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Abstract

We show that the vertex visited last by a LexBFS has eccentricity at least diam(G) − 2 for
house-hole-free graphs, at least diam(G) − 1 for house-hole-domino-free graphs, and equal to
diam(G) for house-hole-domino-free and AT-free graphs. To prove these results we use special
metric properties of house-hole-free graphs with respect to LexBFS. ? 1999 Elsevier Science
B.V. All rights reserved.
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1. Introduction and basic notions

All graphs G= (V; E) in this paper are �nite, undirected, connected and simple (i.e.
without loops and multiple edges). The (open) neighborhood of a vertex v is the set
N (v) = {u∈V : uv∈E} and the closed neighborhood is N [v] = N (v) ∪ {v}. A path is
a sequence of vertices (v0− · · · − vl) such that vivi+1 ∈E for i=0; : : : ; l− 1; its length
is l. An induced path is a path where vivj ∈E i� i = j − 1 and j = 1; : : : ; l. A k-cycle
Ck is a path (v0 − · · · − vk) such that v0 = vk ; its length is k. An induced cycle is a
cycle where vivj ∈E i� |i− j|= 1 (modulo k). A hole is an induced cycle of length at
least �ve.
The distance dist(v; u) between vertices v and u is the smallest number of edges in

a path joining v and u. The eccentricity e(v) of a vertex v is the maximum distance
from v to any vertex in G. The radius rad(G) is the minimum eccentricity of a vertex
in G and the diameter diam(G) is the maximum eccentricity. Distances in graphs and
related graph theoretic parameters such as diameter and radius play an important role
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in the design and analysis of networks in a variety of networking environments like
communication networks, electric power grids, and transportation networks.
As yet, no fast algorithms for computing the diameter of an arbitrary graph, avoiding

the computation of the whole distance matrix, have been designed. Linear-time algo-
rithms are known only for trees [16], maximal outerplanar graphs [13], interval graphs
[21,12], ptolemaic graphs [12], strongly chordal graphs [6], dually chordal graphs [1],
distance-hereditary graphs [10,11] and for graphs of benzenoid systems [3].
Even for chordal graphs (a graph is chordal if it has no induced cycle of length at

least 4) e�cient computation of the diameter is an open problem [5], and it seems that
the diameter problem on chordal graphs is not easier than 0; 1 matrix multiplication. It
can be shown that the diameter problem on chordal graphs is linear time reducible to the
diameter problem on split graphs (a subclass of chordal graphs with only three possible
values 1; 2; 3 for the diameter). Nevertheless, using Lexicographic-Breadth-First-Search
(LexBFS) of Rose et al. [22], one can �nd “almost” diameter of a chordal graph in
linear time; namely, the vertex numbered last by LexBFS has eccentricity equal to
diam(G) or diam(G)− 1 (see [12]). Using LexBFS one can �nd also the diameter of
interval graphs, ptolemaic graphs and almost the diameter of distance-hereditary graphs
and weak bipolarizable graphs [12].
This result for interval graphs and ptolemaic graphs generalizes the well-known

result for trees: the vertex of a tree T visited last by Breadth-First-Search (BFS)
has eccentricity diam(T ). A linear-time algorithm for computing the diameter of a
distance-hereditary graph G, presented in [11], �rst applies LexBFS to �nd a vertex
with eccentricity at least diam(G)−1 and then using only local search either improves
this value by 1 or proves that this is the exact diameter of G.
Historically, LexBFS was designed to provide a linear-time recognition algorithm for

chordal graphs [22]. Recently in [8] a very simple, optimal recognition algorithm for
interval graphs was presented that uses four sweeps of LexBFS. Another linear-time
recognition algorithm for interval graphs, developed in [15], is also based on LexBFS.
In [7], two sweeps of LexBFS is used to �nd a dominating pair of AT-free graphs.
Note that the interval graphs are exactly the AT-free chordal graphs [19]. A graph is
called AT-free if it does not have an asteroidal triple, i.e. a set of three vertices such
that there is a path between any pair of them avoiding the closed neighborhood of the
third. A dominating pair of a graph is a pair (x; y) of vertices such that, for any path
P connecting x and y, every vertex z either belongs to P or has a neighbor in P. The
authors of [7] have shown that the vertex numbered last by LexBFS forms together
with some other vertex a dominating pair of an AT-free graph G. It is clear that this
vertex again has eccentricity at least diam(G)− 1.
In this paper we extend the results on diameters of chordal graphs and interval

graphs, mentioned above, to three (more general) graph classes: to HH-free graphs, to
HHD-free graphs and to HHD-free and AT-free graphs.
A graph is HH-free if it does not contain a house or a hole as an induced subgraph.

A graph is HHD-free if it does not contain a house, a hole or a domino as an
induced subgraph (see Fig. 1). HHD-free graphs were introduced and investigated in
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Fig. 1.

[18]. It was shown that G is a HHD-free graph if and only if every ordering of the
vertices of G produced by LexBFS is semi-simplicial [18]. Some further properties of
HH-free graphs with respect to LexBFS can be found in [4,9]. If a HHD-free graph
does not contain the “A” of Fig. 1 as an induced subgraph then this graph is called
weak bipolarizable [20]. A distance-hereditary graph is a HHD-free graph that does
not contain 3–fan as an induced subgraph [17]. Chordal distance-hereditary graphs are
exactly the ptolemaic graphs [17].
Recall that LexBFS orders the vertices of a graph by assigning numbers from n=|V |

to 1 in the following way: assign the number k to a vertex v (as yet unnumbered)
which has lexically largest vector (sn; sn−1; : : : ; sk+1), where si = 1 if v is adjacent to
the vertex numbered i, and si = 0 otherwise. An ordering of the vertex set of a graph
G generated by LexBFS we will call a LexBFS-ordering.
Main results of this paper are the following.
Let v be a vertex of G numbered by “1” in some LexBFS.

