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Abstract

Hyperbolicity is a global property of graphs that measures how close their structures are to trees in terms of their
distances. It embeds multiple properties that facilitate solving several problems that found to be hard in the general
graph form. In this paper, we investigate the hyperbolicity of graphs not only by considering Gromov’s notion of
8-hyperbolicity but also by analyzing its relationship to other graph’s parameters. This new perspective allows us to classify
graphs with respect to their hyperbolicity and to show that many biological networks are hyperbolic. Then we introduce
the eccentricity-based bending property which we exploit to identify the core vertices of a graph by proposing two models:
the maximum-peak model and the minimum cover set model. In this extended version of the paper, we include some new
theorems, as well as proofs of the theorems proposed in the conference paper. Also, we present the algorithms we used

for each of the proposed core identification models, and we provide more analysis, explanations, and examples.
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Introduction

Using graph-theoretical tools for analyzing complex
networks to characterize their structures has been the
subject of much research. It aids identifying multiple
key properties as well as explaining essential behaviors
of those systems. A common structure that has been
widely recognized in social networks as well as other
network disciplines is the core—periphery structure.
Multiple coefficients have been proposed to examine
the existence of the core—periphery organization in a
graph'?; also, various methods have been introduced
to identify the core of a graph.®

The core—periphery structure suggests partitioning
the graph into two parts: the core which is dense and
cohesive and the periphery which is sparse and discon-
nected. Vertices in the periphery part interact through a
series of intermediate core vertices. This pattern of
communication (where traffic tends to concentrate on
a specific subset of the vertices) has been observed in
trees where distant nodes communicate via the central
node (or nodes) in the tree. §-Hyperbolicity, which is a
measure that shows how close a graph is to a tree, sug-
gests that any shortest path (geodesic) between any pair

of vertices bends (to some extent) toward the core of the
graph. This phenomenon has been justified by the
global curvature of the network which (in case of
graphs) can be measured using hyperbolicity (some-
times called also the negative curvature).

There are multiple equivalent definitions for
Gromov’s hyperbolicity. Let G=(V,E) be a graph
with a distance metric d on V such that the distance
between two vertices x and y is the length of a shortest
path between x and y. A geodesic triangle A(x, y, z) for
three arbitrary vertices x, y, z € V' is the union of three
shortest paths (geodesic segments) connecting x, y,
and z. In hyperbolic spaces, any vertex in any side of
a geodesic triangle is contained in the d-neighborhood
of the union of the two other sides. This forces the sides
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of the triangle to be curved toward its center as its size
increases.’

Multiple complex networks such as the Internet,*’
data networks at the IP layer,® and social and biological
networks'®!! show low 8-hyperbolicity (low hyperboli-
city suggests a structure that is close to a tree struc-
ture'?). Also, it has been observed that networks with
this property have highly connected cores.® Generally,
the core of a graph is specified according to one or more
centrality measures. For example, the degree centrality
where the core of the graph is the set of vertices that
have the highest number of connections, the between-
ness centrality which considers the vertices that have
the highest number of shortest paths passing through
them as the core, and the eccentricity centrality in
which the core has the subset of vertices that have the
shortest distance to every other vertex.

The §-hyperbolicity of graphs embeds multiple prop-
erties that facilitate solving several problems that found
to be difficult in the general graph form. For example,
diameter estimation,'? distance and routing labeling,'*
and several routing problems.'>'® In this paper, we
investigate implications of the §-hyperbolicity of a net-
work and exploit them for the purpose of partitioning
the graph into core and periphery parts.

Our main contributions can be summarized as follows:

1. We study the hyperbolicity of several real-world bio-
logical networks and show that the hyperbolicity of
almost all the networks in our datasets is small. This
confirms the results in Albert et al.'' However,
unlike previous efforts, we analyze the relationship
between the hyperbolicity and other global param-
eters of the graph. We find in most of our networks
that the hyperbolicity is bounded by the logarithm of
the diameter (8(G) < log,(diam(G))) and the loga-
rithm of the size of the graph in terms of the
number of vertices and the number of edges
(8(G) < logy(size(G))). Based on this analysis we clas-
sify graphs with respect to their hyperbolicity into
three categories: strongly-hyperbolic networks, hyper-
bolic networks, and nonhyperbolic networks.

2. We formalize the notion of the eccentricity layering
of a graph and employ it to introduce a new property
that we find to be intrinsic to hyperbolic graphs: the
eccentricity-based bending property. Unlike previous
work, we investigate the essence of this bending in
shortest paths by studying its relationship to the dis-
tance between vertex pairs.

3. We exploit the eccentricity-based bending property,
and based on it, propose two core—periphery separ-
ation models: the maximum-peak model and the min-
imum cover set model.

4. We apply both models to our biological graph data-
sets. In contrast to what have been observed in

Holme,?> we find that biological networks exhibit a
clear-cut core—periphery structure. Then we investi-
gate the relationship between the hyperbolicity of a
graph and the conciseness of its core.

This paper is organized as follows. The next section
discusses some theoretical background on graph theory
and presents the definition of §8-hyperbolic graphs.
Related work on the core—periphery structure and
graph centrality measures in networks in general and
in biological networks in particular are also discussed.
“Datasets” section describes the kinds of biological net-
works used in this paper and presents a summary
of their parameters. In “§-Hyperbolicity of networks”
section, we measure, analyze, and classify the
S-hyperbolicity of the networks in our datasets. Our
classification is based on how the hyperbolicity is evi-
dent in those graphs. We also discuss how other graph
parameters factor in to this classification. Finally in
“Core—periphery models based on §-hyperbolicity” sec-
tion, we propose our eccentricity-based bending prop-
erty followed by two core—periphery separation models
as one of this property’s implications.

Theoretical background and related work
Preliminaries on graph theory

A simple undirected graph G = (V, E) naturally defines
a metric space (V, d) on its vertex set V. The distance
d(u,v) 1s defined as the number of edges in a shortest
path p(u, v) that connects two vertices u and v.

We define the size of the graph denoted as size(G) as
the sum of the number of vertices and the number of
edges in G, i.e. size(G) = | V| + |E|.

The diameter of the graph diam(G) is the length of
the longest shortest path between any two vertices u
and v in the graph, ie. diam(G) = max, ep{d(u,v)}.
Obviously, when the graph is disconnected, the value
of the diameter is undefined.

According to the distances between vertices in the
graph, the center can be defined using the vertex eccen-
tricities. The eccentricity of a vertex u is ecc(u) =
max,cp{d(u,v)}, i.e. the distance between u and any of
its farthest neighbors v. The minimum value of the
eccentricity represents the graph’s radius: rad(G) =
min,ep{ecc(u)}. The set of vertices with minimum eccen-
tricity are considered the center of the graph C(G). In
other words, C(G) = {u € V : ecc(u) = rad (G)}.

8-Hyperbolicity

In smooth geometry, hyperbolicity captures the notion
of negative curvature which can be generalized as
d-hyperbolicity in more abstract concept of metric
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spaces including graphs.'” The presence of hyperbolic
networks in a big variety of applications attracted many
researchers to investigate the negative curvature of
different types of graphs. It turns out that many
real-world networks are hyperbolic.>*%!" Moreover,
multiple applications of the hyperbolicity have been
examined such as diameter estimation,'® compact dis-
tance and routing labeling schemes and spanners,'*!%!®
and several routing and traffic flow problems.®!>!1

The §-hyperbolicity measure of a metric space was
proposed by Gromov in 1987.?° It measures how close
the metric structure is to a tree structure. A connected
graph G can be viewed as a metric space with the graph
distance metric d. There are multiple equivalent defin-
itions (up to constant factors'®) for Gromov’s hyperbo-
licity. In this paper, we use the following four-point
condition definition.

