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Abstract A spanning tree T of a graph G is called a tree t-spanner of G if the dis-
tance between every pair of vertices in T is at most t times their distance in G. In this
paper, we present an algorithm which constructs for an n-vertex m-edge unweighted
graph G:

– a tree (2�log2 n�)-spanner in O(m logn) time, if G is a chordal graph (i.e., every
induced cycle of G has length 3);

– a tree (2ρ�log2 n�)-spanner in O(mn log2 n) time or a tree (12ρ�log2 n�)-spanner
in O(m logn) time, if G is a graph admitting a Robertson-Seymour’s tree-
decomposition with bags of radius at most ρ in G; and

– a tree (2�t/2��log2 n�)-spanner in O(mn log2 n) time or a tree (6t�log2 n�)-
spanner in O(m logn) time, if G is an arbitrary graph admitting a tree t-spanner.

For the latter result we use a new necessary condition for a graph to have a tree
t-spanner: if a graph G has a tree t-spanner, then G admits a Robertson-Seymour’s
tree-decomposition with bags of radius at most �t/2� and diameter at most t in G.
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1 Introduction

Given a connected graph G and a spanning tree T of G, we say that T is a tree
t-spanner of G if the distance between every pair of vertices in T is at most t times
their distance in G. Parameter t is called the stretch (or stretch factor) of T . The
TREE t-SPANNER problem asks, given a graph G and a positive number t , whether
G admits a tree t-spanner. Note that the problem of finding a tree t-spanner of G

minimizing t is known in literature also as the Minimum Max-Stretch spanning Tree
problem (see, e.g., [27] and literature cited therein). This paper concerns the TREE t-
SPANNER problem on unweighted graphs. The problem is known to be NP-complete
even for planar graphs and chordal graphs (see [9, 13, 28]), and this paper presents
an efficient algorithm which produces a tree t-spanner with t ≤ 2 log2 n for every
n-vertex chordal graph and a tree (2�t/2��log2 n�)-spanner for an arbitrary n-vertex
graph admitting a tree t-spanner. To obtain the latter result, we show that every graph
having a tree t-spanner admits a Robertson-Seymour’s tree-decomposition with bags
of radius at most �t/2� in G. This tree-decomposition is a generalization of the well-
known notion of a clique-tree of a chordal graph, and allows us to extend our algo-
rithm developed for chordal graphs to arbitrary graphs admitting tree t-spanners.

There are many applications of tree spanners in various areas. Tree spanners
are useful in designing approximation algorithms for combinatorial and algorithmic
problems that are concerned with distances in a finite metric space induced by a
graph. An arbitrary metric space (in particular a finite metric defined by a graph)
might not have enough structure to exploit algorithmically. If we approximate the
distances in a graph by the distances in a tree, we can solve a problem on the tree
and interpret the solution on the original graph. Tree spanners find applications also
in network design and, in particular, in the context of distributed systems. One such
application is the arrow distributed directory protocol introduced in [19]. This proto-
col supports the location of mobile objects in a distributed network. It is implemented
over a spanning tree T that spans the network, and, as shown in [38], the worst case
overhead ratio of the protocol is proportional to the stretch of T . Therefore, a good
candidate for a backbone of the arrow protocol is a spanning tree with low stretch
(see also [33]). Another application of tree spanners is in message routing in com-
munication networks. In order to maintain succinct routing tables, efficient routing
schemes can use only the edges of a tree spanner. A very efficient routing scheme is
available for trees [42]. We refer to the survey paper of Peleg [37] for an overview on
spanners and their applications.

Related Work Substantial work has been done on the TREE t-SPANNER problem
on unweighted graphs. Cai and Corneil [13] have shown that, for a given graph G,
the problem to decide whether G has a tree t-spanner is NP-complete for any fixed
t ≥ 4 and is linear time solvable for t = 1,2 (the status of the case t = 3 is open
for general graphs).1 The NP-completeness result was further strengthened in [9] and
[10], where Branstädt et al. showed that the problem remains NP-complete even for
the class of chordal graphs (i.e., for graphs where each induced cycle has length 3)

1When G is an unweighted graph, t can be assumed to be an integer.
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and every fixed t ≥ 4, and for the class of chordal bipartite graphs (i.e., for bipartite
graphs where each induced cycle has length 4) and every fixed t ≥ 5.

The TREE t-SPANNER problem on planar graphs was studied in [28, 39]. In [39],
Peleg and Tendler presented a polynomial time algorithm for the minimum value of t

for the TREE t-SPANNER problem on outerplanar graphs. In [28], Fekete and Kremer
proved that the TREE t-SPANNER problem on planar graphs is NP-complete (when t

is part of the input) and polynomial time solvable for t = 3. They also gave a poly-
nomial time algorithm that for every fixed t decides for planar graphs with bounded
face length whether there is a tree t-spanner. For fixed t ≥ 4, the complexity of the
TREE t-SPANNER problem on arbitrary planar graphs was left as an open problem
in [28]. This open problem was recently resolved in [23], where it was shown that
the TREE t-SPANNER problem is linear time solvable for every fixed constant t on
the class of apex-minor-free graphs which includes all planar graphs and all graphs
of bounded genus. Note also that a number of particular graph classes (like interval
graphs, permutation graphs, asteroidal-triple–free graphs, strongly chordal graphs,
dually chordal graphs, and others) admit tree t-spanners for small values of t (we
refer reader to [8–10, 13, 23, 27, 28, 34, 35, 37–40] and papers cited therein).