• If G is a HH-free graph then e(v)∈{diam(G); diam(G)− 1; diam(G)− 2}.
• If G is a HHD-free graph then e(v)∈{diam(G); diam(G)− 1}.
• If G is a HHD-free and AT-free graph then e(v) = diam(G).
To prove these results we use special metric properties of HH-free graphs with

respect to LexBFS.

2. LexBFS-orderings in HH-free graphs

Let � = (v1; v2; : : : ; vn) be an ordering of the vertex set of a graph G. We will
write a¡b whenever in � vertex a has a smaller number than vertex b. Moreover,
{a1; : : : ; al}¡ {b1; : : : ; bk} is an abbreviation for ai ¡bj (i = 1; : : : ; l; j = 1; : : : ; k).
In what follows we will often use the following property (cf.[18]):

(P1) If a¡b¡c and ac∈E and bc =∈E then there exists a vertex d such
that c¡d; db∈E and da =∈E.

It is well known that any LexBFS-ordering has property (P1) [14]. Moreover, any
ordering obeying (P1) can be generated by LexBFS [2,12].
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Let G be a HH-free graph and � be a LexBFS-ordering of G. By P4 we denote a
path on four vertices.

Lemma 1. G does not have any induced P4=(c−a−b−d) with {a; b}¡ {c; d} in �.

Proof. Assume by way of contradiction that there is an induced path (x1 − x0 − y0
− y1) in G such that {x0; y0}¡ {y1; x1}. We may choose such a path with largest
sum �= �(x0) + �(y0) + �(x1) + �(y1) of the positions of x0; y0; x1; y1 in �. Let also
y1¡x1.
Consider in G an induced path P=(xk−· · ·−x1−x0−y0−y1−· · ·−yk) (k¿1) such

that {x0; y0}¡y1¡x1¡ · · ·¡yk−1¡xk−1¡yk ¡xk and if k¿2 then the following
two conditions hold:
1. for each i (0¡i6k − 1) and all y¿yi+1; yxi−1 ∈E if yyi ∈E;
2. for each i (0¡i6k − 1) and all x¿xi+1; xyi ∈E if xxi ∈E.
We will extend this path by vertices yk+1 and xk+1 as follows.
First apply (P1) to xk−1¡yk ¡xk and get a vertex yk+1¿xk adjacent to yk but

not to xk−1. We may choose yk+1 rightmost in �, i.e. for every y¿yk+1; yxk−1 ∈E if
yyk ∈E. We claim that yk+1 is not adjacent to any xi (i = 0; : : : ; k) and any yi (i =
0; : : : ; k − 1). Assume yk+1xk ∈E. Since G does not contain holes, the cycle formed
by the induced path P and edges yk+1xk ; yk+1yk must have chords. All these chords
are incident to the vertex yk+1. Since yk+1xk−1 =∈E and the length of this cycle is
odd (=2k + 3) we cannot avoid an induced house. Hence, yk+1xk =∈E. Let yk+1xi ∈E
and i be the largest index with this property. Evidently, i6k − 2. Then the path
(yk+1−xi−xi+1−xi+2) is induced and xi ¡ xi+1¡xi+2¡yk+1, contrary to maximality
of �. Let now yk+1yi ∈E and i be the smallest index with this property. If i= 0 then
we can replace y1 with yk+1 in the path (x1−x0−y0−y1) and increase the sum �. So,
0¡i6k − 1. From yk+1yi ∈E; yk+1xi−1 =∈E and yk+1¿yi+1 we get a contradiction
with the condition 1.
Now we apply (P1) to yk ¡xk ¡yk+1 and get a vertex xk+1¿yk+1 adjacent to xk

but not to yk . Again we may choose xk+1 rightmost in �, i.e. for every x¿xk+1; xyk ∈E
if xxk ∈E. We will show that in P ∪ {yk+1; xk+1} vertex xk+1 is adjacent to xk only.
Assume yk+1xk+1 ∈E. Since G does not contain holes, the cycle formed by P and
edges ykyk+1; yk+1xk+1; xk+1xk must have chords. They are all incident to xk+1. Since
ykxk+1 =∈E and G does not contain an induced house, the vertex xk+1 is adjacent to
xi; yj if and only if i = k; k − 2; k − 4; : : : and j = k + 1; k − 1; k − 3; : : : . We dis-
tinguish between two cases: x0xk+1 ∈E, i.e. k is even, or y0xk+1 ∈E, i.e. k is odd.
First suppose that x0xk+1 ∈E. We have xk+1 is adjacent to y1; x0; x2 and not to y0; x1.
Applying (P1) to x0¡x1¡xk+1 we will �nd a vertex t ¿ xk+1 adjacent to x1 but not
to x0. Since t ¿ x2 and tx1 ∈E from the condition 2 we have ty1 ∈E. But then the
vertices t; y1; y0; x0; x1 induce a house or a 5-cycle, that is impossible. Suppose now
y0xk+1 ∈E. Hence, xk+1 is adjacent to y0; x1; y2 and not to y1; x0. We apply (P1) to
y0¡y1¡xk+1 to get a vertex t ¿ xk+1 adjacent to y1 and not to y0. Since t ¿y2
and ty1 ∈E from the condition 1 we have tx0 ∈E. Furthermore tx1 =∈E, otherwise the
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vertices x1; x0; y0; y1; t induce a house. Now apply (P1) to x0¡x1¡t and get a vertex
s¿ t adjacent to x1 and not to x0. Again, s¿x2 and the condition 2 give sy1 ∈E.
Since sx0 =∈E and the path (x1 − x0 − y0 − y1) is induced, the vertices s; x1; x0; y0; y1
induce a house or a hole.
Hence, yk+1xk+1 =∈E. Let xk+1yi ∈E and i be the largest index with this prop-