Given a graph G=(V, E), x, y, u, and v € V are four
distinct vertices, and the three sums: d(x,y)+ d(u,v),
d(x,u)+d(y,v), and d(x,v)+ d(y,u) sorted in a non-
increasing order, the hyperbolicity of the quadruple x, y,
u, v denoted as 8(x, y,u,v) equals half the difference
between the two larger sums. It is defined as:
8(x, y,u,v) = ((d(x, )+ d(u,v)) — (d(x,u)+ d(y,v)))/2.
The §-hyperbolicity of the graph G denoted as §(G) (or
simply ) is 8(G) = maxXy ., veq 8(X, y, U, v).

A graph G=(V,E) is considered 8-hyperbolic for
some nonnegative real number § if for every set of
four points x, y, u, and v, the larger two of the three
sums d(x,y)+d(u,v),d(x,u)+d(y,v), and d(x,v)+
d(y,u) differ by at most 28. The §-hyperbolicity of
a graph is the smallest § for which the graph G is
8-hyperbolic. For finite graphs §-hyperbolicity or
simply 8(G) is finite. Consequently, one can think of
all finite graphs as hyperbolic except that the value
of § decides how hyperbolic the graph is. On the other
hand, as mentioned in Adcock et al.,” when no finite 8
exists (which may be the case for infinite graphs), the
graph is considered nonhyperbolic.

Trees are O-hyperbolic (§(G)=0), cliques are
also 0-hyperbolic, and chordal graphs are at most
1-hyperbolic.>! On the other hand, a cycle with n ver-
tices is approximately n/4-hyperbolic and an n x n grid
is (n — 1)-hyperbolic. Generally, the smaller the value of
8 the closer the graph is to a tree (metrically); this
implies strong hyperbolicity. See Wu and Zhang®* for
a detailed discussion on tree-likeness and hyperbolicity.

Core—periphery and network centrality
in complex networks

The notion of the core—periphery structure has a long
history in social network analysis. It deals with iden-
tifying the part (or parts) of the network that represents
the central part in terms of the network distance, the

most congested part in terms of the network traffic, the
highly connected part in terms of the vertices’ degrees,
or any combination of the three. Borgatti and Everett’
formalize the core—periphery structure by developing
two families of core—periphery models: the discrete
model where vertices belong to one of two classes
(core and periphery) and the continuous model which
includes three classes (or more) of vertices (core, semi-
periphery, and periphery). Then they propose algo-
rithms for detecting each model by finding the
partition which maximizes the correlation between the
data matrix and the pattern matrix.

Seidman®* proposes the k-core decomposition as a
tool to study the structural properties of large networks
focusing on subsets of increasing degree centrality. It
partitions the graph into subsets each of which is iden-
tified by removing vertices of degree smaller than k.

Holme? introduces a coefficient that measures if a
network has a clear core—periphery structure based on
the closeness centrality (defined below) and the basic
definition of clusters. He also shows that the core’s
neighborhood (for increasing radius) is highly dense
(with respect to the number of edges). Unlike our
result, he concludes that biological networks do not
have a strong core—periphery organization. In Chung
and Lu,”® the authors show that for some families of
random graphs with expected degrees there is a core to
which almost all vertices are at distance less than or
equal to O(loglogn). Leskovec et al.** study commu-
nity structures in large networks by analyzing a big
range of different real-world networks. They identify
the existence of multiple (smaller) communities that
are attached to the core of the network with very few
connections (whiskers). They also observe that some
graphs have cores with a nested core—periphery
structure.

In the study of communication networks, the core is
usually identified by the small dense part of the network
that carries out most of the traffic under shortest-path
routing.®*>° Narayan and Saniee® show that the load
scales as O(n?) with the number of vertices n at the core
of the network. The asymptotic traffic flow in hyper-
bolic graphs has been studied in Baryshnikov and
Tucci.?® It shows that a vertex v belongs to the core if
there exists a finite radius r such that the amount of the
traffic that passes through the ball centered at v and
with radius r behaves asymptotically as 6(n”) as the
number of vertices n grows to infinity. The existence
of the core in large networks such as the Internet motiv-
ates researchers to embed the Internet distance metric
in a hyperbolic space for distance estimation.”’

The notion behind centrality is identifying key ver-
tices in a graph that are considered high contributors.
There are multiple centrality measures in the literature;
some of which are: the betweenness centrality (similar to
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Newman,?® we will call it the shortest-path betweenness
centrality) and the eccentricity centrality. !

The shortest-path betweenness measure is a widely used
concept in social networks. It expresses how much effect
each vertex (or actor) has in the communication of the
network assuming that all traffic follows shortest paths
between every two vertices (taking into account that one
or more shortest paths may exist between any given pair).

Given a connected finite graph G=(V,E), the
shortest-path betweenness of a vertex u € V' measures
the total number of shortest paths between every pair of
vertices x and y that pass through u such that u# x and
u#y to exclude the cases when u is the source or the
destination vertex. Let () be the fraction of shortest
paths between x and yp that pass through u, i.e.
oy (u) = oy (u)/oy,, Where oy, (1) is the number of all
shortest paths between x and y that pass through « and
oy, is the number of all shortest paths between x and y.
The shortest-path betweenness centrality cz(u) of a
vertex u can be calculated as the following®: c¢p(u) =
> vev 2_yer %xp(u). The higher value of this index indi-
cates the higher importance of the role that the vertex
plays in the data exchange process among distant
vertices.

The eccentricity centrality suggests that the center of
the graph includes the vertex (or vertices) that has the
shortest distance to all other vertices (minimum eccen-
tricity). For a given vertex u, the eccentricity centrality
of uis cp(u) = 1/ max{d(u,v) : v € V}.>* As discussed in
“Preliminaries on graph theory” section, a vertex u is a
central vertex if ecc(u) = rad(G).

The eccentricity centrality is sometimes referred to in
literature as the closeness centrality. To avoid any
ambiguity, we point out that the closeness centrality
considers the center as the subset of vertices with the
minimum total distance to all other vertices. In other
words, the closeness centrality cc(u) of a vertex u is

ccw)y=1/>" . d(u, v).29

Biological networks and the core—periphery structure

It has been found in several fields that looking at the
overall system reveals more about the functionality of
its components as opposed to inspecting its individual
elements. Therefore, various types of large-scale bio-
logical networks have been constructed to capture the
different kinds of interactions between their compo-
nents. For instance, protein—protein interaction (PPI)
networks have been used to identify the function of
individual proteins as well as the purpose behind
some unknown interactions.* A lot of research efforts
were directed to discover some topological properties of
the biological networks. It has been shown that some
protein structures and PPI networks®**® and a number
of metabolic networks®®® exhibit the small-world

property (a graph is small world when its diameter is
bounded by the logarithm of its size (diam(G) <
log,(size(G))). A lot of work has focused on analyzing
the degree distribution of different biological networks.
Power-law degree distribution was caught in protein
structure networks,>* PPI networks,*>3” and metabolic
networks.*’

Structure analyses of some biological networks have
detected the presence of hierarchal, modular, and core—
periphery organization structures. The core—periphery
model of several types of biological networks has been
studied thoroughly in the literature. Da et al.! propose
a parameter that detects the existence of a core—
periphery structure in a metabolic network based on
the closeness centrality of metabolites and the network
connectivity. In Junker and Schreiber,*” the yeast pro-
tein interaction network was analyzed based on the
betweenness centrality. They conclude that the high
betweenness low connectivity proteins may be working
as connectors between separate modules. Using math-
ematical tools that have been used to analyze sociolo-
gical networks, the authors in 36 study recognizing the
central metabolites in a metabolic pathway network. In
Luo et al,*' the authors demonstrate a systematic
exploration of the core—periphery model in protein
interaction networks that depends on the connectivity
of the vertices. They also classify the peripheral vertices
based on their structural relationship with the core. In
Ma and Zeng,** the authors identify the central metab-
olites using degree centrality and closeness centrality.
They also show the relationship between the average
path length and the closeness centralization index of
metabolic network.

