite action is a partially ordered 
set of simple actions.  Both simple and composite actions 
can have aliases that map to the same name in the output 
string.  For example, the simple action “walk” or “go” are 
mapped to the same animation set.  The direction can be 
either left, right, up or down.  The optional field amount 
specifies the time an object’s animation set is rendered. 

Besides receiving a voice command, the voice sub-
system also takes text input from a script in an XML 
movie file.  The script interpreter passes the text 
command to the “Emulate speech” module, whose job is 
to treat the text as if it were speech.  The “Emulate 
speech” module passes the text voice command denoted 
as an input string to the voice command processor where 
it is transformed into an output string.  

An input string can have a varying number of words 
since multiple words may be joined to form an action. An 
input string is terminated by a pause above a time-
threshold.  There should not be a significant pause 
between the spoken words in a sentence to avoid 
discontinuity in an input string. 
Example 1: This example illustrates an input string: 
“Zombie walk limping left five”. In this example, object-
name is “Zombie”, action is “WalkLimping”, direction is 
“left”, and amount is 5.  Note that there are five words in 
the input string, and two words “walk limping” map to 
the animation set “WalkLimping”.  The animation set 
“WalkLimping” contains time instances at which the 
object graph of the Zombie changes. 

The output string is sent to a global object motion 
controller that instructs the local object controller of the 
corresponding object to update its current animation to 
perform the specified action.  The renderer carries out 
animations.  The application handles the request for 
auxillary commands.   An abstract description of the voice 
recognition process is shown in Figure 4. 

 
 

Input: Voice grammar for the scene; 
Output: Output strings for the corresponding voice commands; 
while true do { 
 wait for a voice or text script command; 
 if a voice command or text script command is found { 
  convert voice command to text input string I = {w1, w2, …, wn}; 
  parse input string to get an output string O = (object-name,  
       action, direction, amount); 
  frame_instance ß amount * frames/sec; 
  validate the quadruple (object-name, action, direction,  
      frame_instance) for proper mapping to the object-name’s  
      animation set; 
  if  (validated) update the animation-possible state variable for  
      the corresponding object having the name object-name; 
 }  //end if } // end while 

 

Figure 4.  Processing voice commands 

 

During validation, the quadruple O is first checked to see 
if an object exists. If an object exists, the next step checks 
if the action in the output string exists for the object-
name. After validation, the output string is processed by 
the object motion controller. 

After a user is done with animating the objects, user 
interaction can be saved and used later by another user.  
During a save, the movie is modified thereby creating a 
new dynamically modified XML movie file. 
 
3.1  The Object Motion Controller 
 
This system consists of a global object motion controller 
and multiple local object controllers.  Each object in the 
scene has its own local state of its current animation.  The 
global object motion controller instructs an object’s local 
controller to change the corresponding object’s animation 
state based upon an output string.  The state transition of 
the object motion controller is depicted in Figure 5.  In the 
absence of an output string, local controllers for provide 
default animation to the corresponding objects to achieve 
realism. 
 

 
Figure 5.  State diagram of the motion controller 

  The global object motion controller is always in a 
busy wait state until an output string is found.  After 
receiving an output string, the global object motion 
controller checks for the object-name. If the pair (action, 
object-name) exists, the global object motion controller 
instructs the individual local controller to identify the 
corresponding animation matrix, and change the state of 
the object.  The animation-possible state is set to true and 
the object’s action, direction and amount parameters are 
updated based on the output string.  The object’s local 
controller performs the animation for the desired amount 
of time based upon new parameter values.  After this 
action, the object’s local controller puts the object back in 
default animation state.  

After instructing an object’s local controller, the global 
object motion controller resumes in the busy-wait loop, 
waiting for another output string.  If the input string is not 
understood by the speech recognition system, the global 
object motion controller remains in a busy-wait loop. 

Collision detection has been implemented to avoid 
collision by detecting if objects try to occupy the same 
area in a scene.  The objects are not allowed to walk 
through the floor, walls, or any other objects in a scene.   
 



 56 

3.2  Concurrent Animation of Objects 
 
This model supports concurrent animation of two or more 
objects in a scene since each object has a local controller 
for animation.  After a voice command is issued, the user 
need not wait for the command to be completed before 
issuing another command. 

Besides issuing a command to multiple local object 
controllers and have them perform their animation 
concurrently, the global object motion controller can also 
interrupt local controllers, and overwrite the animation 
state parameters of the corresponding objects thereby 
changing their animations. 
 
 
4. System Implementation  
 
This system has been implemented in C++, which 
provides faster rendering than Java.  The parser is 
implemented in the .NET XML framework and the 
renderer uses the DirectX graphics API 
(http://www.microsoft.com/directx) along with other C++ 
user defined libraries built on DirectX.  Microsoft Speech 
API (http://www.microsoft.com/speech) is used for speech 
recognition. 

