Algorithmica (2013) 66:479-511
DOI 10.1007/s00453-012-9647-1

How to Use Spanning Trees to Navigate in Graphs

Feodor F. Dragan - Yang Xiang

Received: 14 June 2009 / Accepted: 31 March 2012 / Published online: 18 April 2012
© Springer Science+Business Media, LLC 2012

Abstract In this paper, we investigate three strategies of how to use a spanning tree T
of a graph G to navigate in G, i.e., to move from a current vertex x towards a des-
tination vertex y via a path that is close to optimal. In each strategy, each vertex v
has full knowledge of its neighborhood Ng[v] in G (or, k-neighborhood Dy (v, G),
where k is a small integer) and uses a small piece of global information from spanning
tree T (e.g., distance or ancestry information in 7'), available locally at v, to navigate
in G. We investigate advantages and limitations of these strategies on particular fam-
ilies of graphs such as graphs with locally connected spanning trees, graphs with
bounded length of largest induced cycle, graphs with bounded tree-length, graphs
with bounded hyperbolicity. For most of these families of graphs, the ancestry infor-
mation from a Breadth-First-Search-tree guarantees short enough routing paths. In
many cases, the obtained results are optimal up to a constant factor.

Keywords Graph algorithms - Navigating in graphs - Spanning trees - Routing in
graphs - Distances - Ancestry - k-Chordal graphs - Tree-length A graphs -
5-Hyperbolic graphs - Lower bounds

Part of these results is presented at MFCS 2009 Conference, August 24-28, 2009, Novy Smokovec,
High Tatras, Slovak Republic.

Y. Xiang was supported in part by the NSF under Grant #1019343 to the Computing Research
Association for the CIFellows Project.

EF. Dragan ()

Algorithmic Research Laboratory, Department of Computer Science, Kent State University, Kent,
OH 44242, USA

e-mail: dragan@cs.kent.edu

Y. Xiang
Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
e-mail: yxiang@bmi.osu.edu

@ Springer

mailto:dragan@cs.kent.edu
mailto:yxiang@bmi.osu.edu

480 Algorithmica (2013) 66:479-511

1 Introduction

As part of the recent surge of interest in different kinds of networks, there has been
active research exploring strategies for navigating synthetic and real-world networks
(modeled usually as graphs). These strategies specify some rules to be used to ad-
vance in a graph (a network) from a given vertex towards a target vertex along a path
that is close to shortest. Current strategies include (but not limited to): routing us-
ing full-tables, interval routing, routing labeling schemes, greedy routing, geographic
routing, compass routing, etc. in wired or wireless communication networks and in
transportation networks (see [24, 25, 29, 36, 42, 48] and papers cited therein); rout-
ing through common membership in groups, popularity, and geographic proximity in
social networks and e-mail networks (see [2, 3, 20, 36, 39] and the literature cited
therein).

Navigation in communication networks is performed using a routing scheme, i.e.,
a mechanism that can deliver packets of information from any vertex of a network to
any other vertex. In most strategies, each vertex v of a graph has full knowledge of its
neighborhood and uses a piece of global information available to it about the graph
topology—some “sense of direction” to each destination, stored locally at v. Based
only on this information and the address of a destination, vertex v needs to decide
whether the packet has reached its destination, and if not, to which neighbor of v to
forward the packet.

One of the most popular strategies in wireless (and social) networks is the geo-
graphic routing (sometimes called also the greedy geographic routing), where each
vertex forwards the packet to the neighbor geographically closest to the destination
(see survey [29] and paper [39]). Each vertex of the network knows its position (e.g.,
Euclidean coordinates) in the underlying physical space and forwards messages ac-
cording to the coordinates of the destination and the coordinates of neighbors. Al-
though this greedy method is effective in many cases, packets may get routed to
where no neighbor is closer to the destination than the current vertex. Many recovery
schemes have been proposed to route around such voids for guaranteed packet de-
livery as long as a path exists [, 35, 38]. These techniques typically exploit planar
subgraphs (e.g., Gabriel graph, Relative Neighborhood graph), and packets traverse
faces on such graphs using the well-known right-hand rule.

All earlier papers assumed that vertices are aware of their physical location, an
assumption which is often violated in practice for various reasons (see [19, 37, 43]).
In addition, implementations of recovery schemes are either based on non-rigorous
heuristics or on complicated planarization procedures. To overcome these shortcom-
ings, recent papers [19, 37, 43] propose routing algorithms which assign virtual co-
ordinates to vertices in a metric space X and forward messages using geographic
routing in X. In [43], the metric space is the Euclidean plane, and virtual coordinates
are assigned using a distributed version of Tutte’s “rubber band” algorithm for find-
ing convex embeddings of graphs. In [19], the graph is embedded in R¢ for some
value of d much smaller than the network size, by identifying d beacon vertices and
representing each vertex by the vector of distances to those beacons. The distance
function on R9 used in [19] is a modification of the £; norm. Both [19] and [43] pro-
vide substantial experimental support for the efficacy of their proposed embedding

@ Springer

Algorithmica (2013) 66:479-511 481

techniques—both algorithms are successful in finding a route from the source to the
destination more than 95 % of the time—but neither of them has a provable guaran-
tee. Unlike embeddings of [19] and [43], the embedding of [37] guarantees that the
geographic routing will always be successful in finding a route to the destination, if
such a route exists. The algorithm of [37] assigns to each vertex of the network a
virtual coordinate in the hyperbolic plane, and performs greedy geographic routing
with respect to these virtual coordinates. More precisely, [37] gets virtual coordinates
for vertices of a graph G by embedding in the hyperbolic plane a spanning tree of G.
The proof that this method guarantees delivery relies only on the fact that the hyper-
bolic greedy route is no longer than the spanning tree route between two vertices;
even more, it could be much shorter as greedy routes take enough short cuts (edges
which are not in the spanning tree) to achieve significant saving in stretch. How-
ever, although the experimental results of [37] confirm that the greedy hyperbolic
embedding yields routes with low stretch when applied to typical unit-disk graphs,
the worst-case stretch is still linear in the network size.

1.1 Previous Work

Motivated by the work of Robert Kleinberg [37], in paper [17], we initiated explo-
ration of the following strategy in advancing in a graph from a source vertex towards
a target vertex. Let G = (V, E) be a (unweighted) graph and 7 be a spanning tree
of G. To route/move in G from a vertex x towards a target vertex y, use the following
rule:

TDGR (Tree Distance Greedy Routing) strategy: from a current vertex z (ini-
tially z = x), unless z =y, go to a neighbor of z in G that is closest to y
inT.

In this strategy, each vertex has full knowledge of its neighborhood in G and can use
the distances in T to navigate in G. Thus, additionally to standard local information
(the neighborhood N¢ (v)), the only global information that is available to each vertex
v is the topology of the spanning tree 7'. In fact, v can know only a very small piece of
information about 7" and still be able to infer from it the necessary tree-distances. It is
known [27, 40, 41] that the vertices of an n-vertex tree T can be labeled in O (nlogn)
total time with labels of up to O (log®) bits such that given the labels of two vertices
v, u of T, it is possible to compute in constant time the distance dr (v, u), by merely
inspecting the labels of # and v. Hence, one may assume that each vertex v of G
knows, additionally to its neighborhood in G, only its O(log? n) bit distance label.
This distance label can be viewed as a virtual coordinate of v.

For each source vertex x and target vertex y, by this routing strategy, a path,
called a greedy routing path, is produced (clearly, this routing strategy will always
be successful in finding a route to the destination). Denote by gg, r(x, y) the length
(i.e., the number of edges) of a longest greedy routing path that can be produced
for x and y using this strategy and 7. We say that a spanning tree 7" of a graph G
is an additive r-carcass for G if gg 7(x,y) <dg(x,y) + r for each ordered pair
x,y €V (in a similar way one can also define a multiplicative t-carcass of G, where
8G.7(x,y)/dc(x,y) <t). Note that this notion differs from the notion of “remote-
spanners” introduced recently in [34].

@ Springer

482 Algorithmica (2013) 66:479-511

In [17], we investigated the problem, given a graph family F, whether a small
integer r exists such that any graph G € F admits an additive r-carcass. We showed
that rectilinear p x g grids, hypercubes, distance-hereditary graphs, dually chordal
graphs (and, therefore, strongly chordal graphs and interval graphs), all admit addi-
tive O-carcasses. Furthermore, every chordal graph G admits an additive (w (G) + 1)-
carcass (where w (G) is the size of a maximum clique of G), each 3-sun-free chordal
graph admits an additive 2-carcass, each chordal bipartite graph admits an additive
4-carcass. In particular, any k-tree admits an additive (k 4 2)-carcass. All those car-
casses were easy to construct.

This new combinatorial structure, carcass, turned out to be “more attainable” than
the well-known structure, tree spanner (a spanning tree 7' of a graph G is an additive
tree r-spanner if for any two vertices x, y of G, dr(x,y) <dg(x,y) + r holds, and
is a multiplicative tree ¢-spanner if for any two vertices x, y, dr(x,y) <t dg(x,y)
holds). It is easy to see that any additive (multiplicative) tree r-spanner is an addi-
tive (resp., multiplicative) r-carcass. On the other hand, there is a number of graph
families not admitting any tree spanners, yet admitting very good carcasses. For ex-
ample, any hypercube has an additive O-carcass (see [17]) but does not have any tree
r-spanner (additive or multiplicative) for any constant . The same holds for 2-trees
and chordal bipartite graphs [17].

1.2 Results of This Paper

All graphs occurring in this paper are connected, finite, undirected, unweighted, loop-
less and without multiple edges. In a graph G = (V, E) (n = |V|,m = |E|) the length
of a path from a vertex v to a vertex u is the number of edges in the path. The distance
dg (u, v) between vertices u and v is the length of a shortest path connecting u# and
v. The neighborhood of a vertex v of G is the set Ng(v) ={u € V : uv € E} and
the closed neighborhood of v is Ng[v] = Ng(v) U {v}. The disk of radius k centered
at v is the set of all vertices at distance at most k to v, i.e., Dx(v,G) ={u €V :
dg(u,v) < k}.

In this paper we continue investigations of how to use spanning trees to navigate
in graphs. Spanning trees are very well understood structures in graphs. There are
many results available in the literature on how to construct (and maintain) different
spanning trees in a number of settings; including in a distributed way, in a self sta-
bilizing way, in a localized way, etc. (see [18, 21-23, 32, 33] and the literature cited
therein).

Additionally to the TDGR strategy, we propose to investigate two more strategies.
Let G = (V, E) be a graph and T be a spanning tree of G rooted at an arbitrary
vertex s. Using 7', we associate an interval [, with each vertex v such that, for any
two vertices u and v, I, C I, if and only if u is a descendant of v in 7. This can be
done in the following way (see [46] and Fig. 1). By a depth-first search tour of T,
starting at the root, assign each vertex u of T a depth-first search number DFS(u).
Then, label u by interval [DFS(u), DFS(w)], where w is the last descendant of u
visited by the depth-first search. For two intervals I, = [ar, agr] and I, = [by, bg],
1, C I if and only if a; > by and ar < bg. Let xT'y denote the (unique) path of
T connecting vertices x and y, and let Ng[xTy] ={v € V : v belongs to xT'y or is
adjacent to a vertex of xTy in G}.

@ Springer

Algorithmica (2013) 66:479-511 483

o ') [9.9] [10,10] [11,11]

Fig. 1 A graph and its rooted spanning tree with precomputed ancestry intervals. For (ordered) pair of
vertices 10 and 4, both IGR and IGRF produce path 10, 8, 3, 4 (TDGR produces 10, 5, 4). For pair 5 and
8, IGR produces path 5, 2, 1, 8, while IGRF produces path 5, 3, 8 (TDGR produces 5, 10, 8). For pair 5
and 7, IGR produces path 5, 2, 1, 7, while IGRF produces path 5, 3, 2, 1, 7 (TDGR produces 5, 2, 1, 7)
(Color figure online)

IGR (Interval Greedy Routing) strategy.
To advance in G from a vertex x towards a target vertex y (y # x), do:
if there is a neighbor w of x in G such that y € I, (i.e., w € sTy),
then go to such a neighbor with smallest (by inclusion) interval;
else (Which means x € Ng[sTy]),
go to a neighbor w of x in G such that x € I, and I, is the
largest such interval.

