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Abstract For a graph G = (V, E) the minimum line-distortion problem asks for
the minimum k such that there is a mapping f of the vertices into points of the line
such that for each pair of vertices x, y the distance on the line | f (x) − f (y)| can
be bounded by the term dG(x, y) ≤ | f (x) − f (y)| ≤ k dG(x, y), where dG(x, y)
is the distance in the graph. The minimum bandwidth problem minimizes the term
maxuv∈E | f (u) − f (v)|, where f is a mapping of the vertices of G into the integers
{1, . . . , n}. We investigate the minimum line-distortion and the minimum bandwidth
problems on unweighted graphs and their relations with the minimum length of a
Robertson–Seymour’s path-decomposition. The length of a path-decomposition of a
graph is the largest diameter of a bag in the decomposition. The path-length of a graph
is the minimum length over all its path-decompositions. In particular, we show:

– there is a simple polynomial time algorithm that embeds an arbitrary unweighted
input graph G into the line with distortion O(k2), where k is the minimum line-
distortion of G;

Results of this paper were partially presented at the SWAT 2014 conference [12].
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– if a graph G can be embedded into the line with distortion k, then G admits a
Robertson–Seymour’s path-decomposition with bags of diameter at most k in G;

– for every class of graphs with path-length bounded by a constant, there exist an
efficient constant-factor approximation algorithm for the minimum line-distortion
problem and an efficient constant-factor approximation algorithm for the minimum
bandwidth problem;

– there is an efficient 2-approximation algorithm for computing the path-length of
an arbitrary graph;

– AT-free graphs and some intersection families of graphs have path-length at most
2;

– for AT-free graphs, there exist a linear time 8-approximation algorithm for the
minimum line-distortion problem and a linear time 4-approximation algorithm for
the minimum bandwidth problem.

Keywords Graph algorithms · Approximation algorithms · Minimum line-distortion ·
Minimum bandwidth · Robertson–Seymour’s path-decomposition · Path-length ·
AT-free graphs

1 Introduction and Previous Work

Computing a minimum distortion embedding of a given n-vertex graph G into the
line � was recently identified as a fundamental algorithmic problem with important
applications in various areas of computer science, like computer vision [43], as well
as in computational chemistry and biology (see [27,28]). It asks, for a given graph
G = (V, E), to find a mapping f of vertices V of G into points of � with minimum
number k such that dG(x, y) ≤ | f (x) − f (y)| ≤ k dG(x, y) for every x, y ∈ V . The
parameter k is called the minimum line-distortion of G and denoted by ld(G). The
embedding f is called non-contractive since dG(x, y) ≤ | f (x) − f (y)| for every
x, y ∈ V .

In [4], Bǎdoiu et al. showed that this problem is hard to approximate within
a constant factor. They gave an exponential-time exact algorithm and polynomial-
time O(n1/2)-approximation and O(k)-approximation (here, k is the minimum
line-distortion) algorithms for arbitrary unweighted input graphs, along with a
polynomial-time O(n1/3)-approximation algorithm for unweighted trees. In another
paper [3] Bǎdoiu et al. showed that the problem is hard to approximate by a factor
O(n1/12), even for weighted trees. They also gave a better polynomial-time approxi-
mation algorithm for general weighted graphs, along with a polynomial-time algorithm
that approximates the minimum line-distortion k embedding of a weighted tree by a
factor that is polynomial in k.

Fast exponential-time exact algorithms for computing the line-distortion of a graph
were proposed in [16,17]. Fomin et al. in [17] showed that a minimum distortion
embedding of an unweighted graph into the line can be found in time 5n+o(n). Fellows
et al. in [16] gave an O(nk4(2k + 1)2k) time algorithm that for an unweighted graph
G and integer k either constructs an embedding of G into the line with distortion at
most k, or concludes that no such embedding exists. They extended their approach
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Table 1 Existing solutions for calculating the minimum line-distortion λ

Graph class Solution quality Run time Source

Trees (unweighted) O(n1/3)-approx. Polynomial [4]

Trees (weighted) λO(1)-approx. Polynomial [3]

General (unweighted) O(n1/2)-approx. Polynomial [4]

O(k)-approx., k is the
min line-distortion

Polynomial [4]

Optimal 5n+o(n) [17]

Optimal O(nλ4(2λ + 1)2λ) [16]

Bipartite permutation Optimal O(n2) [26]

Threshold Optimal Linear [26]

Split 6-approx. Linear [25]

Cocomparability 6-approx. O(n log2 n + m) [25]

Table 2 Existing hardness results for calculating the minimum line-distortion

Graph class Result Source

General O(1)-approximation is NP-hard [4]

Trees (weighted) Hard to O(n1/12)-approximate [3]

Bipartite NP-hard [25]

Cobipartite NP-hard [25]

Split NP-hard [25]

AT-free NP-hard [25]

Cocomparability NP-hard [25]

Chordal NP-hard [25]

also to weighted graphs obtaining an O(nk4W (2k + 1)2kW ) time algorithm, where W
is the largest edge weight. Thus, the problem of minimum distortion embedding of a
given unweighted n-vertex graph G into the line � is Fixed Parameter Tractable.

Recently, Heggernes et al. in [25,26] studied minimum distortion embeddings into
the line of specific graph classes. In particular, they gave polynomial-time algorithms
for the problem on bipartite permutation graphs and on threshold graphs [26]. Fur-
thermore, in [25], Heggernes et al. showed that the problem of computing a minimum
distortion embedding of a given graph into the line remains NP-hard even when the
input graph is restricted to a bipartite, cobipartite, or split graph, implying that it
is NP-hard also on chordal, cocomparability, and AT-free graphs. They also gave
polynomial-time constant-factor approximation algorithms for split and cocompara-
bility graphs.

Tables 1 and 2 summarise the results mentioned above.
The minimum distortion embedding into the line may appear to be closely related

to the widely known and extensively studied graph parameter bandwidth, denoted by

123



Algorithmica (2017) 77:686–713 689

bw(G). The only difference between the two parameters is that a minimum distortion
embedding has to be non-contractive, meaning that the distance in the embedding
between two vertices of the input graph has to be at least their original distance,
whereas there is no such restriction for bandwidth.

Formally, given an unweighted graph G = (V, E) on n vertices, consider a 1-1
map f of the vertices V into integers in {1, . . . , n}; f is called a layout of G. The
bandwidth of layout f is defined as the maximum stretch of any edge, i.e., bw( f ) =
maxuv∈E | f (u)− f (v)|. The bandwidth of a graph is defined as the minimum possible
bandwidth achievable by any 1–1 map (layout) V → {1, . . . , n}. That is, bw(G) =
min f : V→{1,...,n} bw( f ).

It is known that bw(G) ≤ ld(G) for every connected graph G (see, e.g., [26]).
However, the bandwidth and the minimum line-distortion of a graph can be very
different. For example, it is common knowledge that a cycle of length n has bandwidth
2, whereas its minimum line-distortion is exactly n − 1 [26]. Bandwidth is known to
be one of the hardest graph problems; it is NP-hard even for very simple graphs like
caterpillars of hair-length at most 3 (i.e., trees in which all the vertices are within
distance 3 of a central path and all vertices of degree at least 3 are on the path) [36],
and it is hard to approximate by a constant factor even for trees [2] and caterpillars
with arbitrary hair-lengths [13]. Polynomial-time algorithms for the exact computation
of bandwidth are known for very few graph classes, including bipartite permutation
graphs [24] and interval graphs [29,32,42]. Constant-factor approximation algorithms
are known for AT-free graphs [30] and convex bipartite graphs [41]. Recently, in
[20] Golovach et al. showed also that the bandwidth minimization problem is Fixed
Parameter Tractable on AT-free graphs by presenting ann2O(k log k) time algorithm. For
general (unweighted) n-vertex graphs, the minimum bandwidth can be approximated
within a factor ofO(log3.5 n) [14]. For n-vertex trees and chordal graphs, the minimum
bandwidth can be approximated within a factor of O(log2.5 n) [23]. For n-vertex
caterpillars with arbitrary hair-lengths, the minimum bandwidth can be approximated
to within a factor of O(log n/ log log n) [15].

Tables 3 and 4 summarise the results mentioned above.
Our main tool in this paper is Robertson–Seymour’s path-decomposition and its

length. A path-decomposition [40] of a graph G = (V, E) is a sequence of subsets
{Xi : i ∈ I } (I := {1, 2, . . . , q}) of vertices of G, called bags, with three properties:

1.
⋃

i∈I Xi = V ;
2. For each edge uv ∈ E , there is a bag Xi such that u, v ∈ Xi ;
3. For every three indices i ≤ j ≤ k, Xi ∩ Xk ⊆ X j . Equivalently, the subsets

containing any particular vertex form a contiguous subsequence of the whole
sequence.

We denote a path-decomposition {Xi : i ∈ I } of a graph G by P(G).
The width of a path-decomposition P(G) = {Xi : i ∈ I } is maxi∈I |Xi | − 1.

The path-width of a graph G, denoted by pw(G), is the minimum width over all
path-decompositions P(G) of G [40]. The caterpillars with hair-length at most 1 are
exactly the graphs with path-width 1 [38].