erty. Evidently, i6k − 1. Then the path (xk+1 − yi − yi+1 − yi+2) is induced and
yi ¡yi+1¡yi+2¡xk+1, contrary to maximality of �. Let now xk+1xi ∈E and i be the
smallest index with this property. If i=0 then we can replace x1 with xk+1 in the path
(x1 − x0 − y0 − y1) increasing �. So, 0¡i6k − 1. From xk+1xi ∈E, xk+1yi =∈E and
xk+1¿xi+1 we get a contradiction with the condition 2.
Thus, we have extended the path P by vertices yk+1 and xk+1. Since G is �nite, at

a certain step we will arrive at a contradiction.

In Lemma 1 the condition that G is HH-free is essential. In Fig. 1 a LexBFS-ordering
of the house is given for which a forbidden-induced (ordered) P4 occurs. It is easy
to see also that any LexBFS-ordering of a hole produces a forbidden induced P4 =
(3− 1− 2− 4).

Lemma 2. Let a; b; c be three distinct vertices of G such that a¡ {b; c}; ab; ac∈E
and bc =∈E. Then there is a vertex d¿ {b; c} adjacent to b and c but not to a.

Proof. Assume without loss of generality, that b¡c. Applying (P1) to a¡b¡c
gives a vertex d¿c adjacent to b but not to a. Since {a; b}¡ {c; d}, by Lemma 1,
the vertices d and c must be adjacent.

Let P = (x0 − x1 − · · · − xk−1 − xk) be an arbitrary path of G and � be an order-
ing of the vertex set of this graph. The path P is monotonic (with respect to �) if
x0¡x1¡ · · ·¡xk−1¡xk holds whenever x0¡xk , and P is convex if there is an in-
dex i (16 i¡ k) such that x0¡x1¡ · · ·¡xi−1¡xi ¿xi+1¿ · · ·¿xk−1¿xk . Then
xi is called the switching point of the convex path P. Let now P=(x0−· · ·− xk) be a
shortest path of G connecting x0 and xk . We say that P is a rightmost shortest path if
the sum �(x0)+ �(x1)+ · · ·+ �(xk) of the positions of x0; : : : ; xk in � is largest among
all shortest paths connecting x0 and xk .
Let G be a HH-free graph and � be a LexBFS-ordering of G.

Lemma 3. Every rightmost shortest path of G is either monotonic or convex.

Proof. Assume that a rightmost shortest path P = (x0 − · · · − xk) has a vertex xj with
(16 j¡k) such that xj−1¿xj ¡xj+1. Since xj−1xj+1 =∈E, by Lemma 2, there exists
a vertex y¿xj adjacent to both xj−1 and xj+1. But this contradicts to the assumption
that P is a rightmost shortest path.

Lemma 3 is implicitly contained in [3], where paths similar to rightmost shortest
paths are used. We re�ne this lemma by the following result.
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Lemma 4. Let P= (x0− · · · − xk) be a rightmost shortest path in G which is convex
and xi be the switching point of P. Furthermore; let x0¡xk . Then
(1) dist(x0; xi)¿dist(xk ; xi) and
(2) if dist(x0; xi)=dist(xk ; xi); i.e. k =2i; then x0¡xk ¡ · · ·¡xj ¡xk−j ¡ · · ·

¡xi−1¡xi+1¡xi.

Proof. We prove the assertion by induction on k. Note that any subpath of a rightmost
shortest path is again a rightmost shortest path.
For k = 2, evidently x0¡x2¡x1 holds. So, let k¿3. Since P is convex we have

xk ¡xk−1 and hence x0¡xk−1. By induction hypothesis, dist(x0; xi)¿dist(xk−1; xi). If
dist(x0; xi)¿dist(xk−1; xi)+1 then dist(x0; xi)¿dist(xk ; xi), and we are done. Now we
distinguish between two cases: dist(x0; xi) = dist(xk−1; xi) or dist(x0; xi) = dist(xk−1; xi)
+ 1. We show that the �rst case is impossible.
Let dist(x0; xi)=dist(xk−1; xi). By induction hypothesis we have x0¡xk−1¡x1¡ · · ·