IGRF (Interval Greedy Routing with forwarding to Father) strategy.
To advance in G from a vertex x towards a target vertex y (y # x), do:
if there is a neighbor w of x in G such that y € I, (i.e., w € sTy),
then go to such a neighbor with smallest (by inclusion) interval;
else (Which means x & Ng[sTy]),
go to the father of x in T (i.e., a neighbor of x in G, the interval
of which contains x and is smallest by inclusion).

Note that both, the IGR and IGREF, strategies are simpler and more compact than
the TDGR strategy. In IGR and IGRF, each vertex v, additionally to standard local
information (the neighborhood N (v)), needs to know only 2[log, n] bits of global
information from the topology of T, namely, its interval I,,. Information stored in
intervals gives a “sense of direction” in navigation in G (the current vertex x either
may already know intervals of its neighbors, or it can ask each neighbor w, when
needed, whether its interval I, contains destination y or vertex x itself, and if yes
to send 7, to x). On the other hand, as we will show in this paper, routing paths
produced by IGR (IGRF) will have, in many cases, almost the same quality as routing
paths produced by TDGR. Moreover, in some cases, they will be even shorter than
routing paths produced by TDGR.

Let Rg,r(x,y) be the routing path produced by the strategy under consideration
(namely, either the IGR strategy or the IGRF strategy) for a source vertex x and a
target vertex y in G using 7. It will be evident later that this path always exists (i.e.,
both the IGR and IGREF strategies guarantee delivery). Moreover, this path is unique
for each ordered pair x, y of vertices (note that, depending on the tie breaking rule,
TDGR can produce different routing paths for the same ordered pair of vertices).

@ Springer

484 Algorithmica (2013) 66:479-511

Denote by gg,r(x, y) the length (i.e., the number of edges) of path Rg 7(x,y). We
say that a spanning tree T of a graph G is an additive r-frame (resp., an additive r-
Jframe) for G if the length g 7(x, y) of the routing path R 7(x, ¥) produced by the
IGR strategy (resp., by the IGRF strategy) is at most dg (x, y) + r for each ordered
pair x,y € V. In a similar way one can also define a multiplicative t-frame (resp.,
a multiplicative t-fframe) of G, where gg.7(x,y)/dc(x,y) <t.

In Sects. 2 and 3, we show that each distance-hereditary graph admits an addi-
tive O-frame (as well as an additive O-fframe) and each dually chordal graph (and,
hence, each interval graph, each strongly chordal graph) admits an additive O-frame.
In Sect. 4, we show that each k-chordal graph admits an additive (k — 1)-frame (as
well as an additive (k — 1)-fframe), each chordal graph (and, hence, each k-tree) ad-
mits an additive 1-frame (as well as an additive 1-fframe), each AT-free graph admits
an additive 2-frame (as well as an additive 2-fframe), each chordal bipartite graph
admits an additive O-frame (as well as an additive O-fframe). Definitions of the graph
families will be given in appropriate sections (see also [8] for many equivalent defi-
nitions of these families of graphs).

To better understand full potentials and limitations of the proposed routing strate-
gies, in Sect. 5, we also investigate the following generalizations of them. Let
G = (V, E) be a (unweighted) graph and T be a (rooted) spanning tree of G.

k-localized TDGR strategy.
To advance in G from a vertex x towards a target vertex y, do:
go, using a shortest path in G, to a vertex w € Di(x, G) that is closest
toyinT.

In this strategy, each vertex has full knowledge of its disk D¢ (v, G) (e.g., all vertices
in Dy (v, G) and how to reach each of them via some shortest path of G) and can use
the distances in 7" to navigate in G. Let g, 7 (x, y) be the length of a longest path of G
that can be produced for x and y using this strategy and 7. We say that a spanning tree
T of a graph G is a k-localized additive r-carcass for G if g 7 (x,y) <dg(x,y)+r
for each ordered pair x,y € V (in a similar way one can also define a k-localized
multiplicative t-carcass of G).

k-localized IGR strategy.
To advance in G from a vertex x towards a target vertex y, do:
if there is a vertex w € Di(x, G) such that y € I, (i.e., w € sTy),
then go, using a shortest path in G, to such a vertex w
with smallest (by inclusion) interval;
else (Which means dg (x,sTy) > k),
go, using a shortest path in G, to a vertex w € Dy(x, G) such
that x € I, and I, is largest such interval.

k-localized IGRF strategy.
To advance in G from a vertex x towards a target vertex y, do:
if there is a vertex w € Di(x, G) such that y € I, (i.e., w € sTy),
then go, using a shortest path in G, to such a vertex w
with smallest (by inclusion) interval;
else (which means dg(x,sTy) > k),
go to the father of x in T.

@ Springer

Algorithmica (2013) 66:479-511 485

Table 1 Upper bounds ; .
Graph class [-localized [-localized

additive r-frame additive r-fframe
) r I r

Distance-hereditary 1 0 1 0
Dually chordal 1 0 - -
Chordal bipartite 1 0 1 0
Chordal 1 1 1 1
AT-free 1 2 1 2
k-Chordal (k > 3) 1 k—1 1 k—1
Tree-length A A SA A Sh
§-Hyperbolic 45 86 46 86
Table 2 Lower bounds for
n-vertex planar tree-length A No [-localized No [-localized No [-localized
graphs additive r-fframe additive r-frame additive r-carcass
for every A >3 for every A > 4 for every A > 6
I a2 126, —2)/3] L(x —2)/4)

_ 3n—1 -
r gylog Slog 25 3 flog 27t

In these strategies, each vertex has full knowledge of its disk Dy (v, G) (e.g., all
vertices in D¢ (v, G) and how to reach each of them via some shortest path of G) and
can use the DFS intervals I, to navigate in G. We say that a (rooted) spanning tree 7'
of a graph G is a k-localized additive r-frame (resp., a k-localized additive r-fframe)
for G if the length g 7 (x, y) of the routing path produced by the k-localized IGR
strategy (resp., by the k-localized IGRF strategy) is at most dg(x, y) 4 r for each
ordered pair x, y € V. In a similar way one can define also a k-localized multiplicative
t-frame (resp., a k-localized multiplicative t-fframe) of G.

We show, in Sect. 5, that any tree-length A graph admits a A-localized additive
Si-fframe (which is also a A-localized additive 5A-frame) and any &-hyperbolic
graph admits a 45-localized additive 88-fframe (which is also a 46-localized additive
86-frame). Definitions of these graph families will also be given in the appropri-
ate sections. Additionally, we show that: for any A > 3, there exists a tree-length A

graph G with n vertices for which no (A — 2)-localized additive %,/log ”/\;l—fframe
exists; for any A > 4, there exists a tree-length A graph G with n vertices for which
no |2(A — 2)/3]-localized additive %,/log 3(’:‘;1) -frame exists; for any A > 6, there
exists a tree-length A graph G with n vertices for which no [(A — 2)/4]-localized
additive %, /log %-carcass exists.

Our results are summarized in Tables 1 and 2.

In Appendix A, we empirically compare the performance of TDGR, IGR and

IGREF, and their corresponding k-localized versions, on Unit Disk Graphs, which of-
ten model wireless ad hoc networks.

@ Springer

486 Algorithmica (2013) 66:479-511

2 Preliminaries

Let G = (V, E) be a graph and T be a spanning tree of G rooted at an arbitrary
vertex s. We assume that T is given together with the precomputed ancestry intervals
produced by a DFS. The following facts are immediate from the definitions of the
IGR and IGRF strategies.

Lemma 1 Any routing path Rg,1(x,y) produced by IGR or IGRF, where x is not
an ancestor of y in T, is of the form x1...xky...y1, where x1 =x, y1 =y, X; is
a descendant of x;y1 in T, and y; is an ancestor of y;_1 in T. In addition, for any
i € [1, k], x; is not an ancestor of y, and, for any i € [1,k — 1], x; is not adjacent in
G to any vertex of sTy.

If x is an ancestor of y in T, then Rg r(x,y) has only part y;...y1 withx =y,
y = y1 and y; being an ancestor of yi—1in T .

In what follows, any routing path produced by IGR (resp., by IGRF, by TDGR)
will be called an IGR routing path (resp., IGRF routing path, TDGR routing path).

Corollary 1 A tail of any IGR routing path (any IGRF routing path) is also an IGR
routing path (IGRF routing path, respectively).

Corollary 2 Both the IGR strategy and the IGRF strategy guarantee delivery.

Corollary 3 Let T be a BFS-tree (Breadth-First-Search-tree) of a graph G rooted at
an arbitrary vertex s, and let x and y be two vertices of G. Then, the IGR and IGRF
strategies produce the same routing path Rg,1(x,y) from x to y. In particular, if a
BFS-tree T is an additive r-fframe of G then it is also an additive r-frame of G.

Lemma 2 For any vertices x and y, the IGR routing path (respectively, the IGRF
routing path) Rg,T(x,) is unique.

Lemma 3 Any IGR routing path Rg,1(x,y) is an induced path of G.

Note that an IGRF routing path Rg 7(x, y) = X1 ...xty; ...y may not necessarily
be induced in the part x; ...x, . In [17], it was shown that routing paths produced by
the TDGR strategy are also induced paths.

A graph G is called distance-hereditary if any induced path of G is a shortest
path (see [8] for this and equivalent definitions). By Lemma 3 and Corollary 3, we
conclude.

Theorem 1 Any spanning tree of a distance-hereditary graph G is an additive 0-
frame of G, regardless of where it is rooted. Any BFS-tree of a distance-hereditary
graph G is an additive O-fframe of G.

It has been shown in [17] that a column-wise Hamiltonian path HP of any Rectilin-
ear Grid G (see Fig. 2) is an additive O-carcass of G. Since we can number the vertices

@ Springer

Algorithmica (2013) 66:479-511 487

Fig. 2 Rectilinear grid and its —
column-wise Hamiltonian path
(Color figure online)

.
v

Y
T x
| 8
s
Fig. 3 A simple graph s
demonstrating that the IGRF
strategy may produce a shorter
routing path than the IGR
strategy (Color figure online)
y X

of G from 1 to n simply following the path HP and the distance in HP between a ver-
tex with number i and a vertex with number j can be computed by formula |i — j|, the
strategies IGR and IGRF, for Rectilinear Grids, cannot give improvements over the
TDGR strategy neither in memory size per vertex nor in route stretch. Consequently,
for Rectilinear Grids, the IGR and IGRF strategies are not interesting. Furthermore,
one can easily see (consult Fig. 2) that HP is only an additive 2-frame for the grid
G (while routing paths produced in G by IGRF, using HP, can be arbitrarily longer
than shortest paths). In Fig. 2, we consider routing from y to x and from y to x’. The
two blue paths are the routing paths generated by the TDGR strategy. The brown path
is the routing path from y to x generated by the IGR strategy. The green path is the
routing path from y to x” generated by the IGRF strategy.

In Fig. 2, one can see that IGR provides a shorter routing path than IGRF from y
to x. However, in some cases IGRF can outperform IGR, too. For example, in Fig. 3,
IGRF produces a shorter routing path (green) from x to y than that (brown) produced
by IGR. Later, in Sect. 4.1, we will also see that there are chordal graphs admitting
additive O-fframes but not having any additive 0-carcasses or additive O-frames.

3 Frames for Dually Chordal Graphs

In this section, we will show that each dually chordal graph admits an additive
O-frame.

