

 193

Applying Java for the Retrieval of Multimedia Knowledge
Distributed on High Performance Clusters on the Internet

Stephen W. Ryan and Arvind K. Bansal

Department of Mathematics and Computer Science
Kent State University, Kent, OH 44242 - 0001, USA

Phone: +1.330.297.6864 and +1.330.672.4004. ext. 214
E-mail: sryan@mcs.kent.edu and arvind@mcs.kent.edu

Abstract

This paper describes a Java application for interfacing with an Internet based distributed multimedia
knowledge retrieval system. The aim of this system is to facilitate the access of distributed knowledge
residing on remote computer systems. The motivation for this work is the increasing demand for
applications that take advantage of the Internet and local intranets for accessing and integrating distributed
knowledge bases. Our solution is composed of two parts that integrate multimedia distributed knowledge
bases, high performance heterogeneous computing, and internet-based programming. The back end is a
high performance distributed knowledge base engine based on our associative logic programming model
and the message passing paradigm for heterogeneous distributed computing. The front end consists of a
portable graphical user interface, a parser and a compiler, and a query management system for interfacing
with the distributed knowledge base system. While the knowledge base engine is implemented in C++ for
performance on a variety of high performance computer systems, the front end is based on Java
technology for portability, multimedia capability, and Internet functionality.

Keywords: Artificial intelligence, associative computing, distributed computing, distributed knowledge
base, heterogeneous computing, intelligent search engine, internet computing, Java, message passing,
logic programming, programming language, PVM, MPI, symbolic computing

1. INTRODUCTION

The recent boom in the popularity of the Internet is largely due to its ability to provide sharing
of resources such as databases and knowledge bases, applications, and computing power across
arbitrary distances and among a large number of users. The growth in the number of applications
that take advantage of the Internet and local intranets to distribute information and services has
resulted in the need for a high level tool to organize and coordinate these resources. Ideally, one
would like to be able to access a desired resource transparently, regardless of where on the
network or on what type of computer system it resides. One would also like the ability to pull
resources from various sources and assemble them into a complete solution in an ad hoc manner,
without concern for low-level details such as the host architectures, network protocols, data
formats, etc. One would also like to be able to do this from any arbitrary location, independent of
any particular workstation or terminal.

In this paper, we describe a system that begins to solve this problem by providing user-
transparent information retrieval from distributed multimedia knowledge bases. The model
integrates the following three technologies:
1. Associative logic programming [2, 3, 4] for storing and querying knowledge. Associative

logic programming uses tabular data structures for efficient pattern matchin g and goal

Proceedings of the International Conference on Practical Applications of JAVA, London, UK, (1999), 193 – 203

 194

reduction. Due to the uniformity of a flat data representation, the associative logic
programming system works on any architecture.

2. Message passing to link together heterogeneous high performance computers at a local site
into a unified distributed computing platform. Popular message passing libraries such as PVM
(Parallel Virtual Machine) [7] and MPI (Message Passing Interface) [13] facilitate data
transfer between cooperating processors and translate between the different low-level data
formats of heterogeneous architectures.

3. The Java programming language [1] as an architecture independent language that provides a
portable graphical user interface, support for multimedia content and access to resources on
the Internet via Uniform Resource Locators (URLs). In addition, the use of Java allows the
user interface code itself to be mobile. By constraining some of the functionality (file system
access for example), we can enable the entire front end to be loaded on demand as an applet
from any site with a Java -enabled web browser.

The overall scheme for the system has been illustrated in Figure 1. The Java application (or
applet) is used to access remote knowledge bases from the internet. Knowledge is retrieved in the
form of logic programs, which are displayed by the GUI, compiled into a low level abstract
machine code to be loaded into and executed by an ‘Associative Logic Program’ server running
on the local network. A lexical analyzer, parser, compiler, and interface to the local message
passing sys tem are integrated with the GUI.

PVM

ALP Server

Internet

ALP ServerALP Server

Coordinator

Graphical User Interface
Lexical Analyzer

Parser
Compiler

Figure 1. Overview of the distributed multimedia knowledge base system

To the best of our knowledge, this paper describes for the first time how multiple multimedia
knowledge bases, distributed over the Internet, can be joined together as one larger virtual
multimedia knowledge base on the user’s local heterogeneous cluster of high performance
workstations, and queried in an efficient manner. The system has been fully implemented, and
can be demonstrated using a laptop computer connected to the internet.