¡xj ¡xk−j−1¡ · · ·¡xi−1¡xi+1¡xi. Moreover, from xk¡xk−1 we conclude xk¡x1.
Applying (P1) to x0¡xk ¡x1 gives a vertex t ¿ x1 adjacent to xk but not to x0. Since
xk−1¡t and P is rightmost txk−2 =∈E. From xk ¡xk−1¡ {xk−2; t} and Lemma 1 the
vertices t and xk−1 must be adjacent. Since xk−1¡ {xk−2; t} and xk−2; t =∈E, by Lemma
2, there exists a vertex s¿ {t; xk−2} adjacent to xk−2; t and not to xk−1. Furthermore,
xks =∈E, otherwise P is not rightmost (note that s¿xk−1). But then s; t; xk ; xk−1; xk−2
induce a house, a contradiction.
Assume now that dist(x0; xi)=dist(xk−1; xi)+1, i.e. dist(x0; xi)=dist(xk ; xi). For the

rightmost shortest path (x1 − x2 − · · · − xk−1; xk) with the switching point xi we have
dist(x1; xi)¡dist(xk ; xi). Hence, by induction hypothesis, x1¿xk must hold. If also
xk−1¡x1 then, using the same arguments as above, we can construct a house induced
by {xk ; xk−1; xk−2} and two additional vertices t and s. Therefore, xk−1¿x1. Since
dist(x1; xi) = dist(xk−1; xi), by induction, we obtain x1¡xk−1¡ · · ·¡xj ¡xk−j · · ·
¡xi−1¡xi+1¡xi. With this and x0¡xk ¡x1 we complete the proof.

3. Approximation of the diameter of a HH-free graph

A subgraph H of a graph G is isometric if the distance between any pair of vertices
in H is the same as that in G.
Let v be the �rst vertex of a LexBFS-ordering of a HH-free graph G.

Lemma 5. For every two vertices x and y of G such that dist(x; v) = dist(y; v) = p;
dist(x; y)6p + 2 holds. Moreover; if dist(x; y) = p + 2; then p is even; say p = 2k;
and G contains an induced subgraph isomorphic to the graph Hk−1 from Fig. 2.

Proof. Assume that dist(x; y)¿p + 2. Consider in G rightmost shortest paths Px and
Py, connecting vertex v with vertices x and y, respectively. Let a be the common
vertex of the paths Px and Py furthest from v. Since a subpath of a rightmost shortest



F.F. Dragan /Discrete Applied Mathematics 95 (1999) 223–239 229

Fig. 2.

Fig. 3.

path is again a rightmost shortest path, paths Px and Py coincide in the part from v to
a and do not have any other common vertices. Denote the common subpath of those
paths by Pa.
By Lemma 3, Px and Py are monotonic or convex. First, we show that these paths

cannot have a switching point on the subpath Pa. Assume by way of contradiction that
a vertex z of Pa is the switching point of Px and Py. Then, by Lemma 4, we obtain
dist(v; z)¿dist(x; z)=dist(y; z)=p−dist(v; z). Hence, p62dist(v; z)62dist(v; a), i.e.
p− 2dist(v; a)60. Thus, p+26dist(x; y)6dist(x; a)+ dist(a; y)= 2dist(x; a)= 2p−
2dist(v; a))6p, a contradiction.
Let now b and c be the neighbors of a in the paths Px and Py, respectively,

which do not belong to the path Pa (see Fig. 3). Assume that b¡c. We claim
that b is the switching point of the path Px. If this is not the case, we will have
a¡b¡ {c; d}, where d is the neighbor of b in the path Px distinct from a. Since
Px is rightmost and b¡c, vertices d and c are not adjacent. Applying Lemma 1 to
a¡b¡ {c; d} we get bc∈E. Moreover, from b¡ {d; c}; dc =∈E and Lemma 2 we
will �nd a vertex t ¿ {c; d} adjacent to c; d and not to b. The vertices t and a are
not adjacent, otherwise Px is not rightmost. Then {a; b; c; d; t} induce a house, that is
impossible.
So, Px is a convex path and b is the switching point of Px. By Lemma 4, dist(v; b)¿

dist(x; b) = p − dist(v; b). Hence, p62dist(v; b) = 2dist(v; a) + 2, i.e. p − 2dist(v; a)
62. Thus, p+ 26dist(x; y)6dist(x; a) + dist(a; y) = 2dist(x; a) = 2p− 2dist(v; a)6
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Fig. 4.

p+2, i.e. dist(x; y)=dist(x; a)+dist(a; y)=2dist(x; a)=p+2; p is even (say p=2k),
and the graph from Fig. 3 is an isometric subgraph of G.
It remains to construct an induced subgraph of G isomorphic to the graph Hk−1.

Since Px is convex, b is the switching point of Px and dist(v; b) = dist(x; b), by
Lemma 4, we have a¡d¡b. Applying (P1) to a¡d¡c and Lemma 2 to a¡ {b; c};
bc =∈E give vertices s¿c and t ¿ c such that as; at =∈E; s is adjacent to b; c, and t is
adjacent to d (see Fig. 4(a)). We choose the vertices s and t rightmost in �. From
distance requirements sd; sf; tc; tf =∈E holds.
Assume that tb∈E. Then ts =∈E, otherwise we will have an induced house formed

by t; b; s; a; c. So, we can apply Lemma 2 to b¡ {t; s} and �nd a vertex z¿ {t; s}
adjacent to t; s and not to b. To avoid a house induced by d; b; s; z; t, the vertices d
and z must be adjacent. From the choice of t we conclude za∈E. Hence, the path Px
is not rightmost – a contradiction. So, tb =∈E and since {d; b}¡ {t; s}, by Lemma 1, t
and s must be adjacent.

Claim 1. If there exists a vertex g adjacent to s; f and not to a; then G has an
induced subgraph isomorphic to Hk−1.