@ Springer

488 Algorithmica (2013) 66:479-511

Let G be a graph. We say that a spanning tree T of G is locally connected if
the closed neighborhood Ng[v] of any vertex v of G induces a subtree in T (i.e.,
T N Ng[v] is a connected subgraph of T'). The following result was proven in [17].

Lemma 4 [17] If T is a locally connected spanning tree of a graph G, then T is an
additive 0-carcass of G.

Here we prove the following lemma.

Lemma 5 Let G be a graph with a locally connected spanning tree T, and let x and
y be two vertices of G. Then, the IGR and TDGR strategies produce the same routing
path Rg.1(x,y) from x to y (regardless of where T is rooted).

Proof Assume that we want to route from a vertex x towards a vertex y in G, where
x # y. We may assume that dg (x, y) > 2, since otherwise both routing strategies will
produce path xy. Let x* (x”) be the neighbor of x in G chosen by the IGR strategy
(resp., by the TDGR strategy) to relay the message. We will show that x” = x* by
considering two possible cases. We root the tree T at an arbitrary vertex s.

First assume that Ng[x] N sTy # (. By the IGR strategy, we will choose a neigh-
bor x* € Ng[x] such that y € I+ and I« is the smallest interval by inclusion, i.e., x*
is a vertex from Ng[x] closestin sTy to y. If d7 (x", y) <dr(x*,y), then x’ ¢ sTy
and the nearest common ancestor NCA7 (x’, y) of x’, y in T must be in x*T'y. Since
T N Ng[x] is a connected subgraph of T and x’,x* € Ng[x], we conclude that
NCA7(x’, y) must be in Ng[x], too. Thus, we must have x’ = NCAr (x', y) = x*.

Assume now that Ng[x] NsTy = . By the IGR strategy, we will choose a neigh-
bor x* € Ng[x] such that x € I,+ and I+ is the largest interval by inclusion, i.e., x*
is a vertex from Ng[x] closest in sTx to NCAT (x, y). Consider the nearest common
ancestor NCA7 (x’, x*) of x’, x* in T. Since T N Ng[x] is a connected subgraph of
T and x’, x* € Ng[x], we conclude that NCAT (x’, x*) must be in Ng[x], too. Thus,
necessarily, we must have x’ = NCA7 (x’, x*) = x*.

From these two cases we conclude, by induction, that the IGR and TDGR strate-
gies produce the same routing path Rg 7(x,y) from x to y. |

From Lemmas 4 and 5, we immediately obtain the following corollary.

Corollary 4 If T is a locally connected spanning tree of a graph G, then T is an
additive O-frame of G (regardless of where T is rooted).

It has been shown in [7] that the graphs admitting locally connected spanning
trees are precisely the dually chordal graphs. Furthermore, [7] showed that the class
of dually chordal graphs contains such known families of graphs as strongly chordal
graphs, interval graphs and others. Thus, we have the following result.

Theorem 2 Every dually chordal graph admits an additive O-frame. In particular,
any strongly chordal graph (any interval graph) admits an additive O-frame.

@ Springer

Algorithmica (2013) 66:479-511 489

Note that, in [6, 7], it was shown that dually chordal graphs can be recognized in
linear time, and if a graph G is dually chordal, then a locally connected spanning tree
of G can be efficiently constructed.

4 Frames for k-Chordal Graphs and Subclasses

In this section, we will employ two types of vertex orderings: breadth-first-search
orderings and lexicographic-breadth-first-search orderings of Rose et al [45]. Let
o =[v1, v2,...,v,] be any ordering of the vertex set of a graph G. We will write
a < b whenever in a given ordering o vertex a has a smaller number than vertex b.
Let s be a vertex of G. We define the layers of G with respect to vertex s as follows:
Li(s)={v:d(s,v)=i}fori=0,1,2,....

In a breadth-first search (BFS), started at a vertex s, the vertices of a graph G with
n vertices are numbered from » to 1 in decreasing order. The vertex s is numbered
by n and put on an initially empty queue of vertices. Then a vertex v at the head of
the queue is repeatedly removed, and neighbors of v that are still unnumbered are
consequently numbered and placed onto the queue. Clearly, BFS operates by placing
vertices in layers: the vertices closest to the start vertex are numbered first, and the
most distant vertices are numbered last. BFS may be seen to generate a rooted tree T
(called the BFS-tree) with vertex s as the root. A vertex v is the father in T of exactly
those neighbors in G which are inserted into the queue when v is removed.

An ordering o of the vertex set of a graph G generated by a BFS will be called a
BFS-ordering of G. Denote by f(v) the father of a vertex v with respect to o. The
following properties of a BFS-ordering will be used in what follows. Since all layers
of V considered here are with respect to s, we will frequently use notation L; instead
of L;(s).

(P1) IfxeL;,yeLjandi < j,thenx > yino.
(P2) If x,y,z€ Lj,x >y>zand f(x)z € E, then f(x) = f(y) = f(z) (in partic-
ular, f(x)y € E).

We will also need the following fact.

Lemma 6 [16] Let G be an arbitrary graph and T be a BFS-tree of G with the root s.
Also let v be a vertex of G and w (w # v) be an ancestor of v in T from layer L;(s).
Then, for any vertex x € Li(s) \ {w} with dg (v, w) = dg (v, x), inequality x < w
holds.

Lexicographic breadth-first search (LexBFS), started at a vertex s, orders the ver-
tices of a graph by assigning numbers from n to 1 in the following way. The vertex s
gets the number n. Then each next available number £ is assigned to a vertex v (as yet
unnumbered) which has lexically largest vector (a,, ay—1, ..., ak+1), where a; = 1 if
v is adjacent to the vertex numbered i, and a; = 0 otherwise.

An ordering of the vertex set of a graph generated by LexBFS we will call a
LexBFS-ordering. Clearly, any LexBFS-ordering is a BFS-ordering (but not con-
versely). Note also that for a given graph G, both a BFS-ordering and a LexBFS-
ordering can be generated in linear time [30]. LexBFS may be seen to generate a
special BFS-tree T (called LexBFS-tree) with vertex s as the root.

@ Springer

490 Algorithmica (2013) 66:479-511

4.1 k-Chordal Graphs

In this subsection, we will show that each k-chordal graph admits an additive (k — 1)-
fframe (which is also an additive (k — 1)-frame) and each chordal graph admits an
additive 1-fframe (which is also an additive 1-frame). A graph G is called k-chordal
if it has no induced cycles of size greater than k, and it is called chordal if it has no
induced cycle of length greater than 3. Chordal graphs are precisely the 3-chordal
graphs.

For chordal graphs we will need the following lemmata from [12] and [45].

Lemma 7 [12] Ifvertices a and b of a disk Dy (s) of a chordal graph G are connected
by a path P(a, b) outside of Dy (s) [i.e., P(a, b) N Di(s) = {a, b}], then a and b must
be adjacent in G.

Lemma 8 [45] Let G be a chordal graph and o be a LexBF S-ordering of G. For any
vertices a,b,c of G witha <b <cino and b,c € Ng(a), b and c must be adjacent
inG.

Now, we prove the main result of this subsection.

Theorem 3 Let G = (V, E) be a k-chordal graph. Any BFS-tree T of G is an addi-
tive (k — 1)-fframe (and, hence, by Corollary 3, an additive (k — 1)-frame) of G. If G
is a chordal graph (i.e., k = 3), then any LexBFS-tree T of G is an additive 1-fframe
(and, hence, by Corollary 3, an additive 1-frame) of G.

Proof First of all notice that since T is a BFES-tree of G rooted at s, for any vertex
veV,dg(v,s)=dr(v,s), and, for any edge uv € E, |dr (u,s) —dr(v,s)| < 1.

Assume that we want to route from a source vertex x to a target vertex y (y # x)
in G.If x e sTy or y € sTx then, according to the IGRF strategy, Rg,7(x,y) =xTy
(by Lemma 1) and, therefore, the length of R 7(x, y) is equal to dg (x, y).

Let Pg(x, y) be an arbitrary shortest path between x and y in G. We may assume
that dg (x, y) > 2, since otherwise both the IGRF routing path Rg 7(x,y) and the
shortest path Pg(x, y) have length 1. So, we only need to consider the case when
x&sTy,yedsTx anddg(x,y) > 2.

By Lemma 1, Corollary 3 and Lemma 3, the routing path R 7(x, y) is induced
and can be decomposed into three parts: subpath x ...a of path xT's, edge ab of G
and subpath b. ..y of path sTy. We have |dr(a,s) —dr (b, s)| <1.

Assume now that the length of path Rg r(x, y) is atleast dg(x, y) + k. Let z be a
vertex of Pg(x, y) closest to s in G. Consider also vertices y’, y” € yTs and x’, x” €
xTs with dp (x',s) =d7(z,5) =dr(y',s) and dy (x",s) =dr(z,5) — 1 =dr (Y, s)
(see Fig. 4). As T is a BFS-tree, we have dg(x,x) < dg(x,z) and dg(y,y") <
dg(y,z). We may assume that dg(a,s) < dg(x",s) and dg(b,s) < dg(y",s),
since otherwise dg(x, y) + k < length(Rg,1(x,y)) <dg(x,x") +2+dg(y,y) <
dg(x,2) +dc(y,2) +2=dg(x,y) + 2, and a contradiction with k > 3 arises.

Let R’ be the subpath of R 7(x, y) between x” and y”. Since:

@ Springer

Algorithmica (2013) 66:479-511 491

Fig. 4 Illustration to the proof
of Theorem 3 (Color figure
online)

dg(x,y) + k < length(Rg.7(x,y)) = length(xTx") + 1 + length(R") + 1 +
length(y'Ty);

length(xTx") <dg(x,2);

length(y'Ty) < dg(y, z); and

dg(x,y) =dg(x,2) +dc(y,2),

we get length(R') > k — 2. Furthermore, if length(R") = k — 2, then dg(x,x") =
dg(x,2) and dg (v, y') =dg(y. 2).

In the subgraph of G induced by vertices x”"Tx U Pg(x,y) U yTy”, consider a
shortest path P’ connecting vertices x” and y”. Clearly, no inner vertex of P’ is adja-
cent to any inner vertex of R’, i.e, paths R’ and P’ form an induced cycle in G. Since
G cannot have induced cycles of length greater than k and length(R') > k — 2, we
conclude that either length(P') =1 (i.e., x"y" € E, x" =a, y" = b, length(R') = 1
and k = 3), or length(P") =2 (i.e., length(R) =k —2>2,k >4 and x"z, y"z € E).
In both cases, dg(x, x') = dg(x, z) and dg(y, y") = dg(y, z) because length(R') =
k —2. Also, in both cases, x”z, y”z € E must hold. Indeed, when k = 3, G is a chordal
graph and in a cycle of G formed by vertices x”"Tx U Pg(x, y) UyTy”, edge x”y"”
must belong to a triangle. It is evident that the third vertex of that triangle must be
z. Now, since dg(x,x") = dg(x,z) and dg(y,y") = dc(y, z), by Lemma 6, z < x’
and z < y’. On the other hand, since x"z, y”z € E, by property (P2) of BFS-ordering,
x” = y” must hold, which is impossible. The contradiction obtained proves that the
length of path Rg 7(x, y) isat most dg(x,y) +k — 1.

To prove the second part of the theorem, let G be a chordal graph (i.e., k = 3)
and let the length of path Rg r(x, y) be equal to dg (x, y) + 2. Using the same nota-
tions as before and denoting by R(x’, y’) the subpath of R r(x,y) between x’ and
y', we getdg(x,y) + 2 =length(Rg.1(x,y)) = length(xTx") + length(R(x', ¥)) +
length(y'Ty) < dg(x, 2)+length(R(x', y'))+dc (v, z)=dg (x, y)+length(R(x', ")),
i.e., length(R(x',y’)) > 2. Furthermore, if length(R(x’, y’)) =2, then dg(x,x') =
dg(x,z) and dg(y,y) = dg(y, z), and if length(R(x’,y")) = 3, then dg(x, x') =
dg(x,z) ordg(y,y') =dc(y, 2).