Following [10] (where the notion of tree-length of a graph was introduced),
we define the length of a path-decomposition P(G) of a graph G to be λ :=
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Table 3 Existing solutions for calculating the minimum bandwidth k

Graph class Solution quality Run time Source

Caterpillars with hair-length
1 or 2

Optimal O(n log n) [1]

Caterpillars with arbitrary
hair-lengths

O(log n/ log log n)-approx. Polynomial [15]

General O(log3.5 n)-approx. Polynomial [14]

Chordal O(log2.5 n)-approx. Polynomial [23]

AT-free 2-approx. O(nm) [30]

4-approx. O(m + n log n) [30]

Optimal n2O(k log k) [20]

Convex bipartite 2-approx. O(n log2 n) [41]

4-approx. O(n) [41]

Bipartite permutation Optimal O(n4 log n) [24]

Interval Optimal O(n log2 n) [42]

Table 4 Existing hardness results for calculating the minimum bandwidth

Graph class Result Source

Trees Hard to approximate by a
constant factor

[2]

Caterpillars with arbitrary
hair-lengths

Hard to approximate by a
constant factor

[13]

Caterpillars with hair-length at
most 3

NP-hard [36]

Convex bipartite NP-hard [41]

maxi∈I maxu,v∈Xi dG(u, v) (i.e., each bag Xi has diameter at most λ in G). The path-
length of G, denoted by pl(G), is the minimum length over all path-decompositions
of G. Interval graphs (i.e., the intersection graphs of intervals on a line) are exactly the
graphs with path-length 1; it is known (see, e.g., [9,18,19,21]) that G is an interval
graph if and only if G has a path-decomposition with each bag being a maximal clique
of G.

Note that these two graph parameters (path-width and path-length) are not related
to each other. For instance, a clique on n vertices has path-length 1 and path-width
n − 1, whereas a cycle on 2n vertices has path-width 2 and path-length n.

Following [11], where the notion of tree-breadth of a graph was introduced, we
define the breadth of a path-decomposition as follows. Let DG(vi , r) be the disk of
radius r around vertex vi , more precisely, DG(vi , r) = {w ∈ V : dG(vi , w) ≤ r}.
Then the breadth of a path-decomposition P(G) of a graph G is the minimum integer
r such that for every i ∈ I there is a vertex vi ∈ V with Xi ⊆ DG(vi , r) (i.e., each
bag Xi can be covered by a disk DG(vi , r) of radius at most r in G). Note that vertex
vi does not need to belong to Xi . The path-breadth of G, denoted by pb(G), is the
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minimum breadth over all path-decompositions of G. Evidently, for any graph G with
at least one edge, 1 ≤ pb(G) ≤ pl(G) ≤ 2 pb(G) holds. Hence, if one parameter is
bounded by a constant for a graph G then the other parameter is bounded for G as
well.

Recently, Robertson–Seymour’s tree-decompositions with bags of bounded radius
proved to be very useful in designing an efficient approximation algorithm for the
problem of minimum stretch embedding of an unweighted graph into its spanning tree
[11]. The decision version of the problem is the tree t-spanner problem which asks,
for a given graph G = (V, E) and an integer t , whether a spanning tree T of G exists
such that dT (x, y) ≤ t dG(x, y) for every x, y ∈ V . It was shown in [11] that:

(1) if a graph G can be embedded into a spanning tree with stretch t , then G admits
a Robertson–Seymour tree-decomposition with bags of radius at most �t/2� and
diameter at most t in G (i.e., the tree-breadth tb(G) of G is at most �t/2� and the
tree-length tl(G) of G is at most t);

(2) there is an efficient algorithm which constructs for an n-vertex unweighted graph
G with tb(G) ≤ ρ a spanning tree with stretch at most 2ρ log2 n.

As a consequence, an efficient (log2 n)-approximation algorithm was obtained for
embedding an unweighted graph with minimum stretch into its spanning tree [11].

1.1 Contribution of this Paper

Motivated by [11], in this paper, we investigate possible connections between the line-
distortion and the path-length (path-breadth) of a graph. We show that for every graph
G, pl(G) ≤ ld(G) and pb(G) ≤ �ld(G)/2� hold. Furthermore, we demonstrate that
for every class of graphs with path-length bounded by a constant, there is an efficient
constant-factor approximation algorithm for the minimum line-distortion problem. As
a consequence, every graph G with ld(G) = c can be embedded in polynomial time
into the line with distortion at mostO(c2) (reproducing a result from [4]). Additionally,
using the same technique, we show that, for every class of graphs with path-length
bounded by a constant, there is an efficient constant-factor approximation algorithm
for the minimum bandwidth problem.

We also investigate (i) which particular graph classes have constant bounds on path-
length and (ii) how fast the path-length of an arbitrary graph can be computed or sharply
estimated. We present an efficient 2-approximation (3-approximation) algorithm for
computing the path-length (resp., the path-breadth) of a graph. We show that AT-free
graphs and some well-known intersection families of graphs have small path-length
and path-breadth. In particular, the path-breadth of every permutation graph and every
trapezoid graph is 1 and the path-length (and therefore, the path-breadth) of every
cocomparability graph and every AT-free graph is at most 2. Using this and some
additional structural properties, we give a linear time 8-approximation algorithm for
the minimum line-distortion problem and a linear time 4-approximation algorithm for
the minimum bandwidth problem for AT-free graphs.

As a consequence of our results we obtain also that convex bipartite graphs and
caterpillars with hairs of bounded length admit constant factor approximations of the
minimum bandwidth and the minimum line-distortion. Furthermore, the minimum
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line-distortion problem and the minimum bandwidth problem, are both NP-hard on
bounded path-length graphs.

2 Preliminaries and Metric Properties of Graphs with Bounded
Path-Length

All graphs occurring in this paper are connected, finite, unweighted, undirected, loop-
less and without multiple edges. We call G = (V, E) an n-vertex m-edge graph if
|V | = n and |E | = m. In this paper we consider only graphs with n > 1. A clique is a
set of pairwise adjacent vertices of G. By G[S] we denote the subgraph of G induced
by the vertices of S ⊆ V . By G\S we denote the subgraph of G induced by the vertices
V \S, i.e., the graph G[V \S]. For a vertex v ofG, the sets NG(v) = {w ∈ V : vw ∈ E}
and NG [v] = NG(v) ∪ {v} are called the open neighborhood and the closed neigh-
borhood of v, respectively.

In a graph G the length of a path from a vertex v to a vertex u is the number of
edges in the path. The distance dG(u, v) between vertices u and v is the length of a
shortest path connecting u and v in G. For a set S ⊆ V the diameter of S in G is
maxx,y∈S dG(x, y) and its radius in G is minx∈V maxy∈S dG(x, y) (in some papers
these terms are called the weak diameter and the weak radius to indicate that the
distances are measured in G not in G[S]). The distance between a vertex v and a set
S of G is given by dG(v, S) = minu∈S dG(v, u).

The following result generalizes a characteristic property of the famous class of
AT-free graphs (see [7]). An independent set of three vertices such that each pair is
joined by a path that avoids the neighborhood of the third is called an asteroidal triple.
A graph G is an AT-free graph if it does not contain any asteroidal triples [7].

Proposition 1 Let G be a graphwith pl(G) ≤ λ. Then, for every three vertices u, v, w

of G there is one vertex, say v, such that the disk of radius λ centered at v intercepts
every path connecting u and w, i.e., DG(v,λ) ∩ {u, w} 
= ∅ or, after the removal
of the disk DG(v,λ) from G, u and w are not in the same connected component of
G\DG(v,λ).

Proof Consider a path-decompositionP(G) = {Xi : i ∈ I } of G with length pl(G) ≤
λ. Consider any three vertices u, v, w of G. If any two of them, say u and v, belong
to the same bag Xi of P(G) then the disk DG(v,λ) contains vertex u and hence
intercepts every path of G connecting vertices u and w. Assume now, without loss of
generality, that all bags containing vertex u have smaller indexes in I than all bags
containing vertex v, and, in turn, all bags containing vertex v have smaller indexes in
I than all bags containing vertex w. Then, by properties of path-decompositions (see
[9,40]), every u, w-path of G contains at least one vertex in each of the bags between
the bags containing u and the bags containing w in the sequence {Xi : i ∈ I }. Hence,
every bag Xi containing v intercepts every path connecting u and w in G. Since Xi is
a subset of DG(v,λ), the proof is complete. �


Since for every graph G, pl(G) ≤ 2 pb(G), the following statement is also true.
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Corollary 1 Let G be a graph with pb(G) ≤ ρ. Then, for every three vertices u, v, w

of G there is one vertex, say v, such that the disk of radius 2ρ centered at v intercepts
every path connecting u and w.

We will also need the following property of graphs with path-length λ. A path P
of a graph G is called k-dominating path of G if every vertex v of G is at distance at
most k from a vertex of P , i.e., dG(v, P) ≤ k. A pair of vertices x, y of G is called
a k-dominating pair if every path between x and y is a k-dominating path of G. It is
known that every AT-free graph has a 1-dominating pair [7].

Corollary 2 Every graph G with pl(G) ≤ λ has a λ-dominating pair.