The organization of the paper is as follows. Section 2 briefly describes the Distributed
Associative Logic Programming System (DALPS) and its implementation. Section 3 describes
the application of Java code to create a user interface via which DALPS can interconnect with the
internet to facilitate a query from a remote location and to display multimedia results. Section 4
describes applications of the multimedia distributed knowledge base system. Section 5 compares
our work with other related works, and the last section concludes the paper.

 195

2. DISTRIBUTED ASSOCIATIVE LOGIC PROGRAMMING

In this section, we describe the concept of distributed knowledge bases using associative logic
programming, and describe the architecture of our Distributed Associative Logic Programming
System (DALPS).

The rules of formal logic provide a precise language for expressing knowledge. In a logic
programming [12] system, knowledge is represented as a collection of facts and rules that
describe relationships between objects. For example:

part_of(engine, turbofan).
part_of(turbofan, rotor).

 contains(X, Z) :- part_of(X, Z).
contains(X, Z) :- part_of(X, Y), contains(Y, Z).

Information is retrieved from a logic program by posing a query or ‘goal’, which asks whether

the given relationship between the argument objects holds. For example, the goal:

 contains(engine, W)?

would yield a set {turbofan, rotor} which is represented as a vector in associative logic programs.

The motivation of the Distributed Associative Logic Programming System [11] is to distribute
knowledge on a heterogeneous cluster of high performance processors in a user -transparent way.
A coordinating process then ties these multiple distributed knowledge bases together into a
single, virtual knowledge base. The individual knowledge bases reside in Associative Logic
Program server processes (ALPServers), each potentially running on a distinct computer system.
Within each server, knowledge is stored in a tabular format that facilitates lookup using
associative computing techniques.

Associative computing [10] refers to a pattern matching technique in which individual data
items in a collection can be identified by specifying some part of the data that we wish to match.
The matching operation is implemented as a primitive operation that operates on the entire data
set at one time, rather than relying on the typical sequential search. This primitive operation can
be implemented using a variety of data parallel techniques, and can take advantage of high
performance parallel computing technology.

The associative data representation of the ALPServer engine is augmented by a simple
instruction set which describes the matching operations that are required to solve a goal. For each
procedure in the knowledge base, there is a section of instruction code that will find the matching
facts as well as a section of code for processing each rule.

When an ALPServer process is initialized, it loads this tabular data and instruction code and
reports to its coordinator with a list of the goals that it is able to solve. The coordinator builds a
virtual knowledge base by combining this information from all servers. A coordinator may then
act as a server itself and participate in even larger virtual knowledge bases (see Figure 2).

Communication in the Distributed Associative Logic Programming System is handled by a
message passing library, such as PVM (Parallel Virtual Machine). This library provides for the
passing of data between the coordinating and server processes and transparently translates
between incompatible data formats when those processes are running on different architectures. It
also allows for the spawning and management of tasks running on the hosts in the cluster.

Due to its C++ implementation, the Distributed Associative Logic Programming System runs
efficiently on most major computer architectures. The message passing libraries (PVM and MPI)
are also available on most architectures. The only requirement for running the system is to have

 196

the executables compiled for each architecture in the cluster and to have the message passing
system installed and running on all machines in the cluster.

In the prototype DALPS system, the user interface is simply a command line prompt. The
configuration of the distributed knowledge base is specified in a schema file that is processed at
initialization time. The coordinator process at the user’s machine launches the servers specified in
the schema file and assembles the virtual knowledge base. The user can then pose queries against
the distributed knowledge by entering goals at the prompt.