@ Springer

492 Algorithmica (2013) 66:479-511

Fig. 5 A 5-chordal graph with
a LexBFS-ordering:
length(Rg 7 (x,y)) =T7=

4 +dg(x,y) (Color figure
online)

Fig. 6 A chordal graph with a 7 (s)
BFS-ordering:
dg(x,y)=2=4-2=
length(Rg T (x,y)) — 2 (Color
figure online) 3 4

2@y 100

Assume dg(x,x") =dg(x, z) and dg(y,y’) = dg(y, z). Then, by Lemma 6, z <
x"and z < y’, and, by Lemma 7, x'z, y'z € E. Since x’'y’ ¢ E, a contradiction with
Lemma 8 occurs.

Hence, we must have length(R(x', y")) > 2,i.e.,x'y’, x'y", y'x" ¢ E and x” # y".
Furthermore, by Lemma 7, vertices x” and y” are adjacent, i.e., length(R(x’, y')) =
3. Assume, without loss of generality, that dg(x,x’) = dg(x, 7). Then, necessar-
ily, dg(y, ") = dg(y,z) — 1 must hold. By Lemmas 6 and 7, we have z < x’ and
x'z € E. According to property (P1) of BFS-ordering, y” > z. Therefore, by Lemma
8, vertices z and y” cannot be adjacent (otherwise, x'y” € E, which is impossible).
Consider a cycle C of G formed by vertices z, x’, x”, y”Ty and a subpath P(z,y)
of Pg(x,y) between z and y. Since G is chordal, edge x”y” must form a triangle
with some other vertex of C. As zy” ¢ E, the neighbor w of z in P(z, y) must be
in Lgg(s,z)(s) to form that triangle. Note that dg(y, y') = dg(y, w) =dg(y,z) — L.
Again, by Lemmas 6 and 7, we have w < y’ and y'w € E. According to property
(P1) of BFS-ordering, x” > w. As x"w € E and x"y’ ¢ E, a contradiction with
Lemma 8 arises. This contradiction proves that the length of path Rg, 7(x,y) is at
most dg (x, y) + 1. O

Figure 5 shows that the result of Theorem 3 is tight for 5-chordal graphs, and
cannot be improved if we consider a LexBFS-tree instead of a BFS-tree. Figure 6
shows a chordal graph for which the result of Theorem 3 is tight, and the result is not
true anymore if LexBFS-tree is replaced by BFS-tree. It is easy to see (by a simple
case analysis) that even the chordal graph obtained from the graph in Fig. 6 by re-
moving vertex y has neither an additive O-carcass nor a O-frame, but has an additive
O-fframe (see Fig. 8). Figure 9 presents a chordal graph with an additive 0-frame
(which is also an additive O-fframe) and this graph does not have any additive
O-carcass. It is also interesting to ask whether some LexBFS-tree T of a chordal
graph G is an additive r-carcass for some constant r. The following lemma is true.

@ Springer

Algorithmica (2013) 66:479-511 493

Fig.7 A chordal graph with a
LexBFS-tree. This tree is not an
additive r-carcass for r <5
(Color figure online)

Fig. 8 A chordal graph with an
additive O-fframe. This graph
has neither additive O-carcass
nor additive O-frame (Color
figure online)

Fig. 9 A chordal graph with an
additive O-frame (which is also
an additive O-fframe). This
graph does not have any additive
0-carcass (Color figure online)

Lemma9 For any constant integer r > 1, there is a chordal graph G with a LexBFS-
tree T such that T is not an additive r-carcass of G.

Proof We will construct a chordal graph G for » = 4. It will be clear how the method
can be extended to an arbitrary r. Figure 7 shows such a graph. It has 9 levels, from
Lo to Lg (vertices on each level are labeled/numbered as shown in the figure). Levels
Lg, L7 and Lg have 7 vertices each. If i < 6, then level L; _; has one vertex less than
level L;. Level Ly has only one vertex s. Each level L; (i <6) forms aclique C; in G.
Level L7 consists of a clique C7, formed by vertices {0, 1, ..., 5}, and of an isolated
vertex 6. Level Lg consists of an induced path formed by vertices {0, 1, ..., 5}, and
of an isolated vertex 6. Each clique Cy, ..., C7 is marked by a circle. This describes
the vertex set and the inner-level edges of G. Additionally, all vertices labeled by 6
form an induced path in G, and, foreach k=1, ...,8, vertex i (i #6if k=7, 8) in
Ly is adjacent to any vertex j in Lig_1 with j <i.

One can easily verify that the graph G constructed is chordal, and that the span-
ning tree depicted in bold (red) is a LexBFS-tree of G. Let us name a vertex by
(i, j), where i is the index of level it belongs to and j is its label in that level. By
the TDGR strategy, a message from x = (8,0) to y = (8, 6) will use the following
path which has 10 edges: (8,0) — (§,1) — (8,2) = (8,3) — (8,4) — (8,5) —

@ Springer

494 Algorithmica (2013) 66:479-511

(7,5) — (6,5) — (6,6) — (7,6) — (8, 6), while a shortest path between x and y
has only 5 edges (for example, (8, 0) — (7,0) — (6,0) — (6,6) — (7,6) — (8, 6)).
Thus, T is not an additive 4-carcass of G. O

4.2 Chordal Bipartite Graphs and AT-Free Graphs

In this subsection, we will show that each chordal bipartite graph admits an additive
O-fframe (which is also an additive O-frame) and each AT-free graph admits an addi-
tive 2-fframe (which is also an additive 2-frame).

A graph G is called chordal bipartite if it is bipartite and has no induced cycles
of size greater than 4. Chordal bipartite graphs are precisely the bipartite 4-chordal
graphs. We will show that every chordal bipartite graph admits a special LexBFS-
tree which is an additive O-frame as well as an additive O-fframe. We will need the
following result from [16].

Lemma 10 [16] Let G be a chordal bipartite graph. Then, there is a LexBFS-
ordering o of G with the property: for any vertices a,b,c,d of G such that
ab,ac,bd e E,a <d, b <cin o, d and c must be adjacent in G. Such a special
LexBFS-ordering of G can be found in O (n?) time.

It is also easy to prove the following lemma (an analog of Lemma 7) for chordal
bipartite graphs.

Lemma 11 If vertices a and b of a disk Dy (s) of a chordal bipartite graph G are
connected by a path P(a, b) outside of Dy (s) [i.e., P(a,b) N Dy(s) = {a, b}], then a
and b must have a common neighbor in Ly4+1(s) N P(a, b).

Theorem 4 Every chordal bipartite graph G admits a special LexBFS-tree which is
an additive O-fframe (and, hence, an additive O-frame) of G.

Proof We will use the same notation as in the proof of Theorem 3. Let 7 be the
LexBFS-tree associated with that special LexBFS-ordering of chordal bipartite graph
G (indicated in Lemma 10). Assume, the root of T is s. Notice that, since G is bipar-
tite, there is no edge ab in G with dg (a, s) = dg (b, s) (call such an edge horizontal).
As in the proof of Theorem 3, we only need to consider the case when x & 5Ty,
ye&sTxand dg(x,y) > 2.

Let Pg(x, y) be a shortest path between x and y in G with dg (s, Pg(x,y)) is
minimum. Let again Rg r(x,y) be the routing path from x to y produced by the
IGRF strategy. Vertices z € Pg(x,y), y',y” € yTs and x’,x” € xTs are defined
as in the proof of Theorem 3. Note that, since G is bipartite (no horizontal edges),
x//y//’x/y/’x/z’ y/z ¢ E

First assume that x'y”, y'x” ¢ E. Hence, x” # y”. By Lemma 11, we may assume
that x”z, y”z € E. Let, without loss of generality, x” < y”. Applying Lemma 10
to vertices x’,x”,z,y” with x'y” ¢ E, we conclude that z > x’ must hold. But
then, by Lemma 6, dg(x,x’) # dg(x,z). Since G is bipartite, the latter implies
dg(x,x’) =dg(x,7) —2,1i.e., there is a shortest path between x and y in G involving

@ Springer

Algorithmica (2013) 66:479-511 495

vertices x’, x”, z. Since path Pg(x, y) was chosen with minimum dg (s, Pg(x, y)),
a contradiction occurs.

So, we may assume that x”y" € E or x'y” € E, ie., length(Rg 1(x,y)) <
dg(x,x) +2+dg(y,y). If dg(x,x") # dg(x,7), then dg(x,x") =dg(x,z) — 2
and, therefore, length(Rg.7(x,y)) <dg(x,x)+2+ds(y,y) <dg(x,z) —2+2+
dg(y,z) =dg(x,y), implying T is an additive O-fframe of G. The statement of the
theorem is true also if x’ = y’.

We may assume, now, that x’ # y', dg(x,x") = dg(x,z) and dg(y,y") =
dg (v, 7). Note that, in this case, Ly (z,5)(s) N Pg(x, y) contains only z. We claim that
dg(x,x")=dg(x,y") ordg(y,y") =dg(y, x’). If not, then z # x’" and z # y’. Con-
sider a common neighbor a € Lg; (;,5)+1(s) of z and x” with dg (a, x) =dg(x', x) — 1
and a common neighbor b € Ly (z,5)+1(s) of z and y" with dg (b, y) =dg(y', y) — 1
(they exist by Lemma 11). Necessarily, ay’, bx’ ¢ E. By Lemma 6, we have z < x’
and z < y’. Without loss of generality, let a < b. Applying Lemma 10 to vertices
x',a,z, b, we get bx’ € E, which is a contradiction.

Thus, dg (x, x") =dg(x, y") or dg(y, y') = dg(y, x") must hold. Let, without loss
of generality, dg(y,y’) = dg(y, x’). Consider the neighbor v of y’ in yTy'. By
Lemma 6, x’ < y’, and, by Lemma 11, there is a common neighbor u € Lyg v 5)+1(5)
of x" and y" with dg(u,y) =dg(y',y) — 1. If u = v then length(Rg 1 (x,y)) <
dG(x,x") +dg(y,v) + 1 =dg(x,x") +dg(y,y') <dc(x,z) +d(y,z) =dc(x,y),
implying T is an additive O-fframe of G. If u # v (i.e., x'v ¢ E) then, by Lemma 6,
u < v, and, by Lemma 11, there is a common neighbor w € Ly (v 5)+2(s) of u and
v with dg(w, y) =dg(y’, y) — 2. By property (P1) of BFS-ordering, w < x’. Apply-
ing Lemma 10 to vertices x’, u, w, v, we get a contradiction with x’v ¢ E. This final
contradiction completes the proof. 0

A graph is called AT-free if it does not have an asteroidal triple, i.e. a set of
three vertices such that there is a path between any pair of them avoiding the closed
neighborhood of the third. It is known that AT-free graphs form a proper subclass of
5-chordal graphs.

Theorem 5 Let G be an AT-free graph. Any BFS-tree T of G is an additive 2-fframe
(and, hence, an additive 2-frame) of G.

Proof We will again use the same notations as in the proof of Theorem 3. Let T be
a BFS-tree of G, rooted at 5. As before, we only need to consider the case when
xe&sTy,ydsTx and dg(x,y) > 2.

Let Pg(x, y) be any shortest path between x and y in G. Let again Rg r(x, y) be
the routing path from x to y produced by the IGRF strategy. Vertices z € Pg(x, y),
y',y" € yTs and x’, x”” € xT's are defined as in the proof of Theorem 3. If x" = y’ or
x"=y"orx'y" € Eorx"y € Eorx’'y’ € E,then length(Rg.1(x,y)) <dg(x,x")+
2+de(y,y) <dg(x,z) +dg(y,z) + 2 =dg(x,y) + 2, implying T is an additive
2-fframe of G.