Datasets

There are various forms of biological networks that
have different characteristics according to their origins
and to their construction methodologies. Generally, the
vertices in a biological network represent biomolecules
such as proteins, genes, or metabolites, and the edges
represent a chemical, physical, or functional interaction
between the connected vertices. Each of the networks
used in this work belongs to one of the following types:

1. Protein interaction (PI) networks: Generally, in a PI
network, the vertices represent different proteins and
the edges represent the connections between the
interacting proteins. PI networks have been
described as small-world and scale-free networks.*’

2. Neural networks: They contain neurons (vertices)
which are connected together through synapsis
(edges). Neurons have a high tendency to form clus-
ters based on their spatial location. Neural networks
are small-world networks.*’
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3. Metabolic networks: Metabolic networks are repre-
sented by metabolites (vertices) and biochemical
reactions (directed edges). Usually, metabolites are
small molecules (for example amino acids); however,
they also can be macromolecules. Metabolic net-
works show the small-world property and they
have a high clustering coefficient. Also, they follow
the power-law degree distribution.*’

4. Transcription networks: Networks in which vertices
are genes and edges represent different interactions
(interrelationships) between genes. A transcription net-
work is one type of the gene regulatory networks.*

We analyze the PI networks of budding yeast,*
Escherichia coli,45 yeast,46 Saccharomyces cerevisiae,47
and Helicobacter pylori*® Also, we analyze two differ-
ent brain area networks of the Macaque monkey*”*°
and the metabolic networks of the Escherichia coli®'
and the Caenorhabditis elegans.>® Finally, we analyze
the yeast transcription network.*

In this work, we consider unweighted graphs, and we
only consider the largest connected component of each
network. The size of this component for each network
is presented in Table 1. We also ignore the directions of
the edges.

o-Hyperbolicity of networks

For the purpose of investigating the hyperbolicity of
networks, it seems natural to analyze and classify the
graphs based on their hyperbolicity. The classification
should reflect how strong (evident) the tree-likeness is in
the graph’s structure.

In the following subsections not only we measure the
hyperbolicity of each of the networks in our graph
datasets, but also we relate this value to other graph’s
parameters. Upon this analysis, we provide our hyper-
bolicity-based classification of the graphs.

Hyperbolicity of biological networks

We measure §-hyperbolicity on each bi-connected com-
ponent of each network in the datasets presented in
“Datasets” section using Gromov’s four-point condi-
tion. For each network, we identify a bi-connected
component with the maximum value of § since the
hyperbolicity of a graph equals the maximum hyperbo-
licity of its bi-connected components. %3

Table 2 shows that almost all networks in our data-
sets have small hyperbolicity. Even though the defin-
ition of §-hyperbolicity considers the difference between
the largest two distance sums among any quadruples
and takes into account only the maximum one, this
absolute analysis is deficient. Similar to Adcock et al.”
and Montgolfier et al.,® closer analysis to the distribu-
tion of the value of § (see Figure 1) shows that only a
very small percent of the quadruples (less than 1%)
have the maximum value of § while most quadruples
have § =0 (about 40-70%). Figure 2(a) to (c) presents
samples of the distribution of the quadruples over the
different values of 8.

This observation makes it equally important to cal-
culate the value of the average delta §'(G) (see Table 2).
This suggests that the maximum value of § was not
expressive for the graph but was affected by some out-
liers. The average hyperbolicity is defined as: §'(G) =

V
Zx,y,u,veV(S(x’ y. U, V)/< | 4 | >

Analysis and discussion

Our goal is to categorize graphs with respect to their
hyperbolicity into three classes: strongly-hyperbolic
graphs, hyperbolic graphs, and nonhyperbolic graphs.
Taking into account that trees are 0-hyperbolic, gener-
ally, the smaller the value of 8(G), the closer the graph’s
structure to a tree. However, studying the tree-like

Table I. Graph datasets and their parameters: number of vertices |V |; number of edges |E|; graph’s size size(G) = |V| + |E|; average

degree d; diameter diam(G); radius rad(G).

Network category Network [V | |E]| log, (size(G)) d diam(G) rad(G)
Pl networks B-YEAST-PI 1465 5839 12.8 7.97 8 5
E-COLI-PI 126 581 9.5 9.2 5 3
YEAST-PI 1728 11003 13.6 12.7 12 7
S-CEREVISIAE-PI 537 1002 10.5 3.7 Il 7
H-PYLORI-PI 72 112 7.5 3.1 7 5
Neural networks MACAQUE-BRAIN-| 45 463 9 11.3 4 2
MACAQUE-BRAIN-2 350 5198 12.4 29.7 4 3
Metabolic networks E-COLI-METABOLIC 242 376 9.3 3.1 16 9
C-ELEGANS-METABOLIC 453 4596 12.3 8.9 7 4
Transcription networks YEAST-TRANSCRIPTION 321 711 10 4.4 9 5
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Table 2. Graph datasets and their parameters: number of vertices |V |; number of edges |E|; diameter diam(G); radius
rad(G); hyperbolicity §(G); and the average hyperbolicity §'(G).

Network |V | |E| diam(G) rad(G) 3(G) §'(G)
B-YEAST-PI 1465 5839 8 5 2.5 0.299
E-COLI-PI 126 581 5 3 2 0.251
YEAST-PI 1728 11003 12 7 35 0.322
S-CEREVISIAE-PI 537 1002 | 7 4 0419
H-PYLORI-PI 72 112 7 5 3 0.368
MACAQUE-BRAIN- | 45 463 4 2 1.5 0.231
MACAQUE-BRAIN-2 350 5198 4 3 1.5 0.203
E-COLI-METABOLIC 242 376 16 9 4 0.483
C-ELEGANS-METABOLIC 453 4596 7 4 1.5 0.133
YEAST-TRANSCRIPTION 321 711 9 5 3 0.365
40 B-YEASTH
E-COLI-PI
——— YEAST-H
| ~— SCEREVISIAE-PI
30 —_— = H-PYLORI-FI

log(no. of quadruples)
8

(=3
(=]

~—MACAQUE-BRAIN-1

— MACAQUE-BRAIN-2
E-COLI-METABOLIC
C-ELEGANSMETABOLIC

—— YEAST-TRANSCRIPTION

Figure 1. Distribution of quadruples over different values of §.

(@) (b)

26 Quadruples %

26 Quadruples %

0 1276345762 73% (1] 22@28:{’3
1 448324099  26% 2 540463
2 6795007 1% 3 4658
3 3057 0.002% 48

(c)
26 Quadruples %
0 529467 52%
55% 1 273481 27%
39% 2 199186 19%
5% 3 21971 2%
0.04% 4 4651 1%
0.0005% 5 32 0.003%
6 2 0.0002%

Figure 2. Distribution of quadruples over different values of § (three datasets): (a) C-ELEGANS-METABOLIC, (b) E-COLI-PI, and

(¢) H-PYLORI-PI.

structure of graphs based solely on the value of the hyper-
bolicity may not be sufficient to characterize their close-
ness to a tree topology for two reasons. First, the
hyperbolicity is a relative measure. For example, for a
given graph G=(V, E), a value of §(G) =10 can be seen

as too large when size(G) ~ 10?; the structure of G can be
fairly described as being far from a tree. However, when
size(G) ~ 107, the hyperbolicity 8§(G)=10 looks much
smaller and indicates a tree-like structure. Second, small
graph size and (or) small diameter directly yield low
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hyperbolicity; our classification should be sensitive to
such cases. In other words, small §(G) does not always
suggest a graph with a tree-like structure; other graph
attributes that might impact the hyperbolicity must be
investigated. We find that the graph’s size size(G) and
the graph’s diameter diam(G) play an important role in
deciding how hyperbolic a given graph is.