Proof Consider a path-decomposition P(G) = {X1, X2, . . . , Xq} of length pl(G) ≤
λ of G. Consider any two vertices x ∈ X1 and y ∈ Xq and a path P between them
in G. Necessarily, by properties of path-decompositions (see [9,40]), every path of G
connecting vertices x and y has a vertex in every bag of P(G). Hence, as each vertex
v of G belongs to some bag Xi of P(G), there is a vertex u ∈ P with u ∈ Xi and thus
dG(v, u) ≤ λ. �


It is easy to see that a pair of vertices x and y is a k-dominating pair if and only if,
for every vertex w ∈ V \(DG(x, k) ∪ DG(y, k)), the disk DG(w, k) separates x and
y. Hence, a k-dominating pair, with minimum k, of an arbitrary graph G = (V, E)

with n vertices and m edges can be found in O(n3 log n) time as follows. As an outer
loop use a binary search to find the minimum k. Inside this loop determine for the
corresponding k whether there is a k-dominating pair by the following method. For
each vertex v of G determine the connected components of G\DG(v, k), label each
vertex x in G\DG(v, k) with its connected component, and put all these labels in an
n×n matrix M , such that in M(v, x) is the label of the connected component of vertex
x in G\DG(v, k). This matrix M can easily be determined in O(n(n + m)) (for each
vertex v remove DG(v, k) and determine the connected components of the remaining
graph by a Breadth-First-Search). Now a pair of vertices x, y is a k-dominating pair if
and only if the columns of x and y in M have different labels in every row corresponding
to a vertex w with w ∈ V \(DG(x, k) ∪ DG(y, k)). Thus, an easy O(n3) algorithm
for checking whether there is a k-dominating pair in G is simply comparing for each
pair of vertices the corresponding columns.

It is not very likely that there is a linear time algorithm to find a dominating pair, if
it exists, since it is shown in [31] that finding a dominating pair is essentially as hard
as finding a triangle in a graph. Yet, since path-decompositions with small length are
closely related to k-domination one can search for k-dominating pairs in dependence
of the path-length of a graph. We do not know how to find in linear time for an arbitrary
graph G a k-dominating pair with k ≤ pl(G). However, we can prove the following
weaker result which will be useful in later sections.

Proposition 2 Let G be an arbitrary graph forwhich the path-length is not necessarily
known. There is a linear time algorithm that determines a k-dominating pair of G such
that k ≤ 2 pl(G).

Proof Let pl(G) = λ. Consider a path-decomposition P(G) = {X1, X2, . . . , Xq} of
G of length λ. Consider an arbitrary vertex s of G and, using a Breadth-First-Search
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BFS(s,G) of G started at s, find a vertex x of maximum distance from s. Use a
second Breadth-First-Search BFS(x,G) of G that is started at x to find a vertex y of
maximum distance from x . We claim that x, y is a 2 λ-dominating pair of G.

If there is a bag in P(G) containing both s and x , then dG(s, x) ≤ λ and, by the
choice of x , each vertex of G is within distance at most λ from s and, hence, within
distance at most 2 λ from x . Evidently, in this case, x, y is a 2 λ-dominating pair of
G.

Assume now, without loss of generality, that x ∈ Xi and s ∈ Xl with i < l.
Consider an arbitrary vertex v of G that belongs to only bags with indexes smaller than
i . We show that dG(x, v) ≤ 2 λ. As Xi separates v from s, a shortest path P(s, v) of G
between s and v must have a vertex u in Xi . We have dG(s, x) ≥ dG(s, v) = dG(s, u)+
dG(u, v) and, by the triangle inequality, dG(s, x) ≤ dG(s, u) + dG(u, x). Hence,
dG(u, v) ≤ dG(u, x) and, since both u and x belong to same bag Xi , dG(u, x) ≤ λ.
That is, dG(x, v) ≤ dG(x, u) + dG(u, v) ≤ 2dG(u, x) ≤ 2 λ.

If dG(x, y) ≤ 2 λ then, by the choice of y, each vertex of G is within distance
at most 2 λ from x and, hence, x, y is a 2 λ-dominating pair of G. So, assume that
dG(x, y) > 2 λ, i.e., every bag of P(G) that contains y has index greater than i .
Consider a bag X j containing y. We have i < j . Repeating the arguments of the
previous paragraph, we can show that dG(y, v) ≤ 2 λ for every vertex v that belongs
to bags with indexes greater than j .

Consider now an arbitrary path P of G connecting vertices x and y. By properties
of path-decompositions (see [9,40]), P has a vertex in every bag Xh of P(G) with
i ≤ h ≤ j . Hence, for each vertex v of G that belongs to a bag Xh (i ≤ h ≤ j), there
is a vertex u ∈ P (in that bag Xh) such that dG(v, u) ≤ λ. As dG(v, x) ≤ 2 λ for each
vertex v from Xi ′ with i ′ < i and dG(v, y) ≤ 2 λ for each vertex v from X j ′ with
j ′ > j , we conclude that P is a 2λ-dominating path of G.

Finally, to conclude, we note that the algorithm does not need as an input any path
decomposition P(G) of minimum length. �


In Algorithm 1, we formalize the method in the proof above to calculate a k-
dominating shortest path with k ≤ 2pl(G) in linear time.

Algorithm 1: Finding a k-dominating shortest path of G with k ≤ 2pl(G).
Input: A graph G.
Output: A k-dominating shortest path with k ≤ 2pl(G).

Select an arbitrary vertex s.1
Find a vertex x for which the distance to s is maximal.2
Find a vertex y for which the distance to x is maximal.3
Output a shortest path from x to y.4

The following proposition further strengthens the connections between small path-
length graphs and AT-free graphs. Recall that the k-power of a graph G = (V, E) is
a graph Gk = (V, E ′) such that for every x, y ∈ V (x 
= y), xy ∈ E ′ if and only if
dG(x, y) ≤ k.

Proposition 3 For a graph G with pl(G) ≤ λ, G2 λ−1 is an AT-free graph.

123



Algorithmica (2017) 77:686–713 695

Proof Let P(G) be a path-decomposition of length pl(G) ≤ λ of G and let G2 λ−1 =
(V, E ′) be the (2 λ − 1)-power of G. Consider three arbitrary distinct vertices a, b
and c of G. If for two of those vertices there is a bag B ∈ P(G) containing both,
then a, b and c cannot be an asteroidal triple in G2 λ−1, since they do not form an
independent set in G2 λ−1. Now assume that no bag contains more than one of a,
b, and c. Without loss of generality, we can assume that b is in a bag Bb between
the bags containing a and the bags containing c. Assume that there is a path from
a to c in G2 λ−1 avoiding Bb. Then, there is an edge uv ∈ E ′\E such that the bags
containing u and the bags containing v are separated by Bb in G. Since uv ∈ E ′,
there is a path of length at most 2 λ − 1 from u to v in G, and again, by properties
of path-decompositions (see [9,40]), this path must contain a vertex w ∈ Bb. Without
loss of generality, let dG(u, w) ≤ dG(v,w). Since dG(u, w) ≤ dG(u, v)/2 ≤ λ − 1,
dG(b, u) ≤ dG(b, w)+dG(u, w) ≤ 2 λ−1, i.e., u ∈ DG(b, 2 λ−1). Thus, each path
from a to c of G2 λ−1 intersects DG(b, 2 λ − 1), implying that a, b, c cannot form an
asteroidal triple in G2 λ−1. �

Corollary 3 If pb(G) ≤ ρ, then G4ρ−1 is AT-free.

A subset of vertices of a graph is called connected if the subgraph induced by those
vertices is connected. We say that two connected sets S1, S2 of a graph G see each
other if they have a common vertex or there is an edge in G with one end in S1 and
the other end in S2. A family of connected subsets of G is called a bramble if every
two sets of the family see each other. We say that a bramble F = {S1, . . . , Sh} of G
is k-dominated by a vertex v of G if in every set Si of F there is a vertex ui ∈ Si with
dG(v, ui ) ≤ k.

Proposition 4 For a graph G with pb(G) ≤ ρ, every bramble of G is ρ-dominated
by a vertex.

Proof LetP(G) = {X1, X2, . . . , Xq} be a path-decomposition of breadth pb(G) ≤ ρ

of G. Consider an arbitrary connected set S of G. We claim that the bags of P(G)

containing vertices of S form a continuous subsequence I(S) in {X1, X2, . . . , Xq}.
Assume, by induction on the cardinality of the set S, that the statement is true for the
connected set S′ := S\{v}, where v is some vertex of S (obviously, there is always
such a vertex in S). Let I(S′) be the corresponding subsequence. Since S is connected,
there must exist a vertex u in S′ such that uv ∈ E(G). By properties 2 and 3 of the
path-decomposition (see definition on page 8), all bags containing vertex v form a
continuous subsequence I(v) in {X1, X2, . . . , Xq} and there is a bag in P(G) which
contains both vertices u and v. Then, necessarily, all bags containing vertices of S form
a continuous subsequence in {X1, X2, . . . , Xq}; it is the union of the two continuous
subsequences I(S′) and I(v) sharing a common bag.

Now let F = {S1, . . . , Sh} be an arbitrary bramble of G. For every set Si ,
the bags of P(G) containing vertices of Si form a continuous subsequence I(Si )
in {X1, X2, . . . , Xq}. Since each two sets of F see each other, there must exist a
bag in P(G) that contains a vertex from Si and a vertex from S j . So, for every
i, j ∈ {1, . . . , h}, the subsequences I(Si ) and I(S j ) overlap at least on one bag. By
the Helly property for intervals of a line (i.e., every family of pairwise intersecting
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intervals has a common intersection), there must exist a bag B inP(G) which has a ver-
tex from each set Si (i ∈ {1, . . . , h}). Let v be a vertex of G such that B ⊆ DG(v, ρ).
Then, v necessarily ρ-dominates the bramble F . �


The following result can be viewed as an analog of the classical Helly property for
disks.