Proof. Since the graph from Fig. 3 is an isometric subgraph of G we have gb; gd;
gt =∈E. Furthermore, gc =∈E, otherwise g; s; c; a; b induce a house. To see now that the
vertices of the graph from Fig. 3 together with s; t and g induce Hk−1 (see Fig. 4(b)),
it is enough from distance requirements to show that sa′ =∈E. But this is immediate,
because s¿a and Px is rightmost.

So, we may assume that ga∈E for every vertex g adjacent to both f and s.
Moreover, since Py is rightmost, for every such vertex g; g¡c must hold. From
this we infer also that c¿f, otherwise Lemma 2, applied to c¡ {s; f} and sf =∈E,
gives a vertex g¿c adjacent to both s and f. Hence, the path Py is convex too, and
c is the switching point of Py. By Lemma 4, a¡f¡c holds.

Claim 2. For every vertex g adjacent to f; g6c holds.
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Fig. 5.

Proof. If g¿c then from the previous discussion g and s cannot be adjacent. Hence,
by Lemma 1, g is adjacent to c (note that {c; f}¡ {s; g}). Now we have c¡ {s; g}
and gs =∈E. By Lemma 2 there exists a vertex z¿ {s; g} adjacent to s; g and not to c.
To avoid a house induced by z; s; g; c; f we must have zf∈E. But then the vertex z
with z¿c adjacent to both s and f, a contradiction.

From this claim we deduce that f¡b, otherwise (P1) applied to b¡f¡s will
give a vertex g¿s¿c adjacent to f. Now we apply (P1) to a¡f¡b and �nd
a vertex g¿b adjacent to f and not to a. Hence sg =∈E and g¡c. Then we can
apply (P1) to b¡g¡s and get a vertex u¿s adjacent to g and not to b. Since
u¿c, by Claim 2, uf =∈E. If ua∈E then (P1) applied to a¡b¡u will give a
vertex p¿u adjacent to b and not to a. From {a; b}¡ {c; p} and Lemma 1 the
vertices p and c must be adjacent. But since p¿s this contradicts to the choice
of s. So, u and a cannot be adjacent. We have a¡ {d; f}¡b¡g¡c¡ {s; t}
and s¡u.
Assume gc∈E. Then {c; g}¡ {s; u} and Lemma 1 yield uc∈E or us∈E. If us∈E

we obtain an induced house formed by s; u; g; c; f when uc =∈E or by u; s; c; b; a other-
wise. Hence, su =∈E and uc∈E. Applying now Lemma 2 to c¡ {s; u}; su =∈E we �nd
a vertex q¿ {s; u} adjacent to u; s and not to c. To avoid an induced house, q must
be adjacent to g. By Claim 2, the vertex q with q¿c cannot be adjacent to f. Hence,
q; s; g; c; f induce a house.
Thus, gc =∈E. From {f; g}¡ {c; u} and Lemma 1 we infer uc∈E. Furthermore,

us =∈E, otherwise we will have an induced house. From dist(f; d) = 4 we deduce
gb; gd; gt; ud =∈E. If ut ∈E then we obtain an induced 6-cycle, that is impossible. Hence,
ut =∈E too. So, we have constructed an induced subgraph of G isomorphic to the graph
from Fig. 5. Then t ¡ s must hold, since otherwise {s; c}¡ {t; u} and a contradiction
to the Lemma 1 arises.

Claim 3. For every vertex z adjacent to d; z6t holds.

Proof. If z¿ t then from the choice of t vertices a and z must be adjacent. But then
the path Px is not rightmost since z¿ t¿b.

Now we apply Lemma 2 to c¡ {s; u} and (P1) to c¡ t¡u and get vertices q
and p such that u¡ {q; p}, qc; pc =∈E and qs; qu; pt ∈E. Moreover, Claim 3 gives
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pd; qd =∈E. If q 6= p then, by Lemma 1, from {t; s}¡ {q; p} we obtain ps∈E or
tq∈E or pq∈E. If p= q or tq∈E or ps∈E then, to avoid an induced house formed
by z; t; s; d; b where z ∈{p; q}, we must have zb∈E. For the path (z− b− a− c) with
{b; a}¡ {z; c} and bc; zc =∈E, by Lemma 1, we have za∈E. But then vertices z; t; d; b; a
induce a house. Finally, we have pq∈E and tq; ps =∈E. Since G is an HH-free graph
cycle (p − t − d − b − a − c − u − q − p) of G must have chords. All these chords
are incident either to p or to q. From dp; dq; tq =∈E we deduce that p and b must be
adjacent. Now we can proceed as before and get that the vertices a and p must be
adjacent, obtaining in this way an induced house formed by p; t; d; b; a.

Corollary 6. For every two vertices x and y of G; dist(x; y)6max{dist(x; v);
dist(y; v)}+ 2 holds. Moreover; if G does not contain the graph H0 as an isometric
subgraph; then dist(x; y)6max{dist(x; v); dist(y; v)}+ 1.