Figure 6 shows the client implementation model.  The 
client parses the transmitted XML movie file and builds 
the scene, object and animation databases.  The client also 
downloads other resources from other servers in a 
separate thread.  The speech recognition module is then 
started and based on the validity of the voice commands, 
the objects’ state is changed, and the objects in the scene 
are rendered if no collision is found.  Voice grammar as 
shown in Figure 3 is loaded when a speech recognition 
thread starts. There are two threads running in this 
system; the speech recognition thread and the main 
program rendering thread.  The global object motion 
controller is part of the speech recognition thread and the 
local controllers are part of the main program thread. 

 
Figure 6.  Client implementation model 

 
The output generated by the parser is a Document 

Object Model (DOM) tree of the XML that is constructed 
in memory.  A Document Type Definition (DTD) is used 
to ensure proper validation of an XML movie file.  An 
abstract description of the XMLParser class is shown in 
Figure 7.  
 

 

class XmlParser {     
   parseXmlFile(String *file); // input XML movie file. 
   parseSceneMeshXml(String*innerXml, String* sMeshName);     
   parse3DObject(XmlNode* Node);   
   buildGraph(XmlNode* Node, StreamWriter* meshwriter,  
      StreamWriter* logwriter, int graphid, XmlNode* meshnode); 
   parseObjectMeshXml(String* innerXml, StreamWriter*  
      meshwriter, StreamWriter* logwriter, int graphid);     
   parseObjectAnimationXml(XmlNode* animationNode,   
      StreamWriter* meshwriter, StreamWriter* logwriter);        
   parseTextObject(XmlNode* Node);    
   parseAudioObject(XmlNode* Node);           
   parseImageObject(XmlNode* Node);    
   validate();     //validate XML movie with DTD 
}; //end XmlParser class definition 

 

Figure 7.  The XMLParser class definition 
 

An abstract description of the speech recognition 
process is given in Figure 8.  Input strings are mapped 
into output strings based on the property value associated 
with input strings with respect to the voice grammar.  The 
vector Objects denotes the global object motion controller 
that keeps track of an object’s name in a hash table, along 
with its other properties.  Once an object is found, the 
global object motion controller calls the corresponding 
local object controller, which changes the action for the 
object based on the parameters passed to it.  The local 
object controller is a C++ object created for each 3D 
dynamic mesh.  The local controller changes the object’s 
action and movement parameters on the x, y and z axes 
until the amount of time specified is complete.   

 
 

Algorithm: SpeechRecognition 
Input: XML Movie file with Voice Grammar 
For each object in a scene 
    Initialize Objects[name].action to default from movie file; 
Start and initialize speech recognition component thread; 
If (SceneController[CurrentScene].movieExists) { 
   Get the next movie script command; 
   Pass through the speech emulator to recognize words; 
   Disable microphone; 
} 
else { Enable microphone; } 
while (voice input exists) { 
  get recognized input string from the recognition engine; 
  if input string has properties associated with it { 
     Get property value for each word/phrase in the input string  
          based on the voice grammar separated by spaces;  
     Split the property values delimited by spaces into 4  
          separate variables; name, action, direction and amount  
          denoted as the output string 
     Search for name in the array Objects for each object  
          indexed in a hash table; 
     if object name is found {  
           Objects[name].direction = direction; 
           Objects[name].action = action; 
           Objects[name].amount = amount; 
    }} 
    call LocalController(name, action, direction, amount); 
    if (recognized==true) show visual text recognition on screen; 
} 
Uninitalize speech recognition component and end thread; 

Figure 8.  Speech recognition process 
 

 
 
 



 57 

5.  Performance Evaluation 
 
Various experiments were done on this system using 
different parameters.  We present here the response time 
to recognize a voice command and perform the 
corresponding action (see Figure 9) For unambiguous 
commands, the average response time falls between 
290ms and 346ms.  An ambiguous command’s average 
response time is almost doubled (between 595ms and 
720ms).  Ambiguity is introduced due to multi-word 
phrases as well as optional rules in the grammar.  The 
following examples illustrate this point.    
Example 2: This example illustrates ambiguity due to 
multi-word phrases. Consider a voice command “Zombie 
walk left twenty”.  The speech recognition engine needs to 
determine if the user will decide to say “twenty one” or  
“twenty two”, etc… or if the user really meant to say just 
“twenty”.  The default time that the speech recognition 
engine waits before it completes recognizing a single 
command is 150ms.  For this reason the command will 
take more time than a command that did not have any 
ambiguity such as “Zombie walk left ten”. 