Corollary 4 Let G be a graph with pb(G) ≤ ρ, let S be a subset of vertices of G,
and let r : S → N be a radius function defined on S such that the disks of the family
F = {DG(x, r(x)) : x ∈ S} pairwise intersect. Then the disks {DG(x, r(x) + ρ) :
x ∈ S} have a nonempty common intersection.

Proof Since the family F = {DG(x, r(x)) : x ∈ S} is a bramble of G, a vertex v of
G ρ-dominating the bramble F belongs to all disks {DG(x, r(x) + ρ) : x ∈ S}. �


3 Bandwidth of Graphs with Bounded Path-Length

In this section we show that there is an efficient algorithm that for any graph G with
pl(G) = λ produces a layout f with bandwidth at most O(λ)bw(G). Moreover, this
statement is true even for all graphs with λ-dominating shortest paths. Recall that a
shortest path P of a graph G is a k-dominating shortest path of G if every vertex v of
G is at distance at most k from a vertex of P , i.e., dG(v, P) ≤ k.

We will need the following standard “local density” lemma.

Lemma 1 ([39]) For each vertex v ∈ V of an arbitrary graph G and each positive
integer r ,

|DG(v, r)| − 1

2r
≤ bw(G).

The main result of this section is the following.

Proposition 5 Given a k-dominating shortest path in a graph G, a layout with band-
width at most (4k + 2)bw(G) can be found in linear time.

Proof Let P = (x0, x1, . . . , xi , . . . , x j , . . . , xq) be a k-dominating shortest path of
G. Consider a Breadth-First-Search-tree (BFS(P,G)-tree) TP of G started from path
P . For each vertex xi of P , let Xi be the set of vertices of G that are located in the
branch of TP that is rooted at xi (see Fig. 1a for an illustration). We have xi ∈ Xi .
Since P k-dominates G, we have dG(v, xi ) ≤ k for every i ∈ {1, . . . , q} and every
v ∈ Xi . Now create a layout f of G by placing all the vertices of Xi before all vertices
of X j , if i < j , and by placing the vertices within each Xi in an arbitrary order (see
Fig. 1b for an illustration).

We claim that this layout f has bandwidth at most (4k + 2)bw(G). Consider any
edge uv of G and assume u ∈ Xi and v ∈ X j (i ≤ j). For this edge uv we have

f (v)− f (u) ≤ |⋃ j
�=i X�|−1. We also know that dP (xi , x j ) = j − i ≤ 2k+1, since

P is a shortest path of G and dP (xi , x j ) = dG(xi , x j ) ≤ dG(xi , u)+1+dG(x j , v) ≤
2k + 1. Consider vertex xc of P with c = i + �( j − i)/2�, i.e., a middle vertex of the
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(a)

(b)

Fig. 1 Illustration to the proof of Proposition 5

subpath of P between xi and x j . Consider an arbitrary vertex w in X�, i ≤ � ≤ j . Since
dG(xc, w) ≤ dG(xc, x�) + dG(x�, w), dG(xc, x�) ≤ �2k + 1/2� and dG(x�, w) ≤ k,
we get dG(xc, w) ≤ 2k + 1. In other words, disk DG(xc, 2k + 1) contains all vertices
of

⋃ j
�=i X�. Applying Lemma 1 to |DG(xc, 2k + 1)| ≥ |⋃ j

�=i X�|, we conclude

f (v) − f (u) ≤ | ⋃ j
�=i X�| − 1 ≤ |DG(xc, 2k + 1)| − 1 ≤ 2(2k + 1)bw(G) =

(4k + 2)bw(G). �

Proposition 5, Corollary 2, and Proposition 2 imply.

Corollary 5 For every n-vertex m-edge graph G, a layout with bandwidth at most
(4 pl(G) + 2)bw(G) can be found in O(n2m) time and a layout with bandwidth at
most (8pl(G) + 2)bw(G) can be found in O(n + m) time.

Proof For an n-vertex m-edge graph G, a k-dominating shortest path with k ≤ pl(G)

can be found in O(n2m) time in the following way (see Algorithm 2). Iterate over
all vertex pairs of G. For each vertex pair x, y pick a shortest x, y-path P and run
BFS(P,G) to find a most distant vertex vP from P . Finally, report that path P for
which dG(vP , P) is minimum. By Corollary 2, this minimum is at most pl(G).

Algorithm 2: Finding a k-dominating shortest path of G with k ≤ pl(G).
Input: A graph G.
Output: A k-dominating shortest path with k ≤ pl(G).

foreach vertex pair x, y do1
Find a shortest path Pxy from x to y.2
Determine k(x, y) := maxv∈V dG (v, Pxy).3

Output a path Pxy for which k(x, y) is minimal.4

Alternatively, one can use the proof of Proposition 2 to find in linear time a 2pl(G)-
dominating pair x, y of G. Then, any shortest path of G between x and y is a 2 pl(G)-
dominating path of G (see Algorithm 1).
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The entire method for computing a required layout is given in Algorithm 3. Its
runtime and approximation ratio depends on the algorithm to calculate a k-dominating
shortest path. �


Algorithm 3: An O(k)-approximation algorithm for computing the minimum
bandwidth of a graph using a k-dominating shortest path.
Input: A graph G = (V, E).
Output: A layout f .

Find a k-dominating shortest path P = (x0, x1, . . . , xq ) using Algorithm 1 or Algorithm 2.1
Partition V into sets X0, X1, . . . , Xq using a BFS(P,G)-tree of G (see the proof of Proposition 5).2
Create a layout f of G by placing all the vertices of Xi before all vertices of X j , if i < j , and by3
placing vertices within each Xi in an arbitrary order.
Output f .4

Thus, we have the following interesting conclusion.

Theorem 1 For every class of graphs with path-length bounded by a constant, there
is an efficient constant-factor approximation algorithm for the minimum bandwidth
problem.

The above results did not require a path-decomposition of length pl(G) of a graph
G as input; we also avoided the construction of such a path-decomposition of G and
just relied on the existence of a k-dominating shortest path in G. If, however, a path-
decomposition with length λ of a graph G is given in advance together with G, then a
better approximation ratio for the minimum bandwidth problem on G can be achieved.

Proposition 6 If a graph G is given together with a path-decomposition of G of length
λ, then a layout f with bandwidth at most λbw(G) can be found inO(n2 + n log2 n)

time.

Proof Let P(G) = {Xi : i ∈ I } be a path-decomposition of length λ of G = (V, E).
We form a new graph G+ = (V, E+) from G by adding an edge between a pair of
vertices u, v ∈ V if and only if u and v belong to a common bag in P(G). From
this construction, we conclude that G is a subgraph of G+ and G+ is a subgraph
of Gλ. It is a well-known fact (see, e.g., [5,9,18,21]) that G+ is an interval graph
and P(G) = {Xi : i ∈ I } gives a path-decomposition of G+ (with {Xi : i ∈ I }
being cliques of G+). In [42], an O(n log2 n) time algorithm to compute a minimum
bandwidth layout of an n-vertex interval graph is given. Let f be an optimal layout
produced by that algorithm for our interval graph G+. We claim that this layout f ,
when considered for G, has bandwidth at most λbw(G). Indeed, following [30], we
have maxuv∈E | f (u) − f (v)| ≤ maxuv∈E+ | f (u) − f (v)| = bw(G+) ≤ bw(Gλ) ≤
λbw(G). Clearly, raising a graph to the λth power can only increase its bandwidth by
a factor of λ. �


We formalize the method described above in Algorithm 4.
We do not know how hard it is for an arbitrary graph to construct its path-

decomposition with minimum length. We suspect that this is an NP-hard problem
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Algorithm 4: A λ-approximation algorithm for computing the minimum band-
width for a graph with path-length λ.
Input: A graph G with a path-decomposition P(G) = {X1, . . . , Xq }.
Output: A layout f .

Create a new graph G+ = (V, E+) by adding an edge between each pair of vertices u, v ∈ V if and1
only if u and v belong to a common bag in P(G).
Compute the minimum bandwidth layout f of the interval graph G+ by using an optimal2

O(n log2 n) time algorithm from [42].
Output f .3

as the problem to check whether a graph has tree-length at most λ is NP-complete for
every fixed λ ≥ 2 [33]. In Sect. 5 we show that a factor 2 approximation of the path-
length of an arbitrary n-vertex graph can be computed in O(n3) time. This implies
in particular that, for an arbitrary n-vertex graph G, a layout with bandwidth at most
2 pl(G)bw(G) can be found in O(n3) total time.

Additionally, in Sect. 6 we show that the path-breadth of every permutation graph
and every trapezoid graph is 1 and the path-length (and therefore, the path-breadth)
of every cocomparability graph and every AT-free graph is at most 2. In Sect. 7,
using some additional structural properties of AT-free graphs, we give a linear time
4-approximation algorithm for the minimum bandwidth problem for AT-free graphs.
This result reproduces an approximation result from [30] with a better run-time. Note
that the class of AT-free graphs properly contains all permutation graphs, trapezoid
graphs and cocomparability graphs; definitions of these graph classes are given in
Sect. 6.

4 Path-Length and Line-Distortion

In this section, we first show that the line-distortion of a graph gives an upper bound
on its path-length and then demonstrate that if the path-length of a graph G is bounded
by a constant then there is an efficient constant-factor approximation algorithm for the
minimum line-distortion problem on G.

4.1 Bound on Line-Distortion Implies Bound on Path-Length

In this subsection we show that the path-length of an arbitrary graph never exceeds its
line-distortion. The following inequalities are true.