User

Distributed Associative Logic Programming System

ALP Server

Coordinator

ALP Server

Coordinator

ALP Server

ALP Server

Figure 2. Overall scheme of the distributed logic programming system

3. APPLYING JAVA FOR REMOTE KNOWLEDGE RETRIEVAL

In this paper, we describe how we have applied Java technology to augment the Distributed
Associative Logic Programming System. In short, we have:
• Developed a portable graphical user interface for loading, saving, and compiling programs,

launching and destroying server processes, and entering goals and assertions,
• Implemented the lexical analyzer, parser and compiler in Java so that it is tightly integrated

with the GUI,
• Added the ability to retrieve knowledge bases and data easily from the Internet via URLs,
• Added the ability to display image and sound data using Java’s built-in multimedia

functionality.

3.1 An Example Multimedia Knowledge Base

 To demonstrate the use of the system, we will use as an example a small knowledge base about
famous artists and their paintings. The knowledge base contains two types of facts and one rule.
Facts of the form

 painted(Artist,Painting).

associate the various paintings in the knowledge base with the artists that painted them. Facts of
the form

 picture(Painting,URL).

indicate a location on the Internet where an image of a painting may be found. The rule

 197

 pictureby(Artist,Picture) :- painted(Artist,Painting), picture(Painting,Picture).

matches the artists in the multimedia knowledge base with images of their work on the Internet.
 There may be several sites on the Internet which keep track of great artists and store
knowledge about them in the form of facts like the above. With this system, it would be possible
to access this distributed multimedia knowledge, create a server for each individual knowledge
base on a local high performance computer cluster, and query the knowledge transparently as if it
were a single local knowledge base.

3.2 The Java User Interface

In this section, we describe the implementation of the Java graphical user interface and front
end to our Distributed Associative Logic Programming System. This front end includes a lexical
analyzer and parser for the input of logical goals and assertions, a compiler to generate instruction
code and data for the Associative Logic Program engine, the communication routines for
configuring and communicating with the distributed logic engine, and the graphical user
interface.

Figure 3 illustrates the primary window for the Java application. It consists of a text window
for viewing the text of a logic program and a text entry field for entering new facts, rules and
goals. From the File menu, existing programs can be opened either from a local file or from the
Internet by specifying a URL. The programs can be saved to the local disk or published to a web
address. A compiled version of the program can also be saved to the local disk by selecting the
Compile menu.

Figure 3. A Java user interface

The program is automatically compiled when launching a server (see Figure 4). The first
option on the ‘Servers menu will spawn a server process on any host in the currently configured
cluster, compile the current program, and load it into the new server.

Other functions on the Servers menu include attaching to an already running server or
terminating any previously spawned server. After launching one or more servers, a user may
submit a query. The goal will be submitted to all servers, which will return their solutions. In the
event of a multimedia result, such as the image in the example, the result will be displayed
appropriately as shown in Figure 5.

 198

Figure 4. Launching an ALPServer

Figure 5. An example of multimedia results of a query

3.3 Object-Oriented Java Implementation

The structure of the Java application is shown in Figures 6 and 7. The user interface is
integrated with a parser, defined by the ALParser class, for handling the input from the user plus
an array of RemoteAbsMachine objects each of which provides the interface for communicating
with a server process, indicated here as an ALPServer.

The ALParser class receives logic program statements from the user or from an input file and
builds an abstract representation of the logic program. The parser incorporates a lexical analyzer
(the LexAn class), a symbol table (the SymbolTable class), and a representation of the logic
program (the ALProgram class).

The ALProgram class actually contains two representations of the program. The first is an
array of procedures, which in turn are each an array of clauses. This is the representation that is

 199

built via the parser and corresponds directly to the text of the program. The second representation
of the program is the tabular data and instruction code that is used by the associative logic
programming engine.

A L P S e r v e r
A L P S e r v e r

R e m o t e A b s
R e m o t e A b s

G U I

A L P a r s e r R e m o t e A b s

A L P S e r v e r

Figure 6. The structure of the Java application

ALParser

LexAn SymbolTable ALProgram

Procedure* ProgData

Clause * ProcTablePredTable

Figure 7. The ALParser Class Structure

When the user enters a clause at the keyboard or reads a logic program from a file, it is passed

through the lexical analyzer and parsed. This populates the symbol table and the initial
representation of the program in the Program class. At compile time (when the user selects
‘Compile’ from the Compile menu or launches a server for the program), the associative
representation of the program is created within the ALProgram object. This is then written to
disk or passed to the server via the RemoteAbsMachine class.