Proof. Assume that dist(x; v)¿dist(y; v), and let z be a vertex from a shortest path
connecting vertices x and v, and such that dist(y; v) = dist(z; v). By Lemma 5,
dist(y; z)6dist(z; v)+2. Hence, dist(x; y)6dist(x; z)+dist(z; y)6dist(x; z)+dist(z; v)
+2=dist(x; v)+2. Furthermore, if dist(x; y)=dist(x; v)+2 then dist(y; z)=dist(z; v)+2,
and hence G contains the graph H0 as an induced subgraph. Let H0 be induced by
vertices a; b; c; d; s; f; t; g as shown in Fig. 6. From the proof of Lemma 5 we have
dist(a; d) = dist(a; f) = 2 and dist(f; d) = 4. To see that H0 is an isometric subgraph
of G, we need only to show that dist(t; a) = dist(g; a) = 3. Assume dist(t; a) = 2, and
let w be a common neighbor of a and t. To avoid an induced cycle C5 or an in-
duced house, vertex w must be adjacent to all vertices of H0. Hence, a contradiction
to dist(f; d) = 4 arises. Thus, if G does not contain the graph H0 as an isometric
subgraph, then dist(x; y)6dist(x; v) + 1.

Corollary 7. If e(v) = 2 then diam(G)63.

Proof. Assume diam(G) = 4 = dist(x; y). Then we have dist(x; v) = dist(y; v) = 2.
By Lemma 5, vertices v; x; y together with some vertices b; c; s; t; g induce a subgraph
isomorphic to the graph H0. As we have shown in the proof of Corollary 6, H0 is an
isometric subgraph of G. But then, dist(v; t) = 3 contradicts e(v) = 2.



F.F. Dragan /Discrete Applied Mathematics 95 (1999) 223–239 233

Theorem 8. Let v be the �rst vertex of a LexBFS-ordering of a HH-free graph G.
Then e(v)∈{diam(G); diam(G)− 1; diam(G)− 2}.
Moreover; if G does not contain the graph H0 as an isometric subgraph then

e(v)∈{diam(G); diam(G)− 1}.

Proof. Let x and y be vertices of G such that dist(x; y) = diam(G). By Corollary 6,
diam(G) = dist(x; y)6max{dist(x; v); dist(y; v)} + 26e(v) + 26diam(G) + 2, i.e.
diam(G)− 26e(v)6diam(G). Analogously, if G does not contain the graph H0 as an
isometric subgraph, then diam(G)− 16e(v)6diam(G).

Notice that the result of Theorem 8 is sharp. The graph H1 from Fig. 6 is HH-free,
but the �rst vertex of LexBFS-ordering �=(v; y; x; a; f; d; b; c; g; t; s) has the eccentricity
diam(G)− 2; namely, e(v) = dist(v; x) = 4 = dist(x; y)− 2 = diam(G)− 2.

4. Approximation of the diameter of a HHD-free graph

Let � be a LexBFS-ordering of a HHD-free graph G and v be the �rst vertex in �.
For HHD-free graphs, the following stronger version of Lemma 1 holds (see [18]).

Lemma 9 (Jamison and Olariu [18]). G does not have any induced P4=(c−a−b−d)
with a¡ {b; c; d}.

Lemma 10. For every two vertices x and y of G with dist(x; v) = dist(y; v) = p;
dist(x; y)6p + 1 holds. Moreover; if dist(x; y) = p + 1¿3; then G contains one of
the graphs from Fig. 7 as an isometric subgraph.

Proof. That dist(x; y)6p + 1 follows from Lemma 5. Assume now that dist(x; y) =
p + 1¿3 and consider, as in the proof of Lemma 5, rightmost shortest paths Px and
Py, connecting v with x and y, respectively. Let again a be the common vertex of
the paths Px and Py furthest from v, and b; c with b¡c be the neighbors of a in the
paths Px and Py, respectively (see Fig. 3). Since G is HH-free (even HHD-free) again
one can show that Px is a convex path of G and b is the switching point of Px. By
Lemma 4, we have dist(v; b)¿dist(x; b) = p− dist(v; b).

Claim 4. If dist(v; b)¿dist(x; b); then G contains the graph (a) of Fig. 7 as an
isometric subgraph.

Proof. If dist(v; b)¿ dist(x; b) then p¡ 2dist(v; b)=2dist(v; a)+2, i.e. p−2dist(v; a)
¡ 2. Hence, p+1=dist(x; y)6dist(x; a)+dist(a; y)=2dist(x; a)=2p−2dist(v; a)¡p+
2, i.e. dist(x; y) = dist(x; a) + dist(a; y) = 2dist(x; a) = p + 1; p is odd, and the
graph from Fig. 3 is an isometric subgraph of G. Since a¡ {b; c} and bc =∈E, by
Lemma 2, there exists a vertex s¿ {b; c} adjacent to b; c and not to a. From distance
requirements we infer sd; sf =∈E (recall that p¿3 and hence the vertices d; f; a′ exist).
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Also sa′ =∈E holds, otherwise Px is not rightmost. To see now that a′; a; b; c; d; f and
s (see Fig. 3) induce the graph (a) of Fig. 7 as an isometric subgraph, we need only
to show that dist(s; a′) = 3. Assume dist(s; a′) = 2, and let z be a common neighbor
of a′ and s rightmost in �. To avoid an induced 5-cycle or an induced house, vertex z
must be adjacent to a; b; c. Since Px is rightmost and zb; za′ ∈E we must have z¡a.
Applying (P1) to z¡a¡s we get a vertex u¿s adjacent to a and not to z. From
z¡ {a; s; u}; zu; as =∈E and Lemma 9 vertices s and u must be adjacent. We have also
a′u =∈E, otherwise a contradiction to the choice of z will arise. But then we obtain an
induced house formed by a′; a; z; u; s.