Proposition 7 For an arbitrary graph G, pl(G) ≤ ld(G), pw(G) ≤ ld(G) and
pb(G) ≤ �ld(G)/2�.
Proof It is known (see, e.g., [26]) that every connected graph G = (V, E) has a
minimum distortion embedding f into the line � (called a canonic embedding) such
that | f (x) − f (y)| = dG(x, y) for every two vertices x, y of G that are placed next
to each other in � by f . Assume, in what follows, that f is such a canonic embedding
and let k := ld(G).
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Fig. 2 Illustration to the proof of Proposition 7

Consider the following path-decomposition of G created from f . For each vertex
v, form a bag Bv consisting of all vertices of G which are placed by f in the interval
[ f (v), f (v) + k] of the line �. Order these bags with respect to the left ends of the
corresponding intervals. Evidently, for every vertex v ∈ V , v ∈ Bv , i.e., each vertex
belongs to a bag. More generally, a vertex u belongs to a bag Bv if and only if f (v) ≤
f (u) ≤ f (v)+ k. Since ld(G) = k, for every edge uv of G, | f (u)− f (v)| ≤ k holds.
Hence, both ends of edge uv belong either to bag Bu (if f (u) < f (v)) or to bag Bv (if
f (v) < f (u)). Now consider three bags Ba , Bb, and Bc with f (a) < f (b) < f (c)
and a vertex v of G that belongs to Ba and Bc. We have f (a) < f (b) < f (c) ≤
f (v) ≤ f (a) + k < f (b) + k. Hence, necessarily, v belongs to Bb as well.

It remains to show that each bag Bv , v ∈ V , has in G diameter at most k, radius
at most �k/2� and cardinality at most k + 1. Indeed, for any two vertices x, y ∈ Bv ,
we have | f (x) − f (y)| ≤ k, i.e., dG(x, y) ≤ | f (x) − f (y)| ≤ k. Furthermore,
any interval [ f (v), f (v) + k] (of length k) can have at most k + 1 vertices of G
as the distance between any two vertices placed by f to this interval is at least 1
(| f (x) − f (y)| ≥ dG(x, y) ≥ 1). Thus, |Bv| ≤ k + 1 for every v ∈ V .

Now consider the point pv := f (v) + �k/2� in the interval [ f (v), f (v) + k] of �.
Assume, without loss of generality, that pv is between f (x) and f (y), the images of
two vertices x and y of G placed next to each other in � by f . Let f (x) ≤ pv < f (y)
(see Fig. 2 for an illustration). Since f is a canonic embedding of G, there must exist
a vertex c on a shortest path between x and y such that dG(x, c) = pv − f (x) and
dG(c, y) = f (y)− pv = dG(x, y)−dG(x, c). We claim that for every vertex w ∈ Bv ,
dG(c, w) ≤ �k/2� holds. Assume f (w) ≥ f (y) (the case when f (w) ≤ f (x) is
similar). Then, we have dG(c, w) ≤ dG(c, y) + dG(y, w) ≤ ( f (y) − pv) + ( f (w) −
f (y)) = f (w) − pv = f (w) − f (v) − �k/2� ≤ k − �k/2� ≤ �k/2�. �


It should be noted that the difference between the path-length and the line-distortion
of a graph can be very large. A complete graph Kn on n vertices has path-length 1,
whereas the line-distortion of Kn is n − 1. Note also that the bandwidth and the
path-length of a graph do not bound each other. The bandwidth of Kn is n − 1 while
its path-length is 1. On the other hand, the path-length of cycle C2n is n while its
bandwidth is 2.

4.2 Line-Distortion of Graphs with Bounded Path-Length

In this subsection we show that there is an efficient algorithm that for any graph G
with pl(G) = λ produces an embedding f of G into the line � with distortion at most
(12 λ + 7) ld(G). Again, this statement is true even for all graphs with λ-dominating
shortest paths.
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Fig. 3 Illustration to the proof of Proposition 8

We will need the following auxiliary lemma from [4]. We reformulate it slightly.
Recall that a subset of vertices of a graph is called connected if the subgraph induced
by those vertices is connected.

Lemma 2 ([4])Any connected subset S ⊆ V of a graphG = (V, E) can be embedded
into the line with distortion at most 2|S| − 1 in timeO(|V | + |E |). In particular, there
is a mapping f , computable in O(|V | + |E |) time, of the vertices from S into points
of the line such that dG(x, y) ≤ | f (x) − f (y)| ≤ 2|S| − 1 for every x, y ∈ S.

The main result of this subsection is the following.

Proposition 8 Every graphG with a k-dominating shortest path admits an embedding
f of G into the line with distortion at most (8k + 4) ld(G) + (2k)2 + 2k + 1. If a
k-dominating shortest path of G is given in advance, then such an embedding f can
be found in linear time.

Proof Like in the proof of Proposition 5, consider a k-dominating shortest path P =
(x0, x1, . . . , xi , . . . , x j , . . . , xq) of G and identify by BFS(P,G) the sets Xi , i ∈
{1, . . . , q}. We had dG(v, xi ) ≤ k for every i ∈ {1, . . . , q} and every v ∈ Xi . It
is clear also that each Xi is a connected subset of G. Similar to [4], we define an
embedding f of G into the line � by placing all the vertices of Xi before all vertices of
X j , if i < j , and by placing vertices within each Xi in accordance with the embedding
mentioned in Lemma 2. Also, for each i ∈ {1, . . . , q − 1}, leave a space of length
2k + 1 between the interval of � spanning the vertices of Xi and the interval spanning
the vertices of Xi+1. See Fig. 3 for an illustration.

We claim that f is a (non-contractive) embedding with distortion at most (8k +
4) ld(G) + (2k)2 + 2k + 1. It is sufficient to show that dG(x, y) ≤ | f (x) − f (y)|
for every two vertices of G that are placed next to each other in � by f and that
| f (v) − f (u)| ≤ (8k + 4) ld(G) + (2k)2 + 2k + 1 for every edge uv of G (see, e.g.,
[4,26]).

From Lemma 2, we know that dG(x, y) ≤ | f (x) − f (y)| ≤ 2|Xh | − 1 for every
x, y ∈ Xh and h ∈ {1, 2, . . . , q}. Additionally, for every x ∈ Xi and y ∈ Xi+1
(i ∈ {1, 2, . . . , q − 1}), we have dG(x, y) ≤ dG(x, xi )+ 1 + dG(y, xi+1) ≤ 2k + 1 ≤
| f (y) − f (x)| (as a space of length 2k + 1 is left between the interval of � spanning

123



702 Algorithmica (2017) 77:686–713

the vertices of Xi and the interval spanning the vertices of Xi+1). Hence, f is non-
contractive.

Consider now an arbitrary edge uv ofG and assume u ∈ Xi and v ∈ X j (i ≤ j). For

this edgeuv (by Lemma 2) we have f (v)− f (u) ≤ ∑ j
h=i (2|Xh |−1+2k+1)−2k−1 =

2| ⋃ j
h=i Xh | + 2k( j − i + 1) − 2k − 1 = 2|⋃ j

h=i Xh | + 2k( j − i) − 1.

Recall that dP (xi , x j ) = j − i ≤ 2k + 1, since P is a shortest path of G and
dP (xi , x j ) = dG(xi , x j ) ≤ dG(xi , u)+1+dG(x j , v) ≤ 2k+1. Hence, f (v)− f (u) ≤
2| ⋃ j

h=i Xh | + 2k(2k + 1) − 1.

As in the proof of Proposition 5, | ⋃ j
h=i Xh | − 1 ≤ (4k + 2)bw(G). As bw(G) ≤

ld(G) for every graphG (see, e.g., [26]), we get f (v)− f (u) ≤ 2|⋃ j
h=i Xh |+2k(2k+

1) − 1 ≤ 2(4k + 2)bw(G) + 2k(2k + 1) + 1 ≤ (8k + 4) ld(G) + 2k(2k + 1) + 1. �

Proposition 8, Corollary 2 and Proposition 2 imply.

Corollary 6 For every n-vertex m-edge graph G, an embedding into the line with dis-
tortion at most (12 pl(G)+7) ld(G) can be found inO(n2m) time and with distortion
at most (24 pl(G) + 7) ld(G) can be found in O(n + m) time.

Proof See the proof of Corollary 5 and note that, by Proposition 7, pl(G) ≤ ld(G).
Hence, the distortion established in Proposition 8 becomes ≤ (8pl(G) + 4) ld(G) +
2(2 pl(G)+1) ld(G)+1 ≤ (12 pl(G)+7) ld(G), if we use apl(G)-dominating shortest
path, and becomes ≤ (24 pl(G) + 7) ld(G), if we use a 2 pl(G)-dominating shortest
path. Algorithm 5 covers both cases. Its runtime and approximation ratio depend on
the algorithm to calculate a k-dominating shortest path. �


Algorithm 5: An O(λ)-approximation algorithm for computing the minimum
line-distortion of a graph G with pl(G) ≤ λ.
Input: A graph G.
Output: An embedding f of G into the line �.

Find a k-dominating shortest path P = (x0, x1, . . . , xq ) using Algorithm 1 or Algorithm 2.1
Partition V into sets X0, X1, . . . , Xq using a BFS(P,G)-tree of G (see the proof of Proposition 8).2
Create an embedding f of G into the line � by placing all the vertices of Xi before all vertices of X j ,3
if i < j , and
by placing vertices within each Xi in accordance with the embedding mentioned in Lemma 2. Also,4
for each i ∈ {1, . . . , q − 1}, leave a space of length 2k + 1 between the interval of � spanning the
vertices of Xi and the interval spanning the vertices of Xi+1.
Output f .5

Thus, we have the following interesting conclusion.