Since finite graphs will always have a finite value for
3 such that the four-point condition is true, it is natural
to think that the nonhyperbolic class includes only
infinite graphs. However, in this study, we only con-
sider finite graphs; accordingly, a mnonhyperbolic
graph in our sense is a graph with too large § with
respect to the logarithm of the graph’s size, i.e. when
it violates the following condition: §(G) < log,(size(G)).

Recall that size(G) = |V|+ |E]. In cases where
3(G) < log,(size(G)), we move on and compare § with
the diameter of the graph. To guarantee that the value
of the diameter is not directly impacted by the size of the
graph, first we require the diameter to be within the fol-
lowing bound: diam(G) < log,(size(G)). This is especially
important for excluding the uninteresting cases where
the small diameter is a result of the graph’s small size.

Multiple previous works have analyzed the relation-
ship between the hyperbolicity and the diameter. In fact,
the graph’s diameter represents an upper bound for §.

Lemma 1.°%% For any graph G with diameter diam(G)
and hyperbolicity 8(G), §(G) < diam(G)/2.

Moreover, the authors in Kennedy et al.'” (using the
slim triangles condition for hyperbolicity) and in
Jonckheere et al.>® (using the four-point condition)
argue that the hyperbolicity of the graph is “‘actually”
present when the value of § is much smaller than the

graph’s diameter. They specify that for a graph to be
hyperbolic the value of §/diam(G) must asymptotically
scale to zero. In this work, our goal is to ensure that the
low value for the hyperbolicity is not a consequence of
the graph’s small diameter.

Interestingly, for most of the networks in our graph
datasets, we find that §(G) < log,(diam(G)). Therefore,
we say that a graph is

o Strongly-hyperbolic if it exhibits (1) diam(G) <
log,(size(G)) and (2) §(G) < log,(diam(G)). Note
that a graph that satisfies (2) is in fact a small-world
graph;

e Hyperbolic when it violates either (1) or (2);

e Nonhyperbolic in all other cases.

Note that in the case when § is small but greater than
log,(size(G)), 8 is an insufficient indication for hyperbo-
licity. We are not saying that the graph is far from the
tree structure; still we point out that hyperbolicity is not
very expressive in this case and other tree-likeness
measurements may be used.

As Table 1 shows, all networks in the datasets, with
the exception of networks S-CEREVISIAE-PI and E-COLI-
METABOLIC, exhibit the small-world property. Also,
Table 2 shows that 8(G) < log,(diam(G)) in all graphs
except for the S-CEREVISIAE-PI and the H-PYLORI-PI net-
works. As a result, those three graphs have been clas-
sified as hyperbolic graphs, and their hyperbolicity
values are on the larger side (6(G) for S-CEREVISIAE-PI
is 4, 8(G) for H-PYLORI-PI is 3, and §(G) for E-COLI-
METABOLIC is 4). Also, the values of the average 8(G)
(8'(G)) from Table 2 are high compared to other net-
works (0.419, 0.368, and 0.483, respectively). In
Figure 3, we show this classification. Note that none

Hyperbolic networks

L]
Yeast-Pl

[ ] L]
E-COLI-METABOLIC H.pYLORI-PI

L ]
ACAQUE-BRAIN-2
L
B-YEAST-PI

L]
MACAQUE-BRAIN-1

C-ELEGANS-METABOLIC

YEAST-TRANSCRIPTION

Strongly-hperbolic
networks

Figure 3. Classification of the graph datasets based on their hyperbolicity.
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of the networks in our graph datasets is nonhyperbolic
(it is always the case that 8(G) < log,(size(G))).

Quantifying “small” and “large” for § is not
straightforward simply because it is relative.
Therefore, we judge according to the difference between
8 and log,(log,(size(G))). The more substantial this dif-
ference is the closer the graph’s structure to a tree struc-
ture. For example in Table 3, networks C-ELEGANS-
METABOLIC and MACAQUE-BRAIN-2 are metrically
closer to trees than networks YEAST-TRANSCRIPTION
and YEAST-PI.

We also compared the value of § to log,(size(G)) and
to log,(diam(G)), and their average for the networks in
the two classes: strongly-hyperbolic and hyperbolic.
The values are listed in Table 3. Note that the three
last columns of Table 3 show higher values for the
hyperbolic graphs.

Core-periphery models based
on J-hyperbolicity

It was suggested by Baryshnikov and Tucci®® and
Narayan and Saniee® that the highly congested cores
in many communication networks can be due to their
hyperbolicity or negative curvature. Those cores are
represented by vertices that belong to most shortest
paths (shortest-path betweenness centrality) and (or)
have minimum distances to all other vertices (eccentri-
city centrality). It was also observed that the negative
curvature causes most of the shortest paths to bend
making the peak of the arc formed by a shortest path
to pass through a vertex in the core. In this section, we
formalize this notion of bending in shortest paths by
introducing an important property that is intrinsic to
8-hyperbolic graphs (the eccentricity-based bending

property). Then we use the implication of this property
to aid the partitioning of a graph into core and periph-
ery parts by proposing two models: the maximum-peak
model and the minimum cover set model. we further
apply our models to the biological networks in our
datasets. In contrast to what have been observed in
Holme,? we show that biological networks do exhibit
a core—periphery structure.

Eccentricity layering of a graph

The eccentricity layering of a graph G = (V, E) denoted
as £L£(G) partitions its vertices into concentric circles or
layers ¢,(G), r=0,1,.... Each layer r is defined as
£.(G) ={u € V:ecc(u) — rad(G) = r}. Here r represents
the index of the layer. The innermost layer (layer 0)
encloses the graph’s center C(G), i.e. all vertices with
the minimum eccentricity or of eccentricity equal to
rad(G); this layer has index r=0. Then the first layer
includes all vertices who have their eccentricities equal
to rad(G) + 1, and so on. The vertices in the last layer
(outermost layer) will have eccentricities equal to the
diameter of the graph. Figure 4 demonstrates an illus-
tration for the layers.

Any vertex v € £,(G) has level (or layer) level(v)=r.
Figure 5 and Table 4 show the distribution of the ver-
tices over different layers of the eccentricity layering of
each graph in our datasets. Note that the vertices’
population is denser in middle layers in almost all our
networks.

In this work, we use layer 0 to indicate the central
layer, layer 1 to indicate the layer that directly succeeds
the central layer, etc. Therefore, when we say lower
layers, we mean layers toward the central layer and
the opposite for higher layers.

Table 3. The ratio of § to logarithm of the size of the graph log,(size(G)) and logarithm of the diameter log,(diam(G)) for each
network in our datasets. € is the difference § — log, (log,(size(G))). The average value presents the average Iogz(s?z @) T Toay( dimc))) /2.

Network log,(size(G))  diam(G) 8 € oat T o smcy  Average
Strongly-hyperbolic networks = C-ELEGANS-METABOLIC ~ 12.3 7 1.5 2.1 0.121 0.536 0.329
B-YEAST-PI 12.8 8 2.5 1.2 0.195 0.833 0514
MACAQUE-BRAIN-2 12.4 4 1.5 2.1 0.120 0.750 0.435
E-COLI-PI 9.5 5 2 12 0210 0.869 0.540
YEAST-TRANSCRIPTION 10 9 3 0.3 0.300 0.937 0.636
MACAQUE-BRAIN- | 9 4 1.5 1.5 0.166 0.750 0.458
YEAST-PI 13.6 12 35 03 0.275 0.972 0.626
Hyperbolic networks S-CEREVISIA-PI 10.5 Il 4 0.380 1.142 0.761
H-PYLORI-PI 75 7 3 0.400 1.071 0.736
E-COLI-METABOLIC 9.3 16 4 0.430 1.000 0.715
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Figure 4. Eccentricity layering of a graph. Darker vertices
belong to lower layers.