We may assume then that x’ £ y’, x” # y”, x'y", x"y’, x'y’ ¢ E. Consider vertices
s, x" and y’ of G. They form an asteroidal triple, since path x'Tx U Pg(x, y) U yTy’
avoids the closed neighborhood of s, path x'T's avoids the closed neighborhood of y’,

@ Springer

496 Algorithmica (2013) 66:479-511

and path y'Ts avoids the closed neighborhood of x’. As G cannot have asteroidal
triples, this situation is not possible, proving the theorem. g

5 Localized Frames for Tree-Length A Graphs and §-Hyperbolic Graphs

In this section, we show that any tree-length A graph admits a A-localized additive Si-
fframe (which is also a A-localized additive 5A-frame) and any §-hyperbolic graph
admits a 45-localized additive 85-fframe (which is also a 46-localized additive 85-
frame). Additionally, we show that: for any A > 3, there exists a tree-length A graph

G with n vertices for which no (A — 2)-localized additive %, /log ”A;l-fframe exists;

for any A > 4, there exists a tree-length A graph G with n vertices for which no

[2(A—2)/3]-localized additive %, /log %—;”—frame exists; for any A > 6, there exists
a tree-length A graph G with n vertices for which no [(A — 2)/4]-localized additive

% log %—carcass exists.
5.1 Tree-Length A Graphs

Tree-decomposition is a rich concept introduced by Robertson and Seymour [44] and
is widely used to solve various graph problems. In particular efficient algorithms exist
for graphs having a tree-decomposition into subgraphs (or bags) of bounded size, i.e.,
for bounded tree-width graphs.

The tree-length of a graph G is the smallest integer A for which G admits a tree-
decomposition into bags of diameter at most A. It has been introduced and exten-
sively studied in [15]. Chordal graphs are exactly the graphs of tree-length 1, since a
graph is chordal if and only if it has a tree-decomposition into cliques (cf. [8, 14]).
AT-free graphs and distance-hereditary graphs are of tree-length 2. More generally,
[26] showed that k-chordal graphs have tree-length at most k/2. However, there are
graphs with bounded tree-length and unbounded chordality, like the wheel (here, the
chordality is the smallest k such that the graph is k-chordal). So, bounded tree-length
graphs is a larger class than bounded chordality graphs.

We now recall the definition of tree-decomposition introduced by Robertson and
Seymour in their work on graph minors [44]. A tree-decomposition of a graph G is a
tree T whose vertices, called bags, are subsets of V(G) such that:

l. UXE‘,(T) X =V(G),
2. for all uv € E(G), there exists X € V(T) such that u, v € X; and
3. forall X,Y,Z e V(T),if Y is on the path from X to ZinT then XNZ CY.

The length of tree-decomposition 7" of a graph G is max xey () max, yex dg (u, v),
and the tree-length of G is the minimum, over all tree-decompositions 7' of G, of the
length of T'.

A well-known invariant related to tree-decompositions of a graph G is the tree-
width, defined as minimum of maxycy(ry|X| — 1 over all tree-decompositions T
of G. We stress that the tree-width of a graph is not related to its tree-length. For

@ Springer

Algorithmica (2013) 66:479-511 497

Fig.10 (1) NCA7(X,Y)=X;
(2Q)NCAT(X,Y)=Y; S
(B)NCAT(X,Y):=A

is neither X nor Y (Color figure
online)

&

|

M

instance, cliques have unbounded tree-width and tree-length 1, whereas cycles have
tree-width 2 and unbounded tree-length.
We will need the following property of tree-decomposition.

Proposition 1 [14] Let X be a bag of a tree-decomposition T of G, and Ty, T, be
arbitrary two different subtrees of T \ {X} (obtained after removing bag X from T).
Then, X separates in G vertices belonging to bags of Ty but not to X from vertices
belonging to bags of T» but not to X.

First, we prove the main, positive result of this subsection.

Theorem 6 If G has the tree-length), then any BFS-tree T of G is a \-localized
additive SA-fframe (and, hence, a ,-localized additive Sh-frame) of G.

Proof Assume 7 is a tree-decomposition of G of length A, and T is a BFS-tree of
G rooted at an arbitrary vertex s. Let Rg 7 (x, y) be the routing path from a vertex
x to a vertex y produced by the A-localized IGRF scheme using tree 7. Let assume
also that 7 is rooted at a bag S containing vertex s, and let X (resp., Y) be the closest
to S bag in 7 containing vertex x (resp., vertex y). If X =Y, then y € D, (x, G),
and the length of Rg r(x,y) is dg(x,y). Consider the nearest common ancestor
A=NCA7T(X,Y)of X and Y in 7. We have three possible cases: A= X, A=Y or
A is different from both X and Y. Figure 10 shows all three cases (and bold paths
there are paths of the BFS-tree T').

If A= X then, according to Proposition 1, there must exist a vertex x’ € X such
that x’ € yT's and x” € D, (x, G). It is easy to see then that the length of Rg 7(x, y)
is at most dg (x', y) + A <dg(x, y) + 2.

Now let A =Y. There must exist a vertex y’ € Y such that y’ € xT's. Since y €
D, (y', G), we conclude that there must exist a vertex x’ € xT'y’ (including the case
x"=y’)and a vertex y” € yT's (including the case y” = y) such that y” € D, (x/, G).
If there is more than one such x’, we assume x’ is chosen to be closest to x in 7.
If there is more than one such y”, we assume y” is chosen to be closest to y in T.

@ Springer

498 Algorithmica (2013) 66:479-511

We have dg (x', y") < A, dg(y, ") < A, and, by the triangle inequality, dg(y”, y) <
dc(y",x") +dc(x',y) +dc(y',y) <dg(x',y’) + 2. Since T is a BFS-tree, ac-
cording to the A-localized IGRF scheme, we get length(Rg,7(x, y)) =dr(x,x’) +
dg(x',y") +dr(y",y) = dg(x,x") + dc(x',y") + dc(y",y) < dg(x,x") + » +
de(x',y) +2x=dg(x,y) + 31 <dg(x,y) +4xr.

Finally let A # X and A # Y. There exist x’ € A, y' € A and a € A such that x’ €
xTs, y' € yTs, and a is on a shortest path from x to y in G. Since y' € Dy (x', G),
there must exist a vertex x” € xTx’ (including the case x” = x) and a vertex y” €
yT's (including the case y” = y’) such that y” € D; (x”, G). If there is more than
one such x”, we assume x” is chosen to be closest to x in 7. If there is more than
one such y”, we assume y” is chosen to be closest to y in 7. We have y” € y'Ty or
y' €y'Ts.

According to the A-localized IGRF scheme, length(Rg 1(x,y)) = dr(x,x") +
dg(x",y") +dr(y",y) =dc(x,x") +dc(x",y") + dc(y",y) <dc(x,x") + 1 +
dg(y,y"). We know also that dg(x, y) = dg(y,a) + dg(x,a) > dg(x,x’) — A +
dc(y,y) —r=dg(x,x") +dg(y,y') — 2. Furthermore, dg (y', y") <dg(y', x") +
de(x',x")+dc(x",y") <dg(x’,x") + 2. Since y” € y'Ty or y” € y'Ts, we also
getdg(y,y") <dg(y,y) +dc(y',y").

Consequently, length(Rg.7(x,y)) < dc(x,x") + A +dg(y,y") <dg(x,x") +
A+dc(y,y)+dc(y',y") <dc(x,x")+dc(x',x")+ 31 +dG(y,y) =dc(x,x") +
3A+dg(y,y') <dg(x,y)+ 51, and T is a A-localized additive 5A-fframe (and a A-
localized additive SA-frame) of G. O

5.2 Lower Bound Results
Now, we prove some lower bound results.

Lemma 12 For any A > 3, there exists a planar tree-length) graph without any
(A — 2)-localized additive (La)-fframe for any constant a > 1.

Proof To prove this lemma, we construct a gadget graph composed of rockets (it will
be of tree-length 1). A rocket consists of 1 triangle and b rectangles where b > A — 1
(see [13] for other use of similar gadgets). Each horizontal “edge” of the triangle
and any rectangle is a path of length A — 1. Rectangle 1 shares a horizontal “edge”
with the triangle. Rectangle i shares a horizontal “edge” with rectangle i — 1 and
rectangle i + 1, respectively, for 2 <i < b — 1. Figure 11 shows an example of a
rocket consisting of 1 triangle and 5 rectangles. The top vertex on the triangle is
labeled as root vertex s. The bottom left vertex and bottom right vertex are marked
as p and g. We mark, on each horizontal path, the left-most vertex by /; and the
right-most vertex by r;, where i is the level of the path (see Fig. 11). These vertices
(which include p and ¢) are regarded as terminal vertices. The gadget is formed (in
a tree-like manner) by taking one rocket as the “root rocket” and then developing the
gadget by identifying the root vertex of a child rocket with a terminal vertex of its
parent. In addition, we say that the gadget has “depth” 1 if it contains only 1 rocket,
and has “depth” k(k > 1) if all terminal vertices of the root gadget are the roots of a
gadget of “depth” k — 1.

@ Springer

Algorithmica (2013) 66:479-511 499

Fig. 11 A tree-length 6 graph
and its corresponding
tree-decomposition (Color
figure online)

triangle O

rectangle 1 rectangle 1)

rectangle 2 rectangle 2<)

—O0——CO0—"0—0—-<C

rectangle 3 rectangle 3 <)

—O0—0—0-"0-C

rectangle 4 rectangle 4 <)

L Oo—0—0——0—0—0r

‘tangle 5
reciangee rectangle 5§ O

O—0—0—0C0°0
p q

Let T be any (rooted) spanning tree of the gadget of “depth” k. We may assume
that the spanning tree T is rooted at the root vertex of the “root rocket”, which is our
special vertex and we name it sg. If T is not rooted at s9, we can take two identical
copies of the gadget of “depth” k, glue them at 59, and then any rooted spanning tree
of the resulting graph will produce in at least one of the two copies a spanning tree
with root sg. (This will only double the number of vertices in the graph and we will
still work only in the appropriate copy). Furthermore, the subtree of T spanning any
given rocket of that copy can be considered as rooted at the root of the rocket.

So, we assume that 7" is rooted at the root vertex sg of the “root rocket” of the
gadget G with “depth” k. The following two claims are true.

Claim 1 If T is a (A — 2)-localized additive (La)-fframe of G, where a < @ —1,
then in each rocket, there must exist a horizontal path which is a path in T.

Proof We can prove the claim by contradiction. Suppose that there is a rocket where
no horizontal path is a path in 7. Then, it is easy to conclude that the routing path

@ Springer

500 Algorithmica (2013) 66:479-511

Fig. 12 A tree-length 8 graph
and its corresponding
tree-decomposition (Color
figure online)

produced by the (A — 2)-localized IGRF strategy from p to ¢ in the rocket is of length
2b + 2 (no matter how T spans the rocket), while the shortest path between p and
q is A — 1. This contradicts the assumption that 7' is a (A — 2)-localized additive

(Aa)-fframe, where a < 2}’)‘—+3 —1. O

Claim 2 [fthe gadget G has “depth” k > 2a+A —3, then T is not a (A —2)-localized
additive (\a)-fframe of G where a < —2b;‘3 —1.

Proof We can prove the claim by contradiction. Suppose T is a (A — 2)-localized
additive (Aa)-fframe of G where a < % — 1. By Claim 1, in each rocket there
exists a horizontal path which is a path in 7.