Theorem 2 For every class of graphs with path-length bounded by a constant, there is
an efficient constant-factor approximation algorithm for the minimum line-distortion
problem.

Using inequality pl(G) ≤ ld(G) in Corollary 6 once more, we reproduce a result
of [4].
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Corollary 7 ([4]) For every graph G with ld(G) = c, an embedding into the line with
distortion at most O(c2) can be found in polynomial time.

It should be noted that, since the difference between the path-length and the line-
distortion of a graph can be very large (close to n), the result in Corollary 6 seems to
be stronger.

Theorems 1 and 2 stress the importance of investigating the questions (i) for which
particular graph classes there is a constant bound on the path-length and of (ii) how
fast can the path-length of an arbitrary graph be computed or sharply estimated. In the
next two sections we address some of those questions.

5 Constant-Factor Approximations of Path-Length and Path-Breadth

Let G = (V, E) be an arbitrary graph and let s be an arbitrary vertex of G. A layering
L(s,G) of G with respect to a start vertex s is the decomposition of V into layers
Li = {u ∈ V : dG(s, u) = i}, i = 0, 1, . . . , q. For an integer i ≥ 1 and a vertex
v ∈ Li denote by N↓

G(v) = NG(v) ∩ Li−1 the neighborhood of v in the previous
layer Li−1. We can get a path-decomposition of G by adding to each layer Li (i > 0)
all vertices from layer Li−1 that have a neighbor in Li , in particular, let L+

i :=
Li ∪ (

⋃
v∈Li

N↓
G(v)). Clearly, the sequence {L+

1 , . . . , L+
q } is a path-decomposition of

G and can be constructed in O(|E |) total time. We call this path-decomposition an
extended layering of G and denote it by L+(s,G).

As shown in the next theorem, this type of path-decomposition has length at most
twice as large as the path-length of the graph.

Theorem 3 For every graph G with pl(G) = λ there is a vertex s such that the
length of the extended layering L+(s,G) of G is at most 2 λ. In particular, a factor 2
approximation of the path-length of an arbitrary n-vertex graph can be computed in
O(n3) total time.

Proof Consider a path-decomposition P(G) = {X1, X2, . . . , X p} of length pl(G) =
λ of G. Let s be an arbitrary vertex from X1. Consider the layering L(s,G) of G with
respect to s where Li = {u ∈ V : dG(s, u) = i}, (i = 0, 1, . . . , q). Let x and y be two
arbitrary vertices from Li (i ∈ {1, . . . , q}) and x ′ and y′ be arbitrary vertices from Li−1
with xx ′, yy′ ∈ E . We will show that max{dG(x, y), dG(x, y′), dG(x ′, y)} ≤ 2 λ. By
induction on i , we may assume that dG(y′, x ′) ≤ 2 λ as x ′, y′ ∈ Li−1.

If there is a bag in P(G) containing both vertices x and y, then dG(x, y) ≤ λ

and therefore dG(x, y′) ≤ λ + 1 ≤ 2 λ, dG(y, x ′) ≤ λ + 1 ≤ 2 λ. Assume now
that all bags containing x are earlier in P(G) = {X1, X2, . . . , X p} than the bags
containing y. Let B be a bag of P(G) containing both ends of edge xx ′ (such a bag
necessarily exists by properties of path-decompositions). By the position of this bag
B in P(G) and the fact that s ∈ X1, any shortest path connecting s with y must
have a vertex in B. Let w be a vertex of B that is on a shortest path of G connecting
vertices s and y and containing edge yy′. Such a shortest path must exist because of
the structure of the layering L(s,G) that starts at s and puts y′ and y in consecutive
layers. Since x, x ′, w ∈ B we have max{dG(x, w), dG(x ′, w)} ≤ λ. If w = y′ then
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we are done; max{dG(x, y), dG(x, y′), dG(x ′, y)} ≤ λ + 1 ≤ 2 λ. So, assume that
w 
= y′. Since dG(x, s) = dG(s, y) = i (by the layering) and dG(x, w) ≤ λ, we must
have dG(w, y′) + 1 = dG(w, y) = dG(s, y) − dG(s, w) = dG(s, x) − dG(s, w) ≤
dG(w, x) ≤ λ. Hence, dG(y, x) ≤ dG(y, w) + dG(w, x) ≤ 2 λ, dG(y, x ′) ≤
dG(y, w) + dG(w, x ′) ≤ 2 λ and dG(y′, x) ≤ dG(y′, w) + dG(w, x) ≤ 2 λ − 1.

We conclude that the distance between any two vertices of L+
i is at most 2 λ, that

is, the length of the path decomposition L+(s,G) of G is at most 2 λ. �

Algorithm 6 formalizes the method described above.

Algorithm 6: A 2-approximation algorithm for computing the path-length of a
graph.
Input: A graph G = (V, E).
Output: A path-decomposition for G.

Calculate distances dG (u, v) for all vertices u, v ∈ V .1
foreach s ∈ V do2

Calculate a decomposition L+(s,G) = {L+
0 (s), L+

1 (s), . . .} with3

Li (s) = {v ∈ V : dG (s, v) = i} and L+
i (s) = Li (s) ∪ {v ∈ Li−1(s) : NG (v) ∩ Li (s) 
= ∅}.

Determine the length l(s) of L+(s,G)4

Output a decomposition L+(s,G) for which l(s) is minimal.5

Theorem 4 For every graph G with pb(G) = ρ there is a vertex s such that the
breadth of the extended layering L+(s,G) of G is at most 3ρ. In particular, a factor
3 approximation of the path-breadth of an arbitrary n-vertex graph can be computed
in O(n3) total time.

Proof Since pl(G) ≤ 2 pb(G), by Theorem 3, there is a vertex s in G such that the
length of extended layering L+(s,G) = {L+

1 , . . . , L+
q } of G is at most 4ρ. Consider

a bag L+
i of L+(s,G) and a family F = {DG(x, 2ρ) : x ∈ L+

i } of disks of G. Since
dG(u, v) ≤ 4ρ for every pair u, v ∈ L+

i , the disks of F pairwise intersect. Hence, by
Corollary 4, the disks {DG(x, 3ρ) : x ∈ L+

i } have a nonempty common intersection.
A vertex w from that common intersection has all vertices of L+

i within distance at
most 3ρ. That is, for each i ∈ {1, . . . , q} there is a vertex wi with L+

i ⊆ DG(wi , 3ρ).
�


Combining Theorem 3 and Proposition 6, we obtain the following result.

Theorem 5 For every n-vertex graph G, a layout f with bandwidth at most
2 pl(G)bw(G) can be found in O(n3) total time.

6 Bounds on Path-Length and Path-Breadth for Special Graph Classes

The class of AT-free graphs contains many intersection families of graphs, among them
interval graphs, permutation graphs, trapezoid graphs and cocomparability graphs.
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These three families of graphs can be defined as follows [5,21]. Consider a line in the
plane and n intervals on this line. The intersection graph of such a set of intervals is
called an interval graph. Consider two parallel lines (upper and lower) in the plane.
Assume that each line contains n points, labeled 1 to n. Each two points with the same
label define a segment with that label. The intersection graph of such a set of segments
between two parallel lines is called a permutation graph. Assume now that each of the
two parallel lines contains n intervals, labeled 1 to n, and each two intervals with the
same label define a trapezoid with that label (a trapezoid can degenerate to a triangle or
to a segment). The intersection graph of such a set of trapezoids between two parallel
lines is called a trapezoid graph. Clearly, every permutation graph is a trapezoid graph,
but not vice versa. The class of cocomparability graphs (which contains all interval
graphs and all trapezoid graphs as subclasses) can be defined as the intersection graphs
of continuous function diagrams [22], but for this paper it is more convenient to define
them via the existence of a special vertex ordering. A graph G is a cocomparability
graph if it admits a vertex ordering σ = [v1, v2, . . . , vn], called a cocomparability
ordering, such that for any i < j < k, if vi is adjacent to vk then v j must be adjacent
to at least one of vi , vk . According to [35], such an ordering of a cocomparability
graph can be constructed in linear time. Note also that, given a permutation graph G,
a permutation model (i.e., a set of segments between two parallel lines, defining G)
can be found in linear time [35]; a trapezoid model for an n-vertex trapezoid graph
can be found in O(n2) time [34].

In this section we show that the path-breadth of every permutation graph and every
trapezoid graph is 1 and the path-length (and therefore, the path-breadth) of every
cocomparability graph and every AT-free graph is bounded by 2.

Proposition 9 If G is a permutation graph, then pb(G) = 1 and, therefore, pl(G) ≤
2. Furthermore, a path-decomposition of G with breadth 1 can be computed in linear
time.

Proof We assume that a permutation model of G is given in advance (if not, we can
compute one for G in linear time [35]). That is, each vertex v of G is associated with a
segment s(v) such that uv ∈ E if and only if segments s(v) and s(u) intersect. In what
follows, “u.p.” and “l.p.” refer to a vertex’s point on the upper and lower, respectively,
line of the permutation model.