Eccentricity-based bending property
of 8-hyperbolic networks

Let G=(V,E) be a 8-hyperbolic graph, ££(G) be its
eccentricity layering, and C(G) be its center. In
Chepoi et al.,'* the following useful metric property
of 8-hyperbolic graphs was proven.

Lemma 2 [14]. Let G be a 5-hyperbolic graph and x, y, v, u
be its four arbitrary vertices. If d(v,u) > max{d(y,u),
d(x,u)}, then d(x,y) < max{d(v,x), d(v,y)} + 26.

We use this property to establish the following few
interesting statements.

Proposition 1. Let G be a 5-hyperbolic graph and x, y, s
be arbitrary vertices of G. If d(x,y)> 48+ 1, then

12

log(V)

E-YEASTH
E-COLI-PI
~——YEAST-H
= S-CEREVISIAE
~—H-PYLORI-B
—— MACAQUE-BRAIN-1
m— MACAQUE-BRAIN-2
E-COLI-METABOLIC
C-ELEGANS-METABOLIC
= YEAST-TRANSCRIPT GV

£,(G)

Figure 5. Distribution of vertices over different layers of the graph’s eccentricity layering.

Table 4. Distribution of vertices over different layers with respect to the graph’s eccentricity layering. rad(G) is the graph’s radius; |V |

is the number of vertices of each graph.

Layer
Network rad(G) V| 0 | 2 3 4 5 6 7
B-YEAST-PI 5 1465 90 902 456 17
E-COLI-PI 3 126 6 87 33
YEAST-PI 7 1728 53 419 805 393 55 3
S-CEREVISIAE-PI 7 537 26 198 219 79 15
H-PYLORI-PI 5 72 14 4] 17
MACAQUE-BRAIN- | 2 45 | 30 14
MACAQUE-BRAIN-2 3 350 194 156
E-COLI-METABOLIC 9 242 5 43 54 50 42 36 10 2
C-ELEGANS-METABOLIC 4 453 17 353 69 14
YEAST-TRANSCRIPTION 5 321 3 58 204 49 7
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d(w,s) < max{d(x,s),d(y,s)} for any middle vertex w
of any shortest (x, y)-path.

Proof. Let w be a middle vertex of a shortest (x, y)-path
and let d(x,w)=|d(x,y)/2|. Assume, by way of
contradiction, that  d(w,s) > max{d(x,s),d(y,s)}.
Then, by Lemma 2, d(x,y) < max{d(w, x),d(w,y)}+
28 =d(w,y)+24. Since d(x,y) =d(x,w)+d(w,y), we
obtain d(x,w) <26, giving d(x,y) <45+ 1. ]

Propeosition 2. Let G be a 8-hyperbolic graph and x, y be
arbitrary vertices of G. If d(x,y) > 48 + 1, then on any
shortest (x, y)-path there is a vertex w with ecc(w) <
max {ecc(x), ecc(y)}.

Proof. Let w be a middle vertex of a shortest (x, y)-path
given by Proposition 1 and s be a vertex such that d(w, s)
=ecc(w). Then, by Proposition 1, ecc(w)=d(w,s)
< max{d(x,s),d(y,s)} < max{ecc(x), ecc(y)}. ]

Denote by D(y,r):={ve V:d(v,y) <r} the closed
disk of G of radius r and centered at vertex y.

Proposition 3. Let G be a §-hyperbolic graph and y be its
arbitrary vertex. Then, C(G) € D(y,45 + 1) or there is a
vertex v € D(y,28 + 1) such that ecc(v) < ecc(y).

Proof. Consider an arbitrary vertex x € C(G) and any
shortest (x, y)-path P. Assume that x¢ D(y,45 + 1), i.e.
P has length at least 4§ + 2. Consider the vertex v of
this path which is at distance 26 + 1 from y. We claim
that ecc(v) <ece(y). Let s be a vertex such that
ecc(v) =d(v,s) and assume that ecc(v) > ecc(y), i.e.
d(v,s) > ecc(y) > d(y,s). We know also that d(v,s) >
ecc(y) > rad(G) = ecc(x) > d(x,s). Then, Lemma 2
applied to d(v,s) > max{d(y,s),d(x,s)} gives d(x,y)
<max{d(v,x),d(v,y)} +25 =d(v,x)+ 25. But, since
dx,v)+d(v,y)=d(x,y), we get 2§>d(x,y)—
d(x,v)=d(v,y) =25 + 1, which is impossible. ]

We define the bend in shortest paths between two
distinct vertices u and v with d(u,v) > 2, denoted by
bend(u, v), as follows:

Definition. V wu,v € V' bend(u,v) = min{level(z) :z € V
and d(u,z)+d(z,v) =d(u,v)}. Here level(z)=r iff
z € £,(G).

We say that shortest paths between u# and v bend if
and only if a vertex z with ecc(z) < max{ecc(u), ecc(v)}
exists in a shortest path between u and v. In this case we
say also that the pair of vertices u and v bends. The
parameter bend decides the extent (or the level) to
which shortest paths between vertices u and v curve
toward the center of the graph (since we are always
looking for a z that belongs to a smaller layer according
to the eccentricity layering). Note that in some cases
bend(u, v) will be assigned either ecc(u) or ecc(v),

whatever is smaller. For example, see the shortest
path o(u,v) in Figure 4.

Now we analyze how vertex pairs behave in terms of
their bending toward the center of the graph C(G).
Specifically, we investigate the effect of the distance
between a pair of vertices on the bend of the shortest
paths between them. Our findings in this context are
summarized in the following two statements.

A. Despite their distances, most vertex pairs bend.
Moreover, among those bending vertex pairs, the
majority is represented by those that are sufficiently
far from each other.

B. There is a direct relation between the distance
among vertex pairs and how close to the center a
shortest path between them bends.

Motivation and empirical evaluation of (A). In light of
Proposition 2, we investigate how vertex pairs of vari-
ous distances act with respect to the eccentricity-based
bending property. Given two vertices «# and v, we know
from Proposition 2 that when d(u,v) > 48§+ 1, then
p(u,v) bends. We now analyze this bending in p(u, v)
when d(u,v) <45+ 1. We are motivated by the fact
that the small-world property is observed in many bio-
logical networks® (also refer to “Biological networks
and the core—periphery structure” and “Datasets’ sec-
tions). Accordingly, shortest paths of lengths 48 + 1
may not even exist in those networks.

Interestingly, we noticed the bend in the majority of
shortest paths with lengths <48 + 1. A quick look at
Table 5 shows that a big percent of vertex pairs of dis-
tance at least two bend. For example, in graph
C-ELEGANS-METABOLIC, about 97% of the vertex
pairs with distances at least two bend. Furthermore,
even though it is not always true (see the example in

Table 5. The effect of the distance k between vertex pairs on
the bending property. Out of all vertex pairs with distance at
least k, we show the percentage of those that bend for three of
the networks in our graph datasets.

k  C-ELEGANS-METABOLIC  B-YEAST-PI YEAST-TRANSCRIPTION
(diam(G) =7) (diam(G)=8)  (diam(G) =9)

2 96.99% 93.10% 96.65%

3 99.89% 94.87% 97.77%

4 100% 98.43% 99.11%

5 100% 99.93% 99.88%

6 100% 100% 100%

7 100% 100% 100%

8 100% 100%

9 100%
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Figure 6), all graphs in our graph datasets have bends
for vertex pairs that are at distance equal to the graphs’
diameters.