Example 3: This example illustrates ambiguity due to 
optional phrases. Consider the voice command “Zombie 
punch left”.  The speech recognition engine takes more 
time to traverse the parse tree and build hypotheses for an 
input voice command when ambiguity is introduced due 
to optional phrases that need to be resolved in the input 
voice command.  This holds true for all input voice 
commands that optionally neglect the amount parameter.  

The speech recognition system runs in a separate thread 
from the renderer and hence there is no delay in rendering 
one or more objects if another voice command is issued 
before the previous one finishes.  The increase in the 
number of objects did not cause the speech recognition 
system any delay.  The number of words in the voice 
grammar did not affect the speech recognition response 
time nor did it affect the recognition accuracy.  This is 
because the grammar consisted of relatively few words.  
The recognition accuracy is around 98% or greater in a 
noise free environment for both male and female voices.   

 

Figure 9.  Voice commands vs. recognition time 
 

The speech recognition is not affected by slight 
background noise such as background music that is 
played during the movie.  Even if the volume of the 
background music was increased, the accuracy of 
recognition was almost the same, when the speakers were 

not directly facing the user or close to the microphone.  
However, the system accuracy falls in the presence of 
nearby noise source such as music, a printer printing a 
document and people talking loudly.   

It was never found that the background noise/music 
made the objects move by causing a valid command to be 
recognized.  The background noise would basically 
recognize words that were not in the grammar vocabulary 
but they were discarded by the system.  This noise may 
cause some problem when vocabulary set becomes large.  
Since we use character identity before a command, only 
the animated character responds to a command.  It was 
also found that validating voice commands has little or no 
significant overhead in the system. 
 
 
6.  Related Work 
 
Although we have not seen any system that provides 
dynamic voice based modification of Internet transmitted 
XML based 3D movies, we have been influenced by 
many systems used to develop 3D animated objects and 
voice based interaction. 

VRML [9] is a text and binary based 3D graphics 
standard used to model 3D content on the Internet.  X-
VRML [10] is an XML based extension of VRML to 
include variables, conditional statements, expressions, and 
loops to dynamically generate 3D scenes.  Both X-VRML 
and VRML do not have voice support.  VRML is not 
XML based and hence not completely interoperable.  
None of the systems have the capability to dynamically 
alter the scenario based upon voice interaction.   

X3D [11] extends VRML’s capabilities and expresses 
3D VRML models using XML.  XSTEP [12] is another 
XML-based markup language that uses Prolog like 
parameterization for easy interaction with agents.  Voice 
based animation of 3D content is not incorporated in X3D 
or XSTEP.   

Avatar Markup Language (AML) [13] is an XML based 
language that makes use of the MPEG-4 standard.  It uses 
MPEG-4’s low-level face and body animation parameters 
to create high-level command scripts.  The AML 
processor produces MPEG-4 compliant Face and Body 
Animation (FBA) streams.  AML has text-to-speech 
capabilities but has not incorporated speech recognition 
into the system.   

Improv [14] is a system for high level scripting of 
interactive actors in virtual worlds.  The system allows the 
animator to create predefined rules that govern the way 
the virtual actors behave.  These rules need to be followed 
and they control the animation using scripts.  The two 
main modules related to this system are the animation 
engine and the behavior engine that interact with the 3D 
characters.  The scripting language is English like 
statements that are linked to the system.  

STMDML [15] used hierarchical graphs to represent 
objects.  However, the model is used to reduce the 
transmission bandwidth by exploiting object reuse and 
client end object reconstruction.  However, these systems 



 58 

currently limited to 2D movies, do not provide voice 
based interactivity and extensibility of movies. 

A number of speech interfaces including command-
and-control interfaces, natural language interfaces and 
multimodal interfaces have been developed for the 
animation of virtual characters.  In [16], natural language 
parsing and goal planning is used to control the behavior 
of virtual agents.  In [17], natural language control is used 
for the interactive 3D animation in computer games such 
as Doom.  A parser generates messages to an animation 
layer of the system, which in turn generates the animation 
of the players in the game.   

None of these systems use an XML format to represent 
animation, and do not support dynamic modification of 
movies.  Most of them have interactivity using scripts.  
Others have voice-based control but no recording of 
commands issued to create a new movie file.   
 
 
7.  Conclusion and Future Work 
 
Using the system described in this paper, a user can 
download a 3D XML movie over the Internet along with 
background, textures and sound.  The user can then 
interact with characters in a movie in real time using 
voice commands, thereby dynamically generating a new 
movie that can be used in the future by the same user or a 
different user.  In this way, a user can realistically bring 
about a persistent twist to a movie’s predefined story and 
its ending.  The new movie can be archived and become 
part of multimedia information on the Internet.   