First we compute an (inclusion) maximal independent set M of G in linear time
as follows. Put in M (which is initially empty) a vertex x1 whose u.p. is leftmost.
For each i ≥ 2, select a vertex xi whose u.p. is leftmost among all vertices whose
segments do not intersect s(x1), . . . , s(xi−1) (in fact, it is enough to check intersection
with s(xi−1) only). If such a vertex exists, put it in M and continue. If no such vertex
exists, M = {x1, . . . , xk} has been constructed.

Now, we claim that {NG[x1], . . . , NG [xk]} is a path-decomposition of G with
breadth 1 and, hence, with length at most 2. Clearly, each vertex of G is in some
bag since every vertex not in M is adjacent to a vertex in M , by the maximality of M .
Consider an arbitrary edge uv of G. Assume that neither u nor v is in M and that the
u.p. of u is to the left of the u.p. of v. Necessarily, the l.p. of v is to the left of the l.p. of
u, as segments s(v) and s(u) intersect. Assume that the u.p. of u is between the u.p.s
of xi and xi+1. From the construction of M , s(u) and s(xi ) must intersect, i.e., the l.p.
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of u is to the left of the l.p. of xi . But then, since the l.p. of v is to the left of the l.p.
of xi , segments s(v) and s(xi ) must intersect, too. Thus, edge uv is in bag NG[xi ].

To show that all bags containing any particular vertex form a contiguous subse-
quence of the sequence NG [x1], . . . , NG [xk], consider an arbitrary vertex v of G and
let v ∈ NG [xi ] ∩ NG [x j ] for i < j . Consider an arbitrary bag NG [xl ] with i < l < j .
We know that vertices xi , xl , x j ∈ M are pairwise non-adjacent. Furthermore, seg-
ment s(v) intersects segments s(xi ) and s(x j ). As segment s(xl) is between s(xi ) and
s(x j ), necessarily, s(v) intersects s(xl) as well. �

Proposition 10 If G is an n-vertex trapezoid graph, then pb(G) = 1 and, therefore,
pl(G) ≤ 2. Furthermore, a path-decompositionofG with breadth1 canbe computed in
O(n2) time. If a trapezoid model for G is given in advance, then a path-decomposition
of G with breadth 1 can be computed in linear time.

Proof We will show that every trapezoid graph G is a minor of a permutation graph.
Recall that a graph G is called a minor of a graph H if G can be formed from H by
deleting edges and vertices and by contracting edges.

First, we compute in O(n2) time a trapezoid model for G [34]. Then, we replace
each trapezoid Ti in this model with its two diagonals obtaining a permutation model
with 2n vertices. Let H be the permutation graph of this permutation model. It is easy
to see that two trapezoids T1 and T2 intersect if and only if a diagonal of T1 and a
diagonal of T2 intersect.

Now, G can be obtained back from H by a series of n edge contractions; for each
trapezoid Ti , contract the edge of H that corresponds to two diagonals of Ti .

Since contracting edges does not increase the path-breadth (see [11]), we get
pb(G) = pb(H) = 1 by Proposition 9. Any path-decomposition of H with breadth 1
is a path-decomposition of G with breadth 1. �


For the proof of the next result we will need a special vertex ordering σ : V →
{1, . . . , n} produced by a so-called Lexicographic-Breadth-First-Search (LBFS for
short) which is a refinement of a standard Breadth-First-Search (BFS). LBFS(s,G)

starts at some given vertex s, orders the vertices of a graph G by assigning numbers
from n to 1 to the vertices in the order as they are discovered by the following search
process. Each vertex v has a label consisting of a (reverse) ordered list of the numbers
of those neighbors of v that were already visited by the LBFS; initially this label is
empty. LBFS starts with some vertex s, assigns number n to s, and adds this number
to the end of the label of all un-numbered neighbors of s. Then, in each step, LBFS
selects the un-numbered vertex v with the lexicographically largest label, assigns the
next available number k to v, and adds this number to the end of the labels of all
un-numbered neighbors of v. An ordering σ of the vertex set of a graph generated by
LBFS(s,G) is called an LBFS(s,G)-ordering. Note that the closer a vertex is to s in
G the larger its number is in σ . It is known that a LBFS-ordering of an arbitrary graph
can be generated in linear time [21].

Proposition 11 If G is an n-vertex AT-free graph, then pb(G) ≤ pl(G) ≤ 2. Fur-
thermore, a path-decomposition of G with length at most 2 can be computed inO(n2)

time.
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Proof Let s be an arbitrary vertex of G and x be a vertex last visited (numbered 1) by
an LBFS(s,G). Let σ be an LBFS(x,G)-ordering of vertices of G. Clearly, σ can be
generated in linear time as one needs only 2 scans of LBFS to do that. The following
useful result was proven in [8].

Claim 1: [8] For every vertex y of an AT-free graph G, the pair x, y is a 1-dominating
pair of the subgraph G≥σ(y) of G induced by vertices {z ∈ V : σ(y) ≤ σ(z) ≤
σ(x) = n}. In particular, x and the vertex last visited by LBFS(x,G) constitute a
1-dominating pair of G.

Let now L(x,G) = {L0, . . . , Lk} with Li = {u ∈ V : dG(u, x) = i} be a layering
of G produced by LBFS(x,G).

Claim 2: For every integer i ≥ 1 and every two non-adjacent vertices u, v ∈ Li of an
AT-free graph G, σ(v) < σ(u) implies N↓

G(v) ⊆ N↓
G(u). In particular, dG(v, u) ≤ 2

holds for every u, v ∈ Li and every i .

Proof (of Claim 2) Consider an arbitrary neighbor w ∈ Li−1 of v and a shortest path P
from v to x in G containing w. Since σ(v) < σ(u), by Claim 1, path P must dominate
vertex u. Since u and v are not adjacent, u is in Li and all vertices of P\{v,w} belong
to layers L j with j < i − 1, vertex u must be adjacent to w. �


We can transform an AT-free graph G = (V, E) into an interval graph G+ =
(V, E+) by applying the following two operations:

(1) (make layers complete graphs) In each layer Li , make every two vertices u, v ∈ Li

adjacent to each other in G+;
(2) (make down-neighborhoods of adjacent vertices of a layer comparable, too) For

each i and every edge uv of G with u, v ∈ Li and σ(v) < σ(u), make every
w ∈ N↓

G(v) adjacent to u in G+.

Clearly, for every edge uw of G+ added by operation (2), dG(u, w) ≤ 2 holds.
Also, for every edge uv of G+ added by operation (1), dG(u, v) ≤ 2 holds by Claim 2.
Thus, we have.

Claim 3: G+ is a subgraph of G2.

Next we show that G+ is an interval graph.

Claim 4: G+ is an interval graph.

Proof (of Claim 4) It is known [37] that a graph is an interval graph if and only if its
vertices admit an interval ordering, i.e., an ordering τ : V → {1, . . . , n} such that for
every choice of vertices a, b, c with τ(a) < τ(b) < τ(c), ac ∈ E implies bc ∈ E .
We show here that the LBFS(x,G)-ordering σ of G is an interval ordering of G+.
Recall that, for every v ∈ Li and u ∈ L j with i > j , it holds that σ(v) < σ(u)

(as σ is an LBFS-ordering). Consider three arbitrary vertices a, b, c of G and assume
that σ(a) < σ(b) < σ(c) and ac ∈ E+. Assume also that a ∈ Li for some i . If c
belongs to Li , then b must be in Li as well and, hence, bc ∈ E+ due to operation (1).
If both b and c are in Li−1, then again bc ∈ E+ due to operation (1). Consider now
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the remaining case, i.e., a, b ∈ Li and c ∈ Li−1. If ac ∈ E then bc ∈ E+ because
either ab ∈ E and thus operation (2) applies, or ab /∈ E and thus Claim 2 implies
bc ∈ E+. If ac ∈ E+\E then, according to operation (2), edge ac was created in G+
because some vertex a′ ∈ Li existed such that σ(a′) < σ(a) and a′a, a′c ∈ E . Since
a′c ∈ E and σ(a′) < σ(b) < σ(c), as before, bc ∈ E+ must hold. �


To complete the proof of Proposition 11, we recall that a graph is an interval graph
if and only if it has a path-decomposition with each bag being a maximal clique
(see, e.g., [9,18,19,21]). Furthermore, such a path-decomposition of an interval graph
can easily be computed in linear time. Let P(G+) = {X1, X2, . . . , Xq} be a path-
decomposition of our interval graphG+. Then,P(G) := P(G+) = {X1, X2, . . . , Xq}
is a path decomposition of G with length at most 2 since, for every edge uv of G+,
the distance in G between u and v is at most 2, as shown in Claim 3. �


Algorithm 7 formalizes the steps described in the previous proof.

Algorithm 7: Computing a path-decomposition of length at most 2 for a given
AT-free graph.
Input: An AT-free graph G = (V, E).
Output: A path-decomposition of G.

Calculate an LBFS(s,G) ordering σ with an arbitrary start vertex s ∈ V . Let x be the last visited1
vertex, i.e., σ(x) = 1.
Calculate an LBFS(x,G) ordering σ ′.2

Set E+ := E .3
foreach vertex pair u, v with dG (x, u) = dG (x, v) and σ ′(u) < σ ′(v) do4

Add uv to E+.5

For each w ∈ NG (u) with σ ′(v) < σ ′(w), add vw to E+.6

Calculate a path-decomposition P(G+) of the interval graph G+ = (V, E+) by determining the7

maximal cliques of G+.
Output P(G+).8

As the class of cocomparability graphs is a proper subclass of AT-free graphs, we
obtain the following corollary.