The RemoteAbsMachine class masks the remote nature of the ALPServer. Requests made
against the RemoteAbsMachine are actually packed into messages and sent to the server process
via the message passing system. This functionality is currently provided by jPVM [15], a Java
native methods interface to the PVM library developed at the Georgia Institute of Technology.
Each RemoteAbsMachine object can represent a single server or, by specifying a schema file
instead of a simple program, a coordinator that represents a system of distributed servers.

After all servers have been launched, goals may be submitted via the text entry line of the user
interface. If multiple servers have been launched, then the goal will be submitted to all of those
servers. Textual results of the query will be displayed in the text window. Multimedia results,
such as images or sounds, will be displayed accordingly.

 200

4. APPLICATIONS

One interesting application that we see for this work is an advanced, intelligent Internet search.
Imagine a simple program that would collect the results of a search from each of the major
Internet search engines and represent those results as logic programs. With this system, complex
queries could be performed against the combined knowledge base to select precisely the items of
interest, or weed out the non-interesting results.

An area for further research is the possibility of constructing distributed simulations, using the
strength of the logic programming paradigm in abstract modeling. We envision constructing a
logical model of the system being modeled, where each component in the system is represented
by a logical term. Possible solutions for each term are drawn from a distributed knowledge base
that can be linked together in real time to solve the overall system. With an intermediary similar
to that mentioned above for the search engine interface, results from numerica l calculations or
other computations could be combined and included in our logical model.

 At NASA’s Lewis Research Center, for example, there is an interest in creating computational
simulations of gas turbine engines for use in aircraft research. Consider the following simplified
logical model of such an engine:

engine(Env) :- compressor(Env,V1), combustor(V1,V2), turbine(V2,V3), nozzle(V3,Env).

The compressor term, for example, could be mapped either to static tables representing empirical
information about a number of different compressors, or possibly to a computational code that
could be executed in real time to model the compressor numerically. With the proper
interconnection technology, we could construct models that would yield a number of different
solutions.

5. RELATED WORKS

Jinni [14] is a lightweight, multi-threaded logic programming engine that is implemented in
Java. The Jinni system has the ability to suspend and move a locally executing logic program to a
remote Prolog engine for solution. The remote server may be another Jinni engine or a server
based on the BinProlog engine. BinProlog is a native language, compiled engine, and thus offers
higher performance than the Java engine. Jinni is able to call Java methods from within a logic
program and the Jinni engine can be accessed from a Java program, facilitating the creation of
mixed Java/logic programs. The target applications for the Jinni system are mobile intelligent
agents and knowledge-based assistants for Java applications.

In contrast, our system focuses on a higher level coordination language for integrating
distributed knowledge and Internet resources. Our knowledge base servers always consist of
natively compiled associative engines, but we plan to add the ability to interoperate with other
types of servers as well. While Jinni uses a blackboard architecture for interprocess
communication, our system is based on a message passing protocol for scalability and efficient
client-server communication.

There have been several efforts to integrate the World Wide Web with the logic programming
paradigm. Examples of these are the PiLLoW library [6] and the HTTP library for the ECLiPSe
constraint logic programming system [12]. These libraries provide mechanisms for fetching data,
including logic programs, from web sites. In LogicWeb [8], web pages are parsed and the
structure of the page, as well as any embedded logic programs, are compiled into the knowledge
base.

 201

Our system accesses the resources of the World Wide Web via URLs, but does not make use
of, or attempt to reason about, the HTTP protocol as these systems do. The knowledge that is in a
distributed knowledge base may be stored or presented in an HTML format, but the display of
that data would be delegated to an specialized browser engine.

6. CONCLUSIONS

The Java programming language was an appropriate tool for the development of this front end
for a number of reasons:

1. It is an object-oriented language. This enables a straightforward representation of the logic
program abstractions and the parsing process,

2. It offers a standard portable GUI toolkit. The Java Abstract Window Toolkit (AWT)
provides standard visual components, including windows, buttons and menus, on all
supported platforms. It is therefore not necessary to create a port, or even re-compile, the
user interface for different target systems,

3. It provides mechanisms for easily accessing Internet content via URLs,
4. It is able to display multimedia content such as images and sound.