Currently the voice based commands include only 
simple sentences, and are limited by the set of vocabulary 
and a limited set of parameters.  For a general purpose 
control of the social agents, the system has to be 
integrated with natural language understanding systems 
and the semantic web, which can facilitate mapping of 
complex natural language commands to a core set of 
voice commands.  The current implementation cannot 
discriminate between multiple voices.  The system is 
being extended to include separation of voices in spoken 
words.  We are also developing morph enabled 3D objects 
using progressive meshes [18] for dynamic scene 
generation.  
 
 
References 
 
[1] D. Kurlander and D. T. Ling, Planning-Based Control of 

Interface Animation, Proc. CHI Conference, ACM Press, 
New York, USA, 1995, 472-479. 

[2] M. Cavazza, F. Charles and S. Mead, Agents’ Interaction in 
Virtual Storytelling, Proc. 3rd international workshop on 
Intelligent Virtual Agents, Madrid, Spain, 2001, 156-170. 

[3] R. Nakatsu, N. Tosa, and T. Ochi, Interactive Movie 
System with Multi-person Participation and anytime 
Interaction Capabilities, Proc. 6th ACM international Conf. 

on Multimedia: Technologies for Interactive Movies, 
Bristol, United Kingdom, 1998, 2-10. 

[4] R. Pausch, J. Snoddy, R. Taylor, S. Watson and E. 
Haseltine, Disney’s Aladdin: First Steps Toward 
Storytelling in Virtual Reality, Proc. SIGGRAPH ’96, 
ACM, New York, USA, 1996, 193-203. 

[5] A. K. Bansal, T. Kapoor, and R. Pathak, Extending XML 
for Graph Based Visualization of Complex Objects and 
Animation Over the Internet, Proc. 2nd International Conf. 
on Internet Computing, Las Vegas, June 2001, 750-756. 

[6] S. Oviatt, Talking to Thimble Jellies: Children’s 
Conversational Speech with Animated Characters, Proc.  
International Conf. on Spoken Language Processing, 
ICSLP, Beijing, China, 2000, 877-880. 

[7] B. Simoes and Arvind K. Bansal, Interactive Voice 
Modifiable 3D Dynamic Object Based Movies over the 
Internet, Proc. 5th Intl. Conf. on Internet Computing, Las 
Vegas, June 2004, to appear 

[8] R. Parent, Computer animation:algorithms and techniques, 
(San Francisco: Morgan Kaufmann Publishers, 2002), 175-
203, 328-339, Appendix A. 

[9] Virtual Reality Modeling Language (VRML) 2.0, ISO/IEC 
14772,http://www.web3d.org/x3d/specifications/vrml/ISO_I
EC_14772-All/part1/concepts.html, Date accessed: 
05/24/2004. 

[10] K. Walczak and W. Cellary, X-VRML – XML Based 
Modeling of Virtual Reality, Proc. IEEE Symposium on 
Applications and the Internet, SAINT’02, Nara City, Nara, 
Japan, 2002, 204-213. 

[11] eXtensible 3D(X3D), http://www.web3d.org/x3d 
/overview.html, Date accessed: 05/24/2004. 

[12] Z. Huang, A. Eliens and C. Visser, XSTEP: An XML-
based Markup Language for Embodied Agents, Proc. 16th 
International Conf. on Computer Animation and Social 
Agents, (CASA 2003), New Brunswick, New Jersey, 2003, 
105-110. 

[13] S. Kshirsagar, N. Thalmann, A. Vuillème, D. Thalmann, K. 
Kamyab and E. Mamdani, Avatar Markup Language, Proc. 
Workshop on Virtual environments, Barcelona, Spain, 
2002, 169-177. 

[14] K. Perlin and A. Goldberg, Improv: A System for Scripting 
Interactive Actors in Virtual Worlds, Proc. 23rd annual 
Conf. on Computer graphics and interactive techniques, 
1996, 205-216. 

[15] A. K. Bansal and R. Pathak, Transmitting High Quality 
Archived Object-based Movies with Reduced Bandwidth 
Requirement, Proc. 2nd IASTED International Conf. on 
Commmunications, Internet, & Information Technology, 
Scottsdale, Arizona, USA, November 2003, 553-560. 

[16] H. Tanaka, T. Tokunaga, Y. Shinyama, Animated Agents 
that Understand Natural Language and Perform Actions, 
Proc. International Workshop on Lifelike Animated Agents, 
(LAA), Tokyo, Japan, 2002, 89-94. 

[17] M. Cavazza and I. Palmer, Natural Language Control of 
Interactive 3D Animation and Computer Games, Proc.  
Virtual Reality, Vol. 4, 1999, 1-18 

[18] H. Hoppe, Progressive Meshes, Proc. 23rd annual Conf. on 
Computer graphics and interactive techniques, New York, 
NY, 1996, pp. 99-104 

 