So, we may assume dist(v; b) = dist(x; b) = p − dist(v; b), i.e. p = 2dist(v; b).
Since Px is convex and b is the switching point of Px, by Lemma 4, we have
a¡d¡b. From b¡c and Px is rightmost we infer dc =∈E. Furthermore, Lemma 9
applied to a¡ {d; b; c}; da; dc =∈E gives bc∈E. Hence, p + 1 = dist(x; y)6dist(x; b)
+ 1 + dist(c; y) = 2dist(x; b) + 1 = 2dist(v; b) + 1 = p + 1, i.e. dist(x; y) = dist(x; b)
+ 1 + dist(c; y) holds and the graph from Fig. 8 is an isometric subgraph
of G.
Applying (P1) to a¡d¡c gives a vertex t ¿ c adjacent to d and not to a. We

choose t rightmost in �.

Claim 5. For every vertex z adjacent to d; z6t holds.
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Proof. If z¿ t then from the choice of t the vertices a and z must be adjacent. But
then the path Px is not rightmost since z¿ t¿b.

From distance requirement tf =∈E holds. Since d¡ {b; c; t}, by Lemma 9, we have
tb∈E or tc∈E. But if tc∈E then tb∈E too, otherwise d; t; b; c; a will induce a house.
So, in any case tb∈E. If now tc =∈E then from b¡ {c; t} and Lemma 2 we will have
a vertex s¿ {t; c} adjacent to t; c and not to b. To avoid an induced house, vertex s
must be adjacent to d. Since t ¡ s a contradiction with Claim 5 arises. Thus, tc∈E
as well.
If c¡f then Lemma 2 applied to c¡ {t; f} gives a vertex s¿ {t; f} adjacent to

t; f and not to c. Again to avoid an induced house, we must have bs∈E and hence
as∈E. Since s¿c and Py is rightmost a contradiction arises.
So, f¡c and hence Py is a convex path with the switching point c. By Lemma 4

a¡f¡c holds. We distinguish between two cases.
Case 1. b¡f. Applying (P1) to b¡f¡t gives a vertex s¿ t adjacent tof and not

to b. Since Py is rightmost and s¿c we infer sa =∈E. From f¡ {s; c; t} and Lemma 9
we have st ∈E or sc∈E. If st ∈E then sc∈E too, otherwise s; t; b; c; f induce a house.
Hence, we have constructed the graph (c) of Fig. 7. Since dist(f; d) = 3 it is an
isometric subgraph of G. Let now st =∈E but sc∈E. Then Lemma 2 applied to c¡ {t; s}
gives a vertex u¿ {t; s} adjacent to t; s and not to c. Since G does not contain any
induced house we must have bu; fu∈E and hence au∈E. Thus, a contradiction arises
(recall that Py is rightmost but u¿c).
Case 2. f¡b. We apply (P1) to a¡f¡b and get a vertex s¿b adjacent to f

and not to a. We choose s rightmost in �. If ts∈E then, to avoid an induced house,
we must have sc∈E. But then vertices a; b; c; d; f; t; s induce either graph (b) or graph
(c) of Fig. 7, depending on whether b and s are adjacent. Again since dist(f; d) = 3
these graphs are isometric subgraphs of G.
Let now st =∈E. Then Lemma 9 applied to f¡ {s; c; t} gives sc∈E. If c¡ s then,

by Lemma 2, there exists a vertex u¿ {t; s}¿c adjacent to both t and s but not
to c. Furthermore, uf; ub; ua∈E, otherwise we will have an induced house. But then
again a contradiction to Py is rightmost arises. Hence, c¿ s and the following claim
holds.

Claim 6. For every vertex z adjacent to f; z6c holds.

If bs∈E then Lemma 2 applied to b¡ {s; t}; st =∈E gives a vertex z¿ {s; t} adjacent
to s; t and not to b. To avoid an induced house, vertices d and z must be adjacent,
contradicting to Claim 5. So, bs =∈E.
Now apply (P1) to b¡s¡ t to get a vertex u¿ t adjacent to s and not to b. First

assume tu =∈E. Then from s¡ {c; t; u} and Lemma 9 we infer uc∈E. Again Lemma 2
applied to c¡ {u; t}; ut =∈E will give a vertex z¿ {u; t} adjacent to u; t and not
to c. Since G does not contain any induced house, vertex z must be adjacent to b; s
and hence to f. But then a contradiction with Claim 6 arises.
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So, tu∈E. Hence, uc∈E too, otherwise vertices t; u; s; c; b induce a house. Moreover,
from u¿ t¿c, Claims 5 and 6 we conclude ud; uf =∈E. Then ua =∈E too, since oth-
erwise u; a; b; t; d will induce a house. Thus, we have constructed an induced subgraph
of G isomorphic to the graph from Fig. 9.
If dist(s; d) = 3 then vertices a; b; c; d; s; t; u form a subgraph isometric to the graph

(c) of Fig. 7. So, assume that dist(s; d)=2 and let z be a common neighbor of s and d.
Since G is HH-free in cycle formed by z; d; b; c; s we must have chords zb and zc. If
za =∈E then vertices a; b; c; d; f; s; z form again a subgraph of G isometric to the graph
(c) of Fig. 7. So, let za∈E. Since Px is rightmost we conclude z¡b. Applying (P1)
to z¡b¡s gives a vertex w¿s adjacent to b and not to z. Since z¡ {b; s; w}, by
Lemma 9, ws∈E. To avoid an induced house, w must be adjacent to both d and a.
Then a contradiction arises since Px was rightmost but w¿b.