To quantify the distances at which the bend in vertex
pairs happens in each of the networks in our datasets,
we define two parameters: the absolute curvity and the
effective curvity.

Let k be the distance between a pair of vertices
(2 < k < diam(G)). The absolute curvity k* is the min-
imum k such tha~t all pairs with distance > k bend. The
effective curvity k is the minimum k such that more than
90% of the pairs with distance > k bend. Take a look at
Table 6 for the results.

The sixth and the last columns in Table 6 present the
absolute curvity and the effective curvity of each graph
as a function of § so we can compare it with the upper
bound 46 + 1 from Proposition 2. It is clear that the

Figure 6. A case in which the shortest path between a dia-
metral pair x, y does not bend toward the graph’s center

C(G) = {w}. The number next to each vertex shows the eccen-
tricity of that vertex.

networks have their absolute curvity k* either equal
286+ 1 or 28, and § — 1.5 < k < 26. Also, all networks
(except for network MACAQUE-BRAIN-1) have their
effective curvity less than their absolute curvity which
means that the value of the absolute curvity may be
affected by a number of outlier vertex pairs.

Algorithm 1. Decide the lowest layer u, that all vertex
pairs with distance > k bend to. 2 < k < diam(G).

1. for k < 2 to diam(G) do
2. max <« -1

3. for every pair(x, y) do
4. if (d(x,y) > k) then
5. if (bend(x,y) > max) then
6. max <bend(x,y)
7. end if

8. end if

9. end for

10. px < max

11. print

12. end for

Motivation and empirical evaluation of (B). Here we examine
the impact of the distance on the level to which vertex
pairs bend. Let k£ be the distance between two vertices
such that 2 < k < diam(G). Consider u, as the lowest
layer that all vertex pairs of distance > k bend to. We
define it as: u; = max{bend(u,v):Vu,v eV with
d(u,v) > k}.

This allows us to look at how the bends of the vertex
pairs behave with respect to different distances. The
algorithm wused to find every pu, is shown in
Algorithm 1. A summary of the results is shown in
Figure 7.

Table 6. The absolute curvity k* and the effective curvity k for our graph datasets. The absolute curvity k* is the minimum k such
that all pairs with distance > k bend. The effective curvity k is the minimum k such that more than 90% of the pairs with distance > k

bend.

Network diam(G) 8 k* k* =as+b k k=as+b
B-YEAST-PI 8 2.5 6 6=25+1 2 2=46-0.5
E-COLI-PI 5 2 4 4=25+0 3 3=06+1
YEAST-PI 12 3.5 8 8=25+1 2 2=46—1.5
S-CEREVISIAE-PI Il 4 8 8=25+0 2 2=6-2
H-PYLORI-PI 7 3 6 6=25+0 2 2=6—1
MACAQUE-BRAIN-1 4 1.5 3 3=25+0 3 3=25+0
MACAQUE-BRAIN-2 4 1.5 4 4=25+1 3 3=2+0
E-COLI-METABOLIC 16 4 9 9=25+1 2 2=6-2
C-ELEGANS-METABOLIC 7 1.5 4 4=25+1 2 2=6§+05
YEAST-TRANSCRIPTION 9 3 6 6=25+0 2 2=6—1
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Figure 7. p, values for each network in the graph datasets.

As expected, we found a direct relation between the
distance of vertex pairs and their bend. For example,
Figure 7 shows that in network YEAST-PI, vertex pairs
with distances 3, 6, and 9 from one another bend to
layers 4, 3, and 2, respectively.

In fact, this observation is a direct implication of
Proposition 1 and Proposition 2. For every pair of ver-
tices u# and v that are sufficiently far from each other,
there is a vertex z in the middle of p(u, v) that has less
eccentricity (i.e. has a smaller level according to the
eccentricity layering) than u or v. Applying this argu-
ment recursively to the new vertex pairs (u, z) and (z, v),
if the distance between u and z is still sufficiently large,
then there is another vertex w in the middle of a shortest
path p(u, z) such that ecc(w) < max{ecc(u), ecc(z)}. The
same applies to the vertex pair (z, v).

Also, we know from (A) that the distance among
vertex pairs does not need to be very large for a
vertex pair to bend. For example, most vertex pairs
with distance as small as two from each other bend.

Core—periphery identification using the eccentricity-
based bending property

A well-defined center of a graph is a good starting point
for locating its core. According to the pattern of data
exchange discussed earlier (in which a shortest path
between distant vertices bends toward graph’s center),
we choose to identify the core of the graph using the
eccentricity centrality measure (see ““Core—periphery
and network centrality in complex networks” section).

Even though the center C(G) contains all vertices
that are closer to other vertices, this subset is not

sufficient to carry out the communication between
every pair of vertices (C(G) C core(G)). More vertices
should be added to the core according to their partici-
pation in routing the traffic among other vertices. We
decide the participation of each vertex v based on its
eccentricity and whether or not v lies on a shortest path
between a pair of vertices x and y (this notion combines
the classic concept of the shortest-path betweenness
centrality with the eccentricity centrality). We know
that a vertex z lies on a shortest path between a pair
of wvertices u and v if and only if d(u,v)=
d(u,z)+d(z,v).

Obviously, not all graphs exhibit a core—periphery
structure. Also, graphs follow this structure with differ-
ent extents with respect to the quality of their cores. We
identify a good graph’s core as the one that (1) includes
a small number of layers with respect to the eccentricity
layering; and (2) has size (with respect to the number of
vertices) that is small compared to the total number of
vertices in the graph. The core should also contain ver-
tices that participate in the majority of interactions
among other vertices.

In the following two subsections, we discuss two
models that exploit the eccentricity-based bending
property to partition the vertices in a graph G into
two sets: the core core(G) and the periphery.

Model I. The maximum-peak model. Given a §-hyperbolic
graph G=(V,E) along with its eccentricity layering
EL(G), the maximum-peak model identifies a separ-
ation layer index p > 0 and defines the core as the
subset of vertices formed by layers £y(G), ¢,(G),...,
£,(G).
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In light of the eccentricity-based bending property,
each bend(x, y) for a pair of vertices x and y represents
a peak for shortest paths connecting x and y. In this
model, we are locating the index of the lowest layer p
over all layers that vertex pairs bend to. Index p repre-
sents the separation point where the layers of the graph
can be partitioned to a core and a periphery. See
Figure 8 for an illustration.

After identifying all peaks, the core will include all
vertices starting at £o(G) (the center) until £,(G). Then
the periphery will include the vertices in the remaining
layers (£,41(G) to £,,(G) where m is the index of the last
layer in the eccentricity layering). The core core(G)
becomes: core(G) = | J_, €,(G).

Again, to avoid the impact that outlier vertices may
impose (as discussed in ‘““Eccentricity-based bending
property of 8-hyperbolic networks™ section), we define
two types of the separation index p: the absolute separ-
ation index p* and the effective separation index p. The
absolute separation index p* is the lowest layer that all

Figure 8. A simplified illustration of the eccentricity layering of
a graph (with four layers) and the maximum-peak model. ¢,(G)
represents each layer r, 0 < r < 3. The peaks of shortest paths
p(x.y) and p(u,v) are vertices w and z, respectively. The core
contains all vertices of the layers of the peaks, i.e.

core(G) = £o(G) U £,(G).

vertex pairs bend to; we call the core defined by this
index the absolute core set C% . The effective separ-
ation index p is the lowest layer where 90% of the
vertex pairs bend to, and the core defined by this
index is called the effective core set Ceyre.