Let consider an arbitrary rocket A at “depth” greater than A — 2. According to the
gadget construction, so € D;_»(v, G) for any vertex v of the rocket A. Recall that
so is the root vertex of the “root rocket”. Therefore, the routing path from v to sg
produced by the (A — 2)-localized IGRF strategy will follow the spanning tree 7 in
rocket A. By Claim 1, in rocket A there exists a horizontal path, name it LR, which is
a path in 7. Let the left most vertex of the path LR be L, and the right most vertex be
R, and the root vertex of A be s . Since LR is a T path, it is easy to see that either the
tree path from L to s passes through R, or the tree path from R to s passes through
L. Therefore, either from R to sg or from L to s, the route produced by the (A — 2)-
localized IGRF strategy will divert, in rocket A, from the corresponding shortest G
path (in particular, we will have dr(L,sp) > dg(L,spx) + X — 1 or d7(R,sp) >
dg(R,sp)+ X1 —1).

In what follows, we will locate a vertex ¢ in a rocket at “depth” greater than 2a +
A —3, such that the route from ¢ to 5o produced by the (A —2)-localized IGRF strategy
will have length at least dg (¢, s9) + Aa + 1. Starting from an arbitrary rocket A at
“depth” A — 1, we identify a terminal vertex v with d7 (v, sp) > dg(v,sp) + A — 1
(such a vertex always exists according to the above analysis). Now, starting from the
rocket rooted at v, we will repeat the same procedure, until we identify such a vertex

@ Springer

Algorithmica (2013) 66:479-511 501

t in arocket at “depth” greater than 2a 4+ A — 3. Since the route Rg 7 (¢, so) from ¢ to
so produced by the (A — 2)-localized IGREF strategy will follow the spanning tree 7'
in any rocket of “depth” greater than A — 2 and, in each such rocket, R 7 (¢, sp) has
surplus A — 1 with respect to shortest path, we conclude that length(Rg, (¢, s0)) —
dg(t,s0) >2a(h — 1) > Aa + a > rla + 1. The latter means that 7 is not a (A — 2)-
localized additive (Aa)-fframe of G. O

Now we can finish the proof of the lemma. Given A(A > 2) and a > 1, we create
our gadget G by letting b > % and k > 2a 4+ A — 3. Then, by Claims 1 and 2,
G does not have any (A — 2)-localized additive (Aa)-fframe. O

Corollary 5 For any) > 3, there exists a planar tree-length A graph G with n ver-

tices for which no (A — 2)-localized additive % log ”A;l—ﬁ‘rame exists.

Proof 1Tt is easy to see that the number of vertices in each rocket is (b + 1)A + 1, and
the number of terminals in each rocket is 2(b+ 1), where b is the number of rectangles
in a rocket. According to the construction of a gadget, the number of vertices in a

gadget is n = %(z) + 1)A + 1. Therefore, we have log(n — 1) = log((2(b +

D)¥ —1) —log(2(b + 1) — 1) + log(b + 1) + log A.

Since log((2(b + k-1 < log(2(b + 1))* and log(2(b+ 1) — 1) > log(2b), we
have log(n — 1) < klog(2(b+1)) +1og((b+1)/2b) +1log A < klog(2(b+ 1)) +logA,

log(2-L

%-

According to the proof of Lemma 12,k > 2a +X —3 and b > W Therefore,
for convenience, we can choose k = 3aA and b = Aa — 1. It is easy to verify that
3ab>2a+Ai—3and ha — 1 > W given the fact that A > 3 and a > 1. Denote

n—1 n—1
¢ = Aa. Then, we have k =3¢, b =c — 1 and 3¢ > l(l)i(lo*gc) > lifg/(ﬁc). Finally, ¢ >

%,/log%. O

With similar proof technique we can prove also the following results.

ie., k>

Lemma 13 For any A > 4, there exists a planar tree-length) graph without any
[2(A — 2)/3]-localized additive (La)-frame for any constant a > 1.

Proof To prove this lemma, we construct a gadget G in a similar way as we did in
the proof of Lemma 12. We have only few small differences (see Fig. 12).

e Each horizontal “edge” of the triangle or a rectangle is a path of length [2(A —
2)/31+ 1, and each vertical “edge” of a rectangle (or non-horizontal “edge” of the
triangle) is a path of length [(A —2)/3] + 1.

e Two “central” vertices of each horizontal path of a rocket are identified as terminal
vertices. All other vertices are non-terminal vertices. If a horizontal path has an
even number of vertices, the two “central” vertices are exactly the two middle
vertices of the path. If a horizontal path has an odd number of vertices, the two
“central” vertices are the two vertices adjacent to the middle vertex.

e We assume b > 2, i.e. a rocket should have two or more rectangles.

@ Springer

502 Algorithmica (2013) 66:479-511

Similarly, as in the proof of Lemma 12, we assume that spanning tree 7 is rooted
at the root vertex of the “root rocket”, which is a special vertex and we name it sg.
With the same proof technique, we can show that the following claim holds.

Claim 1 If T is a [2(0 — 2)/3]-localized additive (Aa)-frame of G, where a <
2“3#, then in each rocket, there must exist a horizontal path which is a path
inT.

Proof We can prove the claim by contradiction. Suppose that there is a rocket where
no horizontal path is a path in 7. Then, it is easy to conclude that the routing path pro-
duced by the [2(A — 2)/3]-localized IGR strategy from p to g (from the bottom left
vertex to the bottom right vertex) in the rocket is of length (2b 4+ 2)(L.(A —2)/3] + 1)
(no matter how T spans the rocket), while the shortest path between p and ¢ is
[2(A —2)/3] + 1. We have

@2b+2) (LA =2)/3]+ 1) = (120 =2)/31+ 1D

2b(A—2)—6
>(2b+2)(h—2)/3-Q20h—-2)/34+2)="""""">a

3
This contradicts the assumption that 7" is a (| 2(A —2)/3])-localized additive (Aa)-
frame, where a < %. O

Now we prove the following claim.

Claim 2 [f the gadget has “depth” k > Aa, then T is not a |2(, — 2)/3]-localized

additive (Aa)-frame, where a < 2”*;—;‘\'5—6_

Proof We can prove the claim by contradiction. Suppose T is a [2(A — 2)/3]-
localized additive (Aa)-frame where a < Zb)‘g#. By Claim 1, in each rocket there
exists a horizontal path which is a path in 7.

Consider an arbitrary rocket A, and let a horizontal path P(L, R) of A be a path
in T. Let the left most vertex of the path P(L, R) be L, and the right most vertex
be R, and two “central” vertices be C; and Cg, and the root vertex of A be s5 (see
Fig. 13(a) for an illustration). Since P(L, R) is a T path, it is easy to see that either
the tree path from L to sp passes through R, or the tree path from R to sp passes
through L. Without loss of generality, assume that the tree path from L to s5 passes
through R.

Vertex sp and vertices on horizontal paths other than the path P(L, R) do not
belong to D|2(3-2)/3](CL, G). Then, in D|3.—2)/3(CL, G), the vertex closest to so
in CpTsp is on the path of T from Cp to sp, which passes through R. Hence, the
route produced by the |2(1 — 2)/3]-localized IGR strategy from Cr, to s¢ will divert,
in rocket A, from the corresponding shortest G path (in particular, we will have
dr(Cr,sp) > dg(Cpr,sp) + 1).

Again, as in the proof of Lemma 12, we can locate a vertex ¢ in a rocket at “depth”
greater than Aa, such that the route from ¢ to sy produced by the [2(A — 2)/3]-
localized IGR strategy will have length at least dg (¢, so) + Aa + 1. The latter means
that T is not a |2(A — 2)/3]-localized additive (Aa)-frame of G. O

@ Springer

Algorithmica (2013) 66:479-511 503

Now we can finish the proof of the lemma. Given A(A > 3) and a > 1, we create

our gadget G by letting b > 32’\)\“_*46 and k > Aa. Then, by Claims 1 and 2, G does not
have any |2(A — 2)/3]-localized additive (Aa)-frame. Il

Corollary 6 For any A > 4, there exists a planar tree-length A graph G with n ver-

tices for which no |2(, — 2)/3]-localized additive %, /log 3('2;1) -frame exists.

Proof The proof is similar to the proof of Corollary 5. We need just to mention that
the number of vertices in arocketnowisn, = b+ DA+ b+ DA —-2)/3]+ 1<
(b—}—l)%k—{-l,andwechoosek:%Aa andb:%ka—l. Il

Lemma 14 For any A > 6, there exists a planar tree-length) graph without any
L(A — 2)/4]-localized additive (Aa)-carcass for any constant a > 1.

Proof To prove this lemma, we construct a gadget G in a similar way as we did in
the proof of Lemma 12 (see Fig. 11). The only difference is that we let two “central”
vertices (which are defined in the proof of Lemma 13) of each horizontal path of a
rocket be terminal vertices and all other vertices are non-terminal vertices. Let 7 be
any spanning tree on the gadget G. It is easy to observe that, for any horizontal path
of a rocket, there is at most one edge that is not a 7' edge.

First we prove the following claims.

Claim 1 If T is a |(A — 2)/4]-localized additive (La)-carcass of G, where a <
ZI’A—H — 1, then in each rocket,

(1) there exists a horizontal path which is a path in T, or

(2) there exists a horizontal path which contains a non-tree edge, say ab € E(G) \
E(T), such that min(dg(L,a),dg(R,b)) < |[(A — 2)/4] — 1, where L is the
leftmost vertex and R is the rightmost vertex on the path, and a is on the left side
of b.

Proof We can prove the claim by contradiction. Suppose for a rocket neither (1) nor
(2) holds, i.e., each horizontal path is not a path in T and, in each horizontal path,
for non-tree edge ab € E(G) \ E(T), min(dg(L,a),dg(R,b)) > (L —2)/4] — 1.
Then, we have dg (L, b) > | (A —2)/4] and dG(R,a) > [(A—2)/4].Let Rg. 7 (p,q)
be a routing path from vertex p to vertex g produced by the [(A — 2)/4]-localized
TDGR scheme using tree T . It is easy to see that length(Rg. 7 (p, q)) = 2b+ 2, while
the shortest path between p and g in G is A — 1. The latter contradicts the assumption
that T is a (A — 2)/4]-localized additive (Aa)-carcass, where a < Zb)\—“ —1. O

Claim 2 [f the gadget has “depth” k > Aa, then T is not a | (A — 2)/4]-localized
additive (Aa)-carcass of G where a < % -1

Proof We can prove the claim by contradiction. Suppose T is a | (A —2)/4]-localized

additive (Aa)-carcass, where a < 2;;)_+3 — 1. By Claim 1, in each rocket (1) or (2)
holds.

@ Springer

504 Algorithmica (2013) 66:479-511

Fig. 13 (a) A path is a tree

path. (b) A path is not a tree é_) ‘(C)L_éﬂ g

path. The edge ab is on the right (a)

side of Cp. (¢) A pathis nota c c

tree path. The edge ab is on the o o—or Oa Ob 5

left side of C, (Color figure (b)

online) L b c c R
—35 ¢ O o

Consider an arbitrary rocket A. Assume case (1) holds, i.e., there exists a hori-
zontal path P(L, R) which is a path in T (see Fig. 13(a)). Let the root vertex of A
be 5. Since P(L, R) is a T path, either the tree path from L to so passes through
R, or the tree path from R to sp passes through L. Without loss of generality, as-
sume that the tree path from L to sp passes through R. Vertices of A other than
vertices on the path P(L, R) do not belong to D|—2)/4](C, G). Therefore, a route
produced by the [(A — 2)/4]-localized TDGR strategy from Cy, to so will divert,
in rocket A, from the corresponding shortest G path (in particular, we will have
dr(Cr,sp) 2dg(CrL,sp) + 1).

Assume case (2) holds, i.e., there exists a horizontal path which contains a non-
tree edge ab € E(G) \ E(T), such that min(dg (L, a),dc(R, b)) < |[(A —2)/4] — 1
(see Fig. 13(b) and (c)). Without loss of generality, assume that ab is on the right
side of Cg. Since dg(R,b) < |(A—2)/4] —1 <A —2)/4—1 and dg(Cgr,R) =
LA —2)/2] > (A —=2)/2 — 1, we conclude dg(Cr,b) =dg(Cg, R) —dg(R, D) >
(A —=2)/4 > [(A —2)/4]. Therefore, b & D|(—2)/4)(Cgr, G). Consequently, a route
produced by the [(A — 2)/4]-localized TDGR strategy from Cg to sp (which is the
root vertex of the “root rocket”) will divert, in rocket A, from the corresponding
shortest G path (in particular, we will have d7 (Cg, sp) = dg(CRg, sp) + 1).