Corollary 8 If G is an n-vertex cocomparability graph, then pb(G) ≤ pl(G) ≤ 2.
Furthermore, a path-decomposition of G with length at most 2 can be computed in
O(n2) time.

The complement of an induced cycle on six vertices shows that the bound 2 on
the path-breadth of cocomparability graphs (and therefore, of AT-free graphs) is tight.
Indeed, the edge set of C6 forms a bramble but no vertex 1-dominates all edges,
implying, by Proposition 4, that pb(C6) = 2.

Since the minimum line-distortion problem is NP-hard on cocomparability graphs
[25], it is NP-hard also on bounded path-length graphs.

Corollary 9 The minimum line-distortion problem is NP-hard on bounded path-
length graphs.
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We know that the minimum bandwidth problem is NP-hard even on bounded path-
width graphs (e.g., even on caterpillars of hair-length at most 3 [13,36]). Recently,
in [41], it was shown that the minimum bandwidth problem is NP-hard also on so-
called convex bipartite graphs. A bipartite graph G = (U, V ; E) is said to be convex
if for one of its parts, say U , there is an ordering (u1, u2, . . . , uq) such that for all
v ∈ V the vertices adjacent to v are consecutive. It is easy to see that, in this case,
{NG[u1], NG [u2], . . . , NG [uq ]} is a path-decomposition of G of breadth 1. Note that,
given a convex bipartite graph G = (U, V ; E), a proper ordering (u1, u2, . . . , uq) of
U can be found in linear time [6]. Thus, the following two results are true.

Proposition 12 If G is a convex bipartite graph, then pb(G) = 1 and, therefore,
pl(G) ≤ 2. Furthermore, a path-decomposition of G with breadth 1 can be computed
in linear time.

Corollary 10 The minimum bandwidth problem is NP-hard on bounded path-length
graphs.

7 Constant-Factor Approximation of Line-Distortions of AT-free Graphs

From Theorem 2 and results of the previous section, it follows already that there
is an efficient constant-factor approximation algorithm for the minimum line-
distortion problem on such particular graph classes as permutation graphs, trapezoid
graphs, cocomparability graphs as well as AT-free graphs. Recall that for arbitrary
(unweighted) graphs the minimum line-distortion problem is hard to approximate
within a constant factor [4]. Furthermore, the problem remains NP-hard even when
the input graph is restricted to a chordal, cocomparability, or AT-free graph [25].
Polynomial-time constant-factor approximation algorithms were known only for split
and cocomparability graphs; [25] gave efficient 6-approximation algorithms for both
graph classes. As far as we know, for AT-free graphs (the class which contains all
cocomparability graphs), no prior efficient approximation algorithm was known.

In this section, using additional structural properties of AT-free graphs and ideas
from Sect. 4.2, we give a better approximation algorithm for all AT-free graphs; more
precisely, we give an 8-approximation algorithm that runs in linear time.

The following nice structural result from [30] will be very useful.

Lemma 3 ([30]) Let G = (V, E) be an AT-free graph. Then, there is a dominating
path π = (v0, . . . , vk) and a layering L = {L0, . . . , Lk} with Li = {u ∈ V :
dG(u, v0) = i} such that for all u ∈ Li (i ≥ 1), uvi ∈ E or uvi−1 ∈ E. Computing
π and L can be done in linear time.

Theorem 6 There is a linear time algorithm to compute an 8-approximation of the
line-distortion of an AT-free graph.

Proof Let G be an AT-free graph. We first compute a path π = (v0, . . . , vk) and a
layeringL = {L0, . . . , Lk} as defined in Lemma 3. To define an embedding f ofG into
the line, we partition every layer Li in three sets: {vi }, Xi = {x : x ∈ Li , vi x ∈ E},
and Xi = Li\({vi } ∪ Xi ) (see Fig. 4). Note that if x ∈ Xi , then vi−1x ∈ E . Since
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Fig. 4 Layering of an AT-free
graph; illustration to the proof of
Theorem 6
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each vertex in Xi is adjacent to vi and each vertex in Xi is adjacent to vi−1, for
all x, y ∈ Xi , dG(x, y) ≤ 2, and for all x, y ∈ Xi , dG(x, y) ≤ 2. Also, for all
x ∈ Xi and y ∈ Xi , dG(x, y) ≤ 3. The embedding f places vertices of G into
the line in the following order: (v0, . . . , vi−1, Xi , Xi , vi , Xi+1, Xi+1, vi+1, . . . , vk).
Between every two vertices x, y placed next to each other on the line, to guarantee
non-contractiveness, f leaves a space of length dG(x, y) (which is either 1 or 2 or 3,
where 3 occurs only when x ∈ Xi and y ∈ Xi for some i).

Now we will show that f approximates the minimum line-distortion of G. Since
L is a BFS layering started from v0, i.e., it represents the distances of vertices from
v0, there is no edge xy with x ∈ Li−1 and y ∈ Li+1. Also note that DG(vi , 2) ⊇
Li∪Li+1∪{vi−1}. By the definition of f , for all xy ∈ E with x, y ∈ Li∪Li+1, | f (x)−
f (y)| < | f (vi−1) − f (vi+1)|. Therefore, counting how many vertices are placed by
f between f (vi−1) and f (vi+1) and the distance in G between vertices placed next
to each other, we get | f (x) − f (y)| ≤ 2(|DG(vi , 2)| − 2) + 2 = 2(|DG(vi , 2)| − 1).
Using Lemma 1 and the fact that bw(G) ≤ ld(G), we get | f (x) − f (y)| ≤ 8 ld(G)

for all xy ∈ E . �


Algorithm 8 formalizes the method described above.

Algorithm 8: An 8-approximation algorithm for the minimum line-distortion of
an AT-free graph.
Input: An AT-free graph G = (V, E).
Output: An embedding f of G into the line.

Compute a path π = (v0, . . . , vk ) and a layering L = {L0, . . . , Lk } as defined in Lemma 3.1

Partition each layer Li into three sets: {vi }, Xi = {x : x ∈ Li , vi x ∈ E}, and Xi = Li\({vi } ∪ Xi ).2
Create an embedding f by placing the vertices of G into the line in the order3

(v0, . . . , vi−1, Xi , Xi , vi , Xi+1, Xi+1, vi+1, . . . , vk ).
Between every two consecutive vertices x, y on the line, leave a space of length dG (x, y).4
Output f .5
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It is easy to see that the order in which the vertices of G are placed by f into the
line gives also a layout of G with bandwidth at most 4 bw(G). This reproduces an
approximation result from [30] (in fact, their algorithm has complexityO(m+n log n)

for an n-vertex m-edge graph, since it involves an O(n log n) time algorithm from [1]
to find an optimal layout for a caterpillar with hair-length at most 1).

Corollary 11 ([30]) There is a linear time algorithm to compute a 4-approximation
of the minimum bandwidth of an AT-free graph.

Combining Proposition 11 and Proposition 6, we obtain also the following result
from [30] as a corollary.

Corollary 12 ([30]) There is an O(m + n log2 n) time algorithm to compute a 2-
approximation of the minimum bandwidth of an AT-free graph.

8 Concluding Remarks

In this paper we have shown that if a graph G has a k-dominating shortest path, where k
is a constant, or the path-length of G is bounded by a constant, then both the minimum
line-distortion problem and the minimum bandwidth problem on G can be efficiently
approximated within constant factors. As AT-free graphs, cocomparability graphs,
permutation graphs, trapezoid graphs, convex bipartite graphs, caterpillars with hairs
of bounded length, all have bounded path-length or have k-dominating shortest paths
with constant k, they admit constant factor approximations of the minimum bandwidth
and the minimum line-distortion. Thus, the constant factor approximation results of
[25,30,41] become special cases of our results.

We conclude this paper with a few open questions. We have presented a 2-
approximation algorithm for computing the path-length of a general graph but we
do not know the complexity status of this problem. So, our first open question is the
following.

(1) Is it NP-complete to decide whether a graph has path-length at most k (k > 1)?

We gave a first constant-factor approximation (8-approximation) algorithm for
the minimum line-distortion problem on AT-free graphs and reproduced a 4-
approximation and a 2-approximation for the minimum bandwidth on such graphs.

(2) Does there exist a better approximation algorithm for the minimum line-distortion
problem on AT-free graphs?

We have mentioned that the minimum bandwidth problem is notoriously hard even on
bounded path-width graphs (e.g., even on caterpillars of hair-length at most 3 [13,36])
and even on bounded path-length graphs (e.g., even on convex bipartite graphs [41]).
Since the minimum line-distortion problem is NP-hard on cocomparability graphs
[25], it is NP-hard also on bounded path-length graphs. However, the status of the
minimum line-distortion problem on bounded path-width graphs is unknown. See
Table 5 for a summary.

(3) Is the minimum line-distortion problem on bounded path-width graphs NP-hard?
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Table 5 Hardness results for the minimum line-distortion problem and the minimum bandwidth problem
on graphs with bounded path-with or bounded path-length

pw(G) ≤ c pl(G) ≤ c

Bandwidth NP-hard (caterpillars with
hair-length at most 3 [36])

NP-hard (convex bipartite graphs [41])

Line-distortion ? NP-hard (cocomparability graphs [25])

We are also interested in a more general question.

(4) Is there a better hardness result (better than a constant [4]) for the line-distortion
problem in general graphs?

Acknowledgements We are very grateful to anonymous referees for many useful suggestions.
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