The algorithm used to decide the effective separation
index p is presented in Algorithm 2. Table 7 shows the
cores for the networks in our graph datasets according
to the maximum-peak model.

Algorithm 2. Decide the effective separation index p to
partition the graph into a core and a periphery based
on the maximum-peak model. I" is the total number of
vertex pairs with distance > 2. m is the index of the last
layer

l.cnt < 0

2. for r=0to mdo

3. for every not counted pair (x,y) with d(x,y) >2
do

4. if (bend(x,y) <r) then

5. cnt 4+ 4 and mark pair(x,y) as counted
6. if (cnt > 90% of I") then

7. p <

8. break and return p

9. end if

10. end if

11. end for

12. end for

The results in Table 7 show (as expected) a big dif-
ference in the sizes (with respect to the number of ver-
tices) of the absolute core and the effective core in the
majority of the networks in the datasets. This implies
that the identification of the absolute separation index
was highly affected by a small percent of vertices.

Table 7. The cores of the graph datasets based on the maximum-peak model. |V | is the number of vertices; |Layers| is the number of

.k s
layers; C .-lyr and |C} .

of layers and number of vertices in the effective core set.

| are the number of layers and number of vertices in the absolute core set; Ceore-lyr and |Ceyre| are the number

Network vV |Layers| C:o-lyr ICE | IC: .l to [V Coore-lyr [Ceorel [Ceore] to |V |
B-YEAST-PI 1465 4 3 1448 ~ 99% 2 902 X 62%
E-COLI-PI 126 3 2 93 ~ 74% 2 93 ~ 74%
YEAST-PI 1728 6 5 1725 ~ 100% 2 472 ~ 27%
S-CEREVISIAE-PI 537 5 5 537 100% 2 223 ~ 42%
H-PYLORI-PI 72 3 2 56 ~ 78% 2 56 ~ 78%
MACAQUE-BRAIN- | 45 3 2 31 x 69% 2 31 ~ 69%
MACAQUE-BRAIN-2 350 2 2 350 100% 2 350 100%
E-COLI-METABOLIC 242 8 7 240 ~ 99% 3 102 ~ 492%
C-ELEGANS-METABOLIC 453 4 3 439 ~ 97% | 17 ~ 4%
YEAST-TRANSCRIPTION 321 5 4 314 ~ 98% 2 62 ~ 19%
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Closer analysis to the effective core set (:’C(,,g suggests
that deciding the core according to this notion gener-
ates good cores (number of layers in the core is small
and the number of vertices is about 25% of the total
number of vertices) for some networks such as the
YEAST-TRANSCRIPTION, C-ELEGANS-METABOLIC, and
YEAST-PI. Also, networks with core sizes between 25
and 50% can be considered good as well; such as the
cores of the S-CEREVISIAE-PI and E-COLI-METABOLIC.
On the other hand, networks like B-YEAST-PI, E-COLI-
P, MACAQUE-BRAIN-1, MACAQUE-BRAIN-2, and
H-PYLORI-PI have too large core sizes compared to the
overall graph size. This model is highly affected by the
distribution of vertices over the layers (see Figure 5).
For example, the core of graph B-YEAST-PI has two
layers (out of four). This can be considered as a
balanced core—periphery separation with respect to
the number of layers. However, considering the distri-
bution of the vertices in the four layers, which is 90,
902, 465, and 17, explains the increase in the size of
the core.

Recall that the core according to this model is
defined by the layers and not by the vertices which
may result in the addition of some vertices to the core
that do not have real contribution (they were added
only for their location in the graph’s eccentricity layer-
ing). This issue can be resolved by the identification of
the core according to the minimum cover set model
presented in the following subsection.

Model Il. The minimum cover set model. Consider a graph
G = (V, E) with the eccentricity layering ££(G) and with
the center C(G). The way this model works is to start the
core set core(G) as an empty set and expand it to include
vertices which have smaller eccentricity, are closer to the
center C(G), and participate in the traffic between other
vertices. This expansion should be orderly, first incor-
porating the vertices that are more eligible (or have
higher priority) to be a part of the core, and then
moving on to vertices who are less eligible. For each
vertex v € V, we define the following three parameters
according to which we prioritize the vertices in G.

1. The eccentricity ecc(v) (see “Eccentricity layering of
a graph” section). Vertices with smaller eccentricities
have higher priority to be in the graph’s core.

2. The distance-to-center for a vertex v, denoted as f(v),
which expresses the distance between v and its closest
vertex from the center C(G), i.e. f(v) = d(v, C(G)).
Note that f(v) > 0. Vertices with small f{v) are
closer to the center; therefore, they have higher pri-
ority of being in the core. For example, in Figure 8,
vertex y is closer to the center than vertex u.

3. The betweenness b(v). The definition of the between-
ness b(v) of v is close to the definition of the classic

shortest-path betweenness centrality. It measures
how many pairs of distant vertices x and y have v
in one of their shortest paths (versus counting all
shortest paths in the classic definition (see “Core—
periphery and network centrality in complex net-
works” section)). It quantifies the participation of
a vertex v in the traffic flow process, and we define
it as: b(v)= number of pairs x,ye V with
vEX,VEY,d(x,y) =2 and d(x,v)+d(v,y) =
d(x,y). According to the core—periphery organiza-
tion, the betweenness of a vertex should increase as
its eccentricity decreases. This means that a vertex
that belongs to the central layer of a graph should
have a higher value for its H(v) parameter than a
vertex that belongs to any other higher layer in the
graph’s eccentricity layering.

Our goal in this model is to identify the smallest
subset of vertices that participate in all traffic through-
out the network. The algorithm for this model com-
prises two stages. First, in a priority list 7 we
lexicographically sort the vertices according to the
three attributes: ecc(v), f(v), and b(v). T now has the
vertices in the order that they should be considered to
become part of the core. The goal is to ensure that for
each pair of vertices x,y € V' there exists at least one
vertex v € core(G) such that v € p(x, y). In such case, we
say that a shortest path p(x, y) from x to y is covered by
v (a shortest path from y to x is also covered by the
same vertex v since we are dealing with undirected
graphs).

Algorithm 3. Decide the core of each graph based on
the minimum cover set model. 7 is a priority list in
which vertices are ordered based on: ecc(v), f(v), and
b(v). C%,,, is the absolute core set

1. C%,,, < first vertex in T’
2. while (current core does not cover all vertex pairs) do
3. v < next vertex in T’

4. if (v covers a new pair) then

5' CjU)’(’ eC“L"((H‘L’LJ v
6. end if
7. end while

8. return C*

core

The second stage starts with a vertex v at the head of
T being removed from 7 and added to an initially
empty set C? ., that represents the absolute core set.
This vertex must cover at least one shortest path
between a pair of vertices according to the definition
of the betweenness b(v). After this initial step, the pro-
cess continues by repeatedly removing the vertex v at
the head of 7 and adding it to C7,,, if and only if v
covers a shortest path between an uncovered yet pair x



54

Journal of Algorithms & Computational Technology 11(1)

and y (when there is at least one vertex v € C, ., that
covers a shortest path between x and y, then the pair
becomes covered). This step should run until all pairs
are covered. Note that we consider the core set C; ., as
absolute since all vertex pairs must be covered by a
vertex in it.