Again, as in the proof of Lemma 12, we can locate a vertex ¢ in a rocket at “depth”
greater than Aa, such that the route from ¢ to sg produced by the | (A —2)/4]-localized
TDGR strategy will have length at least dg (¢, so) + Aa + 1. The latter means that 7'
isnota | (A — 2)/4]-localized additive (Aa)-carcass of G. Il

Now we can finish the proof of the lemma. Given A(A > 5) and a > 1, we create
our gadget G by letting b > W and k > Xa. Then, by Claim 1 and Claim 2,
G does not have any | (A — 2)/4]-localized additive (La)-carcass. Il

Corollary 7 For any A > 6, there exists a planar tree-length A graph G with n ver-

tices for which no | (A — 2)/4]-localized additive 43—“ /log ”A;l-carcass exists.

Proof The proof is similar to the proof of Corollary 5. We need just to choose k =
$haand b= 1ra — 1. O

5.3 6-Hyperbolic Graphs

8-Hyperbolic metric spaces have been defined by M. Gromov [31] in 1987 via a
simple 4-point condition: for any four points u, v, w, x, the two larger of the distance

@ Springer

Algorithmica (2013) 66:479-511 505

sums d(u,v) +d(w,x),du, w) +dw, x),d(u, x) + d(v, w) differ by at most 24.
They play an important role in geometric group theory, geometry of negatively curved
spaces, and have recently become of interest in several domains of computer science,
including algorithms and networking. For example, (a) it has been shown empirically
in [47] (see also [1]) that the Internet topology embeds with better accuracy into a
hyperbolic space than into an Euclidean space of comparable dimension, (b) every
connected finite graph has an embedding in the hyperbolic plane so that the greedy
routing based on the virtual coordinates obtained from this embedding is guaranteed
to work (see [37]). A connected graph G = (V, E) equipped with standard graph
metric dg is §-hyperbolic if the metric space (V,dg) is §-hyperbolic. It is known
(see [10]) that all graphs with tree-length A are A-hyperbolic, and each §-hyperbolic
graph has tree-length O (5 logn).

We will need the following lemma which is an easy consequence of results in [4,
9,11, 28, 31].

Lemma 15 Let G be a §-hyperbolic graph. Let s,x,y be arbitrary vertices of
G and P(s,x), P(s,y), P(y,x) be arbitrary shortest paths connecting those ver-
tices in G. Then, for vertices a € P(s,x), b € P(s,y) with dg(s,a) = dg(s,b) =
| 4aC0H6ENACEN) | e inequality dg (a, b) < 48 holds.

It is clear that § takes values from {0, %, 1, %, 2, %, 3,...},andif § =0then G isa
tree. Hence, in what follows. we will assume that § > %

Theorem 7 If G is a §-hyperbolic graph, then any BFS-tree T of G is a 46-localized
additive 85-fframe (and, hence, a 48-localized additive 85-frame) of G.

Proof Let T be an arbitrary BFS-tree of G rooted at an arbitrary vertex s. Let
Rg.7(x,y) be the routing path from a vertex x to a vertex y produced by the 44-
localized IGRF scheme using tree 7. If x is on the T path from y to s, or y is on the
T path from x to s, it is easy to see that R 7(x, y) is a shortest path of G.

Let sTx (resp., sTy) be the path of T from s to x (resp., to y) and P(y,x)
be an arbitrary shortest path connecting vertices x and y in G. By Lemma 15, for
vertices a € sTx, b € sTy with dg(s,a) =dg (s, b) = LdG(S’deG(‘ZY’y)_dG(X"V)J, the
inequality dg(a, b) < 46 holds. Furthermore, since dg(a, x) + dg(a, s) = dg(s, x)
and dg (b, y) +dg (b, s) =dg (s, y), from the choice of a and b, we have dg(x, y) <
dg(a,x) +dg(b,y) <dg(x,y) + 1.

Let x” be a vertex of xT's with dg(x’, sTy) < 46 closest to x. Clearly, x’ belongs
to subpath aT x of path sT x. Let y" be a vertex of path yT's with dg (x/, y') <44 (i.e.,
y' € Dy4s(x’, G)) closest to y. Then, according to the 48-localized IGRF scheme, the
routing path Rg, 7(x,y) coincides with (x7x")U(a shortest path of G from x’ to
YHU(Y'Ty). We have length(Rg,7(x,y)) =dc(x,x") +dc(x’,y) +dc (', y).

If y' € bTy, then length(Rg,r(x,y)) = dg(x,x") + dg(x',y") + dc(y',y) <
dg(x,a)+45+dg(b,y) <dg(x,y)+45+ 1.

Assume now that y' € bT's and y’ # b. Then, we have also x’ # a. Since T is a
BFS-tree of G, dg(y', b) must be at most dg(y', x") (otherwise, x’ is closer than

@ Springer

506 Algorithmica (2013) 66:479-511

b to s in G, which is impossible). Thus, dg(y’, b) < dg(y', x") < 48 and, there-
fore, length(Rg, 1 (x, y)) =dg (x,x") +dc(x', y") +dc (Y, y) <dc(x,a) —1+45 +
de(b,y)+dgb,y) <dg(x,y)+1—1+88=dg(x,y)+ 83.

Combining all cases, we conclude that T is a 45-localized additive 85-fframe (and
a 46-localized additive 83-frame) of G. O

6 Conclusion and Future Work

In this paper, we investigated three strategies of how to use a spanning tree T of a
graph G to navigate in G, i.e., to move from a current vertex x towards a destination
vertex y via a path that is close to optimal. In each strategy, each vertex v has full
knowledge of its neighborhood Ng[v] in G (or, k-neighborhood Dy (v, G), where k
is a small integer) and uses a small piece of global information from spanning tree
T (e.g., distance or ancestry information in 7T'), available locally at v, to navigate
in G. We investigated advantages and limitations of these strategies on particular
families of graphs such as graphs with locally connected spanning trees, graphs with
bounded length of largest induced cycle, graphs with bounded tree-length, graphs
with bounded hyperbolicity. For most of these families of graphs, the ancestry infor-
mation from a Breadth-First-Search-tree guarantees short enough routing paths. In
many cases, the obtained results are optimal up to a constant factor.
Many questions and problems remain open. Here, we list only few of them.

e What other interesting graph families admit (k-localized) c-frames (c-carcasses,
c-fframes) for small constants k and c?

e Can our lower bound techniques be modified to obtain lower bound results for
other families of graphs?

e Given a graph G, numbers k and ¢, how hard is it to decide whether G admits a
k-localized c-frame (c-carcass, c-fframe)? If it exists, how hard is it to construct
one?

e What other (decentralized) (small piece of) information from a spanning tree of G
would be useful for navigating in G?

e What other (decentralized) (small piece of) global information can be useful for
navigating in graphs?

Acknowledgements We would like to thank the reviewer for many useful comments.

Appendix A: Experimental Results

In this appendix, we empirically compare the performance of TDGR, IGR and
IGREF, and their corresponding k-localized versions, on Unit Disk Graphs (UDGs),
which often model the wireless ad hoc networks. We use three kinds of spanning
trees, breadth-first-search tree (BFST, for short), minimum-spanning tree (MST, for
short), and depth-first-search tree (DFST, for short) for TDGR, IGR, and IGRF.
Since the IGR scheme is the same as the IGRF scheme if the spanning tree is
BFST, we only need to report on one of them. Therefore, the routing scheme pairs

@ Springer

Algorithmica (2013) 66:479-511 507

Table 3 Average densities for different radiuses

Radius 150 170 190 210 230 250 270 290
Density (|E|/|V]) 3.184 3.857 4853 5784 6822 8.134 9576 10311

(“strategy type”—“tree type”), we report on, are BFST-IGR, BEFST-TDGR, MST-IGR,
MST-IGRF, MST-TDGR, DFST-IGR, DFST-IGRF, and DFST-TDGR. All methods
are implemented in C++.

To generate a Unit Disk Graph, we first fix an area S, a radius R, and the number of
vertices N. Then, in § we randomly generate N vertices/points. Two vertices/points
are connected by an edge if and only if their Euclidean distance is at most R.

In the experiments, we care about the maximum multiplicative-stretch factor and
average multiplicative-stretch factor of each routing scheme using different spanning
trees. The multiplicative-stretch factor of two vertices u and v is defined as gggr(iuvl))) s
which is a good indication of how close the routing path is to the shortest path. Here,
gc.7(u,v) is the length of the route produced by an appropriate strategy from u
to v on G using tree T, and dg(u, v) is the distance in G between u and v. The
maximum stretch factor of a graph G = (V, E) is defined as maxl,,vev{ggg(fl'f;)}) },

8G.1(u,v)
u,veV dg(u,v) *

and the average stretch factor is defined as n% >
A.1 Performance Under Various Densities

In this set of experiments, we report on the performance of these routing schemes on
randomly generated UDGs with different densities, i.e., |E|/|V|. However, it is dif-
ficult to “randomly” generate a UDG with a fixed density. Instead, we vary densities
by choosing the radius R to be 150, 170, 190, 210, 230, 250, 270 and 290, with | V|
fixed to be 100. For each radius R, we randomly generate 10 UDGs. The average
density of 10 UDGs corresponding to each R is listed in Table 3. In the following
figures, each value is an average result on the 10 randomly generated UDGs.

The maximum multiplicative-stretch factors achieved by routing strategies under
different radiuses are shown in Fig. 14. We see that DFST-IGRF and MST-IGRF
have the worst maximum multiplicative-stretch factors and their performances are
not stable when the radius changes. Other routing schemes have quite low maximum
multiplicative-stretch factors which decrease gradually when the radius increases.
Among them, BFST-IGR, BFST-TDGR, MST-IGR, and MST-TDGR have the lowest
maximum multiplicative-stretch factors.

Figure 15 shows average multiplicative-stretch factors achieved by routing strate-
gies under different radiuses. Again, DFST-IGRF and MST-IGRF have the worst per-
formances and BFST-IGR, BFST-TDGR, MST-IGR, and MST-TDGR have the best
performances.

A.2 Performance Under Various Localities
In this appendix, we show how the k-localized version of these routing strategies

performs. The experimental settings are similar to those from Appendix A.1 except
that |V| is fixed at 120 and the radius is fixed at 130. We randomly generate 10

@ Springer

508 Algorithmica (2013) 66:479-511

30 T T T T T T
BFST-IGR ——
BFST-TDGR ---x---
MST-IGR ---%---
25 MST-IGRF & |
MST-TDGR --®-
e DFST-IGR ---o---
N 'S DFST-IGRF ----e--
RN DFST-TDGR - -4 -
. 20 T e E
=
L 15 IS
© i R =) o
& = *
[" a =
10 E
5 - .
1 1 1 1 1 1 1

140 160 180 200 220 240 260 280 300
Radius

Fig. 14 Maximum multiplicative-stretch factors by varying densities (Color figure online)

26 | BFSTIGR —— ' ' ' ' ' |
6 BFST-TDGR ---x---
MST-IGR - -
o4 | MST-IGRF & i
4 ['MST-TDGR -—w--
DFST-IGR --o---
25 | DFST-IGRF -~ - o I
DFST-TDGR & o
- S ——
£ 2+ o'. E
©
L ;
S 18} - e i
[} e e
= @ e
& e
16 _ o .
14 F i
12 F i
1 1 1 1 1 1 1

1
140 160 180 200 220 240 260 280 300
Fig. 15 Average multiplicative-stretch factors by varying densities (Color figure online)

UDGs. The average diameter of these UDGs is 18 (ranging from 16 to 20). For each
UDG, we range the locality k from 1 to 8 to see how each routing strategy performs.
Each value in the following figures is an average result on the 10 randomly generated
UDGs.