Corollary 11. For every two vertices x and y of G; dist(x; y)6max{dist(x; v);
dist(y; v)} + 1 holds. Moreover; if G does not contain any graph of Fig. 7 as an
isometric subgraph; then dist(x; y)6max{dist(x; v); dist(y; v); 2}.

Proof. Assume that dist(x; v)¿dist(y; v), and let z be a vertex from a shortest path
connecting vertices x and v and such that dist(y; v) = dist(z; v). By Lemma 10,
dist(y; z)6dist(z; v)+1. Hence, dist(x; y)6dist(x; z)+dist(z; y)6dist(x; z)+dist(z; v)+
1 = dist(x; v) + 1. Let dist(x; y) = dist(x; v) + 1: Then dist(y; z) = dist(z; v) + 1. If
dist(y; v)¿2 then, by Lemma 10, G contains one of the graphs of Fig. 7 as an isometric
subgraph. So, assume that dist(z; v)=dist(y; v)=1. If z=x then dist(x; y)=2 and we are
done. Now let z 6= x and u be the neighbor of z on a shortest path connecting vertices x
and z. Vertices u and y cannot be adjacent, otherwise dist(x; y)6dist(x; z)=dist(x; v)−
1. Furthermore, zy; vu =∈E. Thus, in induced path (u− z− v−y) we have v¡ {u; z; y},
contradicting Lemma 9.

Corollary 12. If e(v) = 1 then diam(G) = 1.

Proof. Assume that diam(G) = dist(x; y) = 2. Then we have dist(x; v) = dist(y; v) = 1
and xy =∈E. Hence, Lemma 2 applied to v¡ {x; y} gives a vertex s such that vs =∈E.
But this contradicts with e(v) = 1.
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Theorem 13. Let v be the �rst vertex of a LexBFS-ordering of a HHD-free graph G.
Then e(v)∈{diam(G); diam(G)− 1}.
Moreover; if G does not contain any graph of Fig. 7 as an isometric subgraph;

then e(v) = diam(G).

Proof. Let x and y be vertices of G such that dist(x; y) = diam(G). By Corollary 11,
diam(G) = dist(x; y)6max{dist(x; v); dist(y; v)} + 16e(v) + 16diam(G) + 1, i.e.
diam(G) − 16e(v)6diam(G). Moreover, if e(v) = 1 then diam(G) = 1 = e(v). Let
now e(v)¿ 1 and G does not contain any graph of Fig. 7 as an isometric subgraph.
Then diam(G) = dist(x; y)6max{dist(x; v); dist(y; v); 2}6e(v)6diam(G), i.e. e(v) =
diam(G).

Again the result of Theorem 13 is sharp. Each of the graphs from Fig. 7 has a
LexBFS-ordering � such that the eccentricity of the �rst vertex in � equals diam(G)−1
(check ordering (a′; d; f; a; b; c; s) of the graph (a) and ordering (a; f; d; b; c; g; t) of
graphs (b) and (c)).

Corollary 14. Let v be the �rst vertex of a LexBFS-ordering of a HHD-free and
AT-free graph G. Then e(v) = diam(G).

Proof. It is easy to see that vertices a′; d; f of the graph (a) as well as vertices a; d; f
of graphs (b) and (c) (see Fig. 7) form an asteroidal triple. Hence, each HHD-free
graph, which does not have an asteroidal triple, does not contain any graph of Fig. 7
as an isometric subgraph.

Corollary 15 (Dragan et al. [12]). Let v be the �rst vertex of a LexBFS-ordering of
a chordal; or a distance-hereditary; or a weak bipolarizable graph G. Then e(v)∈
{diam(G); diam(G)− 1}.

Corollary 16 (Dragan et al. [12]). Let v be the �rst vertex of a LexBFS-ordering of
an interval or a ptolemaic graph G. Then e(v) = diam(G).

5. Conclusion

In this paper we have proven that the vertex visited last by LexBFS has eccen-
tricity at least diam(G) − 2 for house-hole-free graphs, at least diam(G) − 1 for
house-hole-domino-free graphs, and equal to diam(G) for house-hole-domino-free and
AT-free graphs. This generalizes results known from [12] on diameters of chordal,
distance-hereditary, weak bipolarizable, interval and ptolemaic graphs. An open ques-
tion remains, for which other classes of graphs, the diameter can be computed via
LexBFS? In [6] we continue investigations in this direction by proving that the diam-
eter of a directed path graph and a chordal comparability graph can be computed in
linear-time using two sweeps of LexBFS. As the next result shows, for general graphs,
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there is no constant k such that the eccentricity of the last visited by LexBFS vertex is
at least diam(G)− k. So, we have to restrict ourselves to some well-structured classes
of graphs or=and to considering a few sweeps of LexBFS.

Proposition 17. For any constant k; there exists a graph Gk and a LexBFS-ordering
� of it such that the �rst vertex of � will have the eccentricity equal to diam(Gk)−k.

Proof. Let G be the graph (a) from Fig. 7 and Gk be the graph obtained from G by
replacing each edge of G with a path of length k (see Fig. 10 for k = 3). It is easy
to see that in LexBFS-ordering � of Gk started from s, i.e. vn= s, the vertex v will be
numbered by 1, but e(v)=dist(v; x)=3k=4k− k=dist(x; y)− k=diam(Gk)− k.
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