Now the vertices in set C?, represent the core of the
graph (core(G)) while the remaining vertices represent

the periphery. Algorithm 3 presents the pseudocode,

Close analysis of Table 8 shows that each produced
absolute core C; , is of a size between 44 and 86% of
the original number of vertices in the graph. It is
important to note that vertices in the core are expected
to have different contributions (some vertices cover
more vertex pairs than others). Figure 9 shows how
many vertex pairs are remained uncovered after the
orderly addition of vertices to the absolute core. For

example, in the network B-YEAST-PI, 80% of vertex

and the number of vertices in the absolute and the
effective core sets of each graph of our datasets is
listed in Table 8.

pairs are uncovered after adding the first vertex to the
absolute core set C* . However, after adding 20 ver-

core*
tices to C},,, only 35% of the vertex pairs are

Table 8. The cores of the graph datasets based on the minimum cover set model. |V | is the number of vertices; 6(G) is the
hyperbolicity; [Cf,.| is the number of vertices in the absolute core set; |Ceore| is the number of vertices in the effective core set; Cjy

core
is the largest index layer found among vertices in C ; and Cpyaxyr is the largest index layer found among vertices in Ceore.

col

Network v 5(G) Covel |Chovel t0 [V | Citantyr | Ceorel |Ceorel to |V | Chartyr
B-YEAST-PI 1465 2.5 1117 ~ 76 % 3 17 ~ 8% |
E-COLI-PI 126 2 65 ~ 52% 2 13 ~ 10% |
YEAST-PI 1728 3.5 902 ~ 52% 5 318 ~ 18% 2
S-CEREVISIAE-PI 537 4 438 ~ 82% 4 114 ~ 2l % |
H-PYLORI-PI 72 3 54 ~75% 2 15 ~ 2l % |
MACAQUE-BRAIN- | 45 1.5 20 ~ 44 % 2 7 ~ 6% |
MACAQUE-BRAIN-2 350 1.5 197 ~ 56 % | 31 ~ 9% 0
E-COLI-METABOLIC 242 4 208 ~ 86 % 7 66 ~ 27 % 2
C-ELEGANS-METABOLIC 453 1.5 202 ~ 45 % 2 12 ~ 3% 0
YEAST-TRANSCRIPTION 321 3 155 ~ 48 % 4 40 ~ 12% |
80
B-Yeast-PI
E-COLI-PI

3 YEAST-PI

I‘;;' anS_CEREVISIA-PI

2 60 e H-PYLORIP |

g . e MACAQUE-BRAIN-1
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Figure 9. The percentage of the uncovered vertex pairs after the orderly addition of vertices to the core set C} .. Number i

indicates the cardinality of the current core.
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uncovered. It is also clear from Figure 9 that many of
the vertices that have been added later to the absolute
core set cover a very small percentage of the vertex
pairs.

To keep only vertices that are considered higher con-
tributors (cover a large number of vertex pairs) we
define the effective core set C,,.. The effective core
set is the subset of the core that is sufficient to cover
shortest paths between 90% of the vertex pairs in the
graph. To obtain Coore, We examine the vertices of the
core C7,,, in the same order in which they were added.
A new vertex is added to current C,,,, only if more than
10% of the vertex pairs remain uncovered. The results
on the core according to both concepts in this model
are presented in Table 8. Note that the index of the
layer of the last vertex added to the core in each net-
work has significantly decreased.

Because hyperbolic graphs adhere to the property of
having shortest paths that bend to the core of the graph,
it was natural to think that hyperbolic graphs with lower
8(G) should have even smaller number of vertices in the
core. A quick comparison between the C.,, of each
graph with its §(G) supports this hypothesis.

Concluding remarks

The structure of several biological networks has been
often described as a chain-like or tree-like topology in
molecular biology.'' This motivates investigating if
those networks also admit tree-like structures based
on different aspects such as their distances. In
“Hyperbolicity of biological networks” section, we
observed that most biological networks appear to
have low hyperbolicity suggesting their closeness to a
tree structure with respect to their distances.'”

In the tree structure, the communication among dis-
tant vertices is carried out through the center of the tree

which is one or two vertices with the smallest eccentri-
cities. The center in this case represents the core of the
network while the rest of the vertices belong to the per-
iphery. Since strongly-hyperbolic graphs have a struc-
ture that is closer to a tree structure, this motivates the
following hypothesis: does hyperbolicity indicate the
existence of a sharper core—periphery dichotomy? In
other words, do strongly-hyperbolic graphs have more
concise cores compared to (weak) hyperbolic graphs?

Before we answer this question we will analyze the
networks in our datasets. In “‘6-Hyperbolicity of net-
works’ section, we differentiated between two types of
hyperbolicity that appear in our graphs. First, the low
hyperbolicity that is caused by a small diameter or
graph size; second, the low hyperbolicity with the
value of 8(G) smaller than or equal to the value of
log,(diam(G))  which in turn is at most
log,(log,(size(G))). Whereas both types are considered
hyperbolic graphs, we called the latter category
strongly-hyperbolic to point out the similarity in their
structure to a tree despite their sizes and their diam-
eters. Here, we noticed that graphs of strong-
hyperbolicity are actually small-world networks. We
are not saying that the hyperbolicity is intrinsic to
small-world networks even though this notion has
been suggested in Narayan and Saniee.® For instance,
a tree with a large diameter is not small world but it is
strongly-hyperbolic.

Using the eccentricity-based bending property intro-
duced in ‘Eccentricity-based bending property of
3-hyperbolic networks” section, we defined the core
vertices of each graph in our datasets. It is clear from
Table 9 that hyperbolic networks have larger cores
when compared to strongly-hyperbolic networks
(which confirms our hypothesis). Here we only consider
cores according to the minimum cover set model to
eliminate any interference that may happen because

Table 9. Summary of the graph datasets’ parameters and cores: size of the graph size(G), diameter diam(G), hyperbolicity §(G),
average hyperbolicity §'(G), and the core Cy is the effective core according to the minimum cover set model.

Network log, (size(G)) diam(G) 8(G) 8 (G) Coore
Strongly-hyperbolic networks | C-ELEGANS-METABOLIC 12.3 7 1.5 0.133 3%
B-YEAST-PI 12.8 8 25 0.299 8%
2 MACAQUE-BRAIN-2 12.4 4 1.5 0.203 9%
E-COLI-PI 9.5 5 2 0.251 10%
YEAST-TRANSCRIPTION 10 9 3 0.365 12%
MACAQUE-BRAIN-| 9 4 1.5 0.231 16%
YEAST-PI 13.6 12 35 0.322 18%
Hyperbolic networks S-CEREVISIAE-PI 10.5 I 0419 21%
H-PYLORI-PI 7.5 7 3 0.368 21%
E-COLI-METABOLIC 9.3 16 0.483 27%
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of the vertex distribution over different layers of the
graph eccentricity layering. The sizes of the cores in
strongly-hyperbolic graphs are less than 20% of the
number of vertices of each network. In Saniee and
Tucci,”® the authors showed that the small-world prop-
erty is not enough for a graph to have the core—
periphery structure. However, it turns out that our
graphs that do not exhibit small-world property also
have the core—periphery organization but with larger
cores. They also have higher values for &(G)
(6(G) = 3). Moreover, we see that the more distant
the graph is from having the small-world property,
(the larger the difference between its log,(size(G)) and
its diam(G)), the larger its core is.

We also observed two patterns in strongly-hyper-
bolic networks named groups 1 and 2 in Table 9. The
networks in the first group (the C-ELEGANS-METABOLIC
and the B-YEAST-PI) have small hyperbolicity (§(G) < 3)
and in the same time §(G) is sufficiently smaller than the
value of half the diameter. The cores for those networks
are very small (the numbers of vertices in the cores are 3
and 8% of the total number of vertices). The second
group has networks that are either with higher hyper-
bolicity (YEAST-TRANSCRIPTION and YEAST-PI), or low
hyperbolicity with value of &8(G) very close to
diam(G)/2. The cores for the networks in group 2
are larger than for those in group 1, yet they are
small (9-18%).%’
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