Figure 16 shows the maximum multiplicative-stretch factors achieved by each
routing scheme with different localities, and Fig. 17 shows the average multiplicative-
stretch factors achieved by each routing scheme with different localities. In both fig-
ures, we observe that the multiplicative-stretch factor of each k-localized routing
scheme converges to 1 when locality increases from 1 to 8. Increase in locality al-

@ Springer

Algorithmica (2013) 66:479-511 509

20 T T T T T T T
® BFST-IGR —+—
18 | BFST-TDGR ---%--- |
MST-IGR ------
MST-IGRF -8
16 [MST-TDGR --®m—
DFST-IGR ---o--
14 + DFST-IGRF ----e--- |
= DFST-TDGR ---&---
% 12 . -
g .
< 10 -
2]
[
H 8r i
6 | i
4k i
o | i
O 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

Locality

Fig. 16 Maximum multiplicative-stretch factors by varying localities (Color figure online)

2 ‘ T T T T T T
BFST-IGR ——
1ok . BFST-TDGR ---x--- |
’ MST-IGR ---%:--
. MST-IGRF &
18 - ERY MST-TDGR - = -
SN DFST-IGR - o -
176 DFST-IGRF e |
' DFST-TDGR -4 -
S 16} e
[}
©
w
= 15} g
[}
°
& 14 g
13 - g
12+ g
11+ g
;
0 9

Locality

Fig. 17 Average multiplicative-stretch factors by varying localities (Color figure online)

lows to obtain better routing paths, however, it also increases the computational and
communication costs. A good tradeoff between stretch factor and locality is needed.

Finally, when locality is more than 4, except for DFST-IGRF and MST-IGREF, all
the other routing schemes have quite small maximum and average multiplicative-
stretch factors. This is consistent with the observations from the previous subsection.

@ Springer

510 Algorithmica (2013) 66:479-511

References

1. Abraham, I., Balakrishnan, M., Kuhn, F., Malkhi, D., Ramasubramanian, V., Talwar, K.: Reconstruct-
ing approximate tree metrics. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Prin-
ciples of Distributed Computing (PODC 2007), Portland, Oregon, USA August 12-15, 2007 pp. 43—
52. ACM, New York (2007)

2. Adamic, L.A., Lukose, R.M., Huberman, B.A.: Local Search in Unstructured Networks. Willey, New
York (2002)

3. Adamic, L.A., Lucose, R.M., Puniyani, A.R., Huberman, B.A.: Search in power-law networks. Phys.
Rev. E 64(046135), 1-8 (2001)

4. Alonso, J.M., Brady, T., Cooper, D., Ferlini, V., Lustig, M., Mihalik, M., Shapiro, M., Short, H.:
Notes on word hyperbolic groups. In: Ghys, E., Haefliger, A., Verjovsky, A. (eds.) Group Theory
from a Geometrical Viewpoint, ICTP, Trieste 1990, pp. 3-63. World Scientific, Singapore (1991)

5. Bose, P., Morin, P., Stojmenovic, 1., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless
networks. In: Proceedings of the 3rd International Workshop on Discrete algorithms and Methods for
Mobile Computing and Communications, pp. 48—55. ACM Press, New York (1999)

6. Brandstddt, A., Chepoi, V.D., Dragan, F.F.: The algorithmic use of hypertree structure and maximum
neighbourhood orderings. Discrete Appl. Math. 82, 43—77 (1998)

7. Brandstidt, A., Dragan, EF., Chepoi, V.D., Voloshin, V.I.: Dually chordal graphs. SIAM J. Discrete
Math. 11, 437-455 (1998)

8. Brandstddt, A., Le Bang, V., Spinrad, J.P.: In: Graph Classes: A Survey. SIAM Monographs on Dis-
crete Mathematics and Applications. SIAM, Philadelphia (1999)

9. Bridson, M., Haefliger, A.: Metric Spaces of Non-Positive Curvature. Springer, Berlin (1999)

10. Chepoi, V., Dragan, EF., Estellon, B., Habib, M., Vaxes, Y.: Diameters, centers, and approximating
trees of §-hyperbolic geodesic spaces and graphs. In: Proceedings of the 24th Annual ACM Sympo-
sium on Computational Geometry, June 9-11 (2008)

11. Chepoi, V., Dragan, EF, Estellon, B., Habib, M., Vaxes, Y., Xiang, Y.: Additive spanners and distance
and routing labeling schemes for §-Hyperbolic graphs. Algorithmica 62, 713-732 (2012)

12. Corneil, D.G., Dragan, FF., Kohler, E.: On the power of BFS to determine a graph’s diameter. Net-
works 42, 209-222 (2003)

13. Corneil, D.G., Dragan, FF.,, Kohler, E., Xiang, Y.: Lower bounds for collective additive tree spanners.
In preparation

14. Diestel, R.: Graph Theory, 2nd edn. Graduate Texts in Mathematics, vol. 173. Springer, Berlin (2000)

15. Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter. Discrete Math. 307,
2008-2029 (2007)

16. Dragan, F.F.: Estimating all pairs shortest paths in restricted graph families: A unified approach. J.
Algorithms 57, 1-21 (2005)

17. Dragan, FF., Matamala, M.: Navigating in a graph by aid of its spanning tree metric. SIAM J. Discrete
Math. 25, 306-332 (2011)

18. Elkin, M.: A faster distributed protocol for constructing a minimum spanning tree. J. Comput. Syst.
Sci. 72, 1282-1308 (2006)

19. Fonseca, R., Ratnasamy, S., Zhao, J., Ee, C.T., Culler, D., Shenker, S., Stoica, I.: Beacon vec-
tor routing: scalable point-to-point routing in wireless sensornets. In: Proceedings of the Second
USENIX/ACM Symposium on Networked Systems Design and Implementation (NSDI 2005) (2005)

20. Fraigniaud, P.: Small worlds as navigable augmented networks: model, analysis, and validation. In:
Proceedings of the 15th Annual European Symposium, ESA 2007, Eilat, Israel, October 8-10, 2007.
Lecture Notes in Computer Science, vol. 4698, pp. 2—11. Springer, Berlin (2007). 2007

21. Fraigniaud, P., Korman, A., Lebhar, E.: Local MST computation with short advice. Theory Comput.
Syst. 47, 920-933 (2010)

22. Garg, V.K., Agarwal, A.: Distributed maintenance of a spanning tree using labeled tree encoding. In:
Processing of Euro-Par 2005. Lecture Notes in Computer Science, vol. 3648, pp. 606-616 (2005)

23. Gartner, F.C.: A survey of self-stabilizing spanning-tree construction algorithms. Technical report
ic/2003/38, Swiss Federal Institute of Technology (EPFL) (2003)

24. Gavoille, C.: A survey on interval routing schemes. Theor. Comput. Sci. 245, 217-253 (1999)

25. Gavoille, C.: Routing in distributed networks: overview and open problems. ACM SIGACT News-
Distribute Comput. Column 32 (2001)

26. Gavoille, C., Katz, M., Katz, N.A., Paul, C., Peleg, D.: In: Approximate distance labeling schemes, 9th
Annual European Symposium on Algorithms, ESA. Lecture Notes in Computer Science, vol. 2161,
pp. 476-488. Springer, Berlin (2001)

@ Springer

Algorithmica (2013) 66:479-511 511

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.
47.

48.

Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. J. Algorithms 53, 85-112
(2004)

Ghys, E., de la Harpe, P. (eds.): Les Groupes Hyperboliques d’apres M. Gromov. Progress in Mathe-
matics, vol. 83. Birkhduser, Basel (1990)

Giordano, S., Stojmenovic, L.: Position based routing algorithms for ad hoc networks: a taxonomy. In:
Cheng, X., Huang, X., Du, D. (eds.) Ad Hoc Wireless Networking, pp. 103—136. Kluwer, Amsterdam
(2004)

Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)
Gromov, M.: Hyperbolic groups. In: Gersten, S.M. (ed.) Essays in group theory. MSRI Series, vol. 8,
pp. 75-263 (1987)

Henzinger, M.R., King, V.: Maintaining minimum spanning trees in dynamic graphs. In: Proceedings
of 24th International Colloquium on Automata, Languages and Programming (ICALP’97), Bologna,
Italy, 7-11, July 1997. Lecture Notes in Computer Science, vol. 1256, pp. 594-604. Springer, Berlin
(1997)

Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms
for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 48, 723-760 (2001)
Jacquet, P., Viennot, L.: Remote spanners: what to know beyond neighbors. In: 23rd IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS 2009), pp. 1-15 (2009)

Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing for wireless networks. In: Proceedings
of the 6th ACM/IEEE MobiCom, pp. 243-254. ACM, New York (2000)

Kleinberg, J.M.: The small-world phenomenon: an algorithm perspective. In: Proceedings of the
Thirty-Second Annual ACM Symposium on Theory of Computing (STOC 2000), May 21-23 (2000)
Kleinberg, R.: Geographic routing using hyperbolic space. In: Proceedings of the 26th IEEE Interna-
tional Conference on Computer Communications (INFOCOM 2007), Anchorage, AK pp. 1902-1909.
IEEE, New York (2007)

Kuhn, F.,, Wattenhofer, R., Zhang, Y., Zollinger, A.: Geometric ad-hoc routing: of theory and practice.
In: Proceedings of the 22nd Annual Symposium on Principles of Distributed Computing, pp. 63-72.
ACM, New York (2003)

Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., Tomkins, A.: Geographic routing in social
networks. Proc. Natl. Acad. Sci. USA 102, 11623-11628 (2005)

Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applica-
tions. Combinatorica 15, 215-245 (1995)

Peleg, D.: Proximity-Preserving labeling schemes and their applications. J. Graph Theory 33, 167—
176 (2000)

Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs on Discrete
Math. Appl. SIAM, Philadelphia (2000)

Rao, A., Papadimitriou, C., Shenker, S., Stoica, I.: Geographical routing without location information.
In: Proceedings of the 9th Annual International Conference on Mobile Computing and Networking
(MobiCom 2003), pp. 96-108 (2003)

Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7,
309-322 (1986)

Rose, D., Tarjan, R.E., Lueker, G.: Algorithmic aspects on vertex elimination on graphs. SIAM J.
Comput. 5, 266283 (1976)

Santoro, N., Khatib, R.: Labelling and implicit routing in networks. Comput. J. 28, 5-8 (1985)
Shavitt, Y., Tankel, T.: On internet embedding in hyperbolic spaces for overlay construction and dis-
tance estimation. In: Proceedings of the 23rd Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM 2004), Hong Kong, China, March 7-11, 2004, pp. 7-11.
IEEE, New York (2004)

Thorup, M., Zwick, U.: Compact routing schemes. In: Proceedings of the 13th Annual ACM Sympo-
sium on Parallel Algorithms and Architectures (SPAA 2001), Heraklion, Crete Island, Greece, July
4-6, 2001, pp. 1-10. ACM, New York (2001)

@ Springer

	How to Use Spanning Trees to Navigate in Graphs
	Abstract
	Introduction
	Previous Work
	Results of This Paper

	Preliminaries
	Frames for Dually Chordal Graphs
	Frames for k-Chordal Graphs and Subclasses
	k-Chordal Graphs
	Chordal Bipartite Graphs and AT-Free Graphs

	Localized Frames for Tree-Length lambda Graphs and delta-Hyperbolic Graphs
	Tree-Length lambda Graphs
	Lower Bound Results
	delta-Hyperbolic Graphs

	Conclusion and Future Work
	Acknowledgements
	Appendix A: Experimental Results
	Performance Under Various Densities
	Performance Under Various Localities

	References