 We believe that implementing the front end of the Distributed Associative Logic Programming
System in Java while retaining the C++ implementation for the knowledge base engine is a good
pairing of technologies. The strengths of the Java language in portability, network programming,
and user interface construction were well suited to the user interface side of this application. On
the other hand, for the knowledge base engine, where performance is paramount, there is no
substitute for the native C++ implementation. Using PVM and C++ for the back end allows us to
take advantage of the low latency and high performance of the local network.
 A limitation in the described configuration is the need to transfer remote knowledge bases to
the local network for processing. Especially in the case of large knowledge bases, this transfer
time could be significant. It would be preferable to execute the query at the remote site where the
knowledge is located and communicate only the results of the query. This can be accomplished
by accessing the ALPServer via a Common Gateway Interface (CGI) application or Java servlet
on the web site host.

Acknowledgments

This research is supported by a Graduate Student Research Program (GSRP) grant from the
NASA Lewis Research Center in Cleveland, Ohio. We thank Greg Follen, other researchers, and
the administration at NASA Lewis for their continued support.

References

[1] Arnold, K., and J. Gosling, The Java Programming Language, Addison-Wesley, Reading,

Massachusetts, (1996).
[2] Bansal, A. K., and J. L. Potter, A n Associative Model to Minimize Matching and

Backtracking Overhead in Logic Programs with Large Knowledge Bases, The International
Journal of Engineering Applications of Artificial Intelligence, Volume 5, Number 3, (1992)
pp. 247-262

 202

[3] Bansal, A. K., An Associative Model to Integrate Knowledge Retrieval and Data-parallel
Computation, International Journal on Artificial Intelligence Tools, Volume 3, Number 1,
(1994), pp. 97 - 125.

[4] Bansal, A. K., A Framework of Heterogeneous Associative Logic Programming,
International Journal of Artificial Intelligence Tools, Vol. 4, Nos. 1 & 2 , (1995), pp. 33 - 53.

[5] Bonnet Ph., S. Bressan, L. Leth, and B. Thomsen. Towards ECLiPSe Agents on the
INTERNET, Proceedings of the 1st Workshop on Logic Programming Tools for INTERNET
Applications, JICSLP'96, Bonn, (1996).

[6] Cabeza, D., M. Hermenegildo, and S. Varma. The PiLLoW/CIAO Library for
INTERNET/WWW Programming, Proceedings of the 1st Workshop on Logic Programming
Tools for INTERNET Applications, JICSLP'96, Bonn, (1996).

[7] Gropp, W., E. W. Lusk, and A. Skjellum, “Using MPI: Portable Parallel Programming with
Message Passing Interface,” MIT Press , 1994, also see The Message Passing Interface (MPI)
Standard , http://www.mcs.anl.gov/mpi/index.html

[8] Loke, S.W., and A. Davison, Logic Programming with the World-Wide Web. Proceedings
of the 7th ACM Conference on Hypertext, pages 235 - 245. ACM Press, (1996).

[9] Pontelli, E., and G. Gupta, “W-ACE: A Logic Language for Intelligent Internet
Programming,” Proceedings of the Ninth International Conference on Tools with Artificial
Intelligence, Newport Beach, (1997)

[10] Potter, J. L., Associative Computing, Plenum Publishers, New York, (1992).
[11] Ryan, S. W., and A.K. Bansal, A Distributed Logic Program Solver, Proceedings of the

Ninth International Conference on Tools with Artificial Intelligence, Newport Beach, (1997),
pp. 37-44

[12] Sterling, L.S., and E. Y. Shapiro, The Art of Prolog, MIT Press, (1994).
[13] Sunderam, V. S., et. al., PVM: A Framework for Parallel Distributed Computing,

Concurrency: Practice and Experience, No. 2, (1990), pp. 315 - 339.
[14] Tarau, P., Jinni: a Lightweight Java-based Logic Engine for Internet Programming,

Proceedings of JICSLP'98 Implementation of LP languages Workshop, (1998)
[15] Thurman, D., jPVM: A native methods interface to PVM for the Java platform,

http://www.isye.gatech.edu/chmsr/jPVM