An O(logn)-approximation algorithm for the minimum value of t for the TREE

t-SPANNER problem is due to Emek and Peleg [27], and until recently that was
the only O(logn)-approximation algorithm available for the problem. Let G be an
n-vertex m-edge unweighted graph and t∗ be the minimum value such that a tree
t∗-spanner exists for G. Emek and Peleg gave an algorithm which produces for every
G a tree (6t∗�log2 n�)-spanner in O(mn log2 n) time. Furthermore, they established
that unless P = NP, the problem cannot be approximated additively by any o(n) term.
Hardness of approximation is established also in [35], where it was shown that ap-
proximating the minimum value of t for the TREE t-SPANNER problem within factor
better than 2 is NP-hard (see also [38] for an earlier result). Recently, another loga-
rithmic approximation algorithm for the TREE t-SPANNER problem was announced
in [5], but authors did not provide any details.

A number of papers have studied the related but easier problem of finding a span-
ning tree with good average stretch factor (see [1, 2, 25] and papers cited therein).
One should also mention paper of Elkin and Peleg [26] which describes an algorithm
that, given a graph G admitting a tree t-spanner, constructs a t-spanner of G with
O(n logn) edges.

Our Contribution In this paper, we present a new algorithm which constructs for an
n-vertex m-edge unweighted graph G:

– a tree (2�log2 n�)-spanner in O(m logn) time, if G is a chordal graph;
– a tree (2ρ�log2 n�)-spanner in O(mn log2 n) time or a tree (12ρ�log2 n�)-spanner

in O(m logn) time, if G is a graph admitting a Robertson-Seymour’s tree-
decomposition with bags of radius at most ρ in G; and

– a tree (2�t/2��log2 n�)-spanner in O(mn log2 n) time or a tree (6t�log2 n�)-
spanner in O(m logn) time, if G is an arbitrary graph admitting a tree t-spanner.

For the latter result we employ a new necessary condition for a graph to have a tree
t-spanner: if a graph G has a tree t-spanner, then G admits a Robertson-Seymour’s



Algorithmica (2014) 69:884–905 887

tree-decomposition with bags of radius at most �t/2� and diameter at most t in G.
The algorithm needs to know neither an appropriate Robertson-Seymour’s tree-
decomposition of G nor the true value of t . It works directly on an input graph G.

A high-level description of our method is similar to that of [27], although the
details are very different. We find a “small radius” balanced disk-separator of a graph
G = (V ,E), that is, a disk Dr(v,G) of radius r and centered at vertex v such that
removal of vertices of Dr(v,G) from G leaves no connected component with more
that n/2 vertices. We recursively build a spanning tree for each graph formed by a
connected component Gi of G[V \ Dr(v,G)] with one additional vertex v added
to Gi to represent the disk Dr(v,G) and its adjacency relation to Gi . The spanning
trees generated by recursive invocations of the algorithm on each such graph are glued
together at vertex v and then the vertex v of the resulting tree is substituted with a
single source shortest path spanning tree of Dr(v,G) to produce a spanning tree T

of G. Analysis of the algorithm relies on an observation that the number of edges
added to the unique path between vertices x and y in T , where xy is an edge of G,
on each of �log2 n� recursive levels is at most 2r .

Comparing with the algorithm of Emek and Peleg [27], one variant of our algo-
rithm has the same approximation ratio but a better run-time, other variant has the
same run-time but a better constant term in the approximation ratio.2 Our algorithm
and its analysis, in our opinion, are conceptually simpler due to a new necessary
condition for a graph to have a tree t-spanner.

Outline of the Paper In Sect. 2, we present the basic notions and notations used
throughout the paper. As a warm up, in Sect. 3, we demonstrate our method on a
simpler case, on the class of chordal graphs. The result of this section is of indepen-
dent interest as it demonstrates that every chordal graph admits a logarithmic tree
spanner, i.e., a tree t-spanner with t ≤ 2�log2 n�. By employing a construction from
[34], we complement this with a lower bound result which says that there are chordal
graphs for which any tree t-spanner has to have t ≥ log2

n
3 + 2. In Sect. 4, we ex-

tend our method to all graphs admitting a Robertson-Seymour’s tree-decomposition
with bags of radius at most ρ. Section 5 is devoted to general (unweighted) graphs.
We show there that any graph having a tree t-spanner admits a Robertson-Seymour’s
tree-decomposition with bags of radius at most �t/2� and diameter at most t . Com-
bining this with the result of Sect. 4, we obtain our approximation algorithms for
general graphs. Section 6 concludes the paper.

2 Preliminaries

All graphs occurring in this paper are connected, finite, unweighted, undirected, loop-
less and without multiple edges. We call G = (V ,E) an n-vertex m-edge graph if
|V | = n and |E| = m. A clique is a set of pairwise adjacent vertices of G. By G[S]

2We realize that it is perfectly possible that the authors of [27] did not try to optimize the constants in their
analysis, and it may be the case that a more careful analysis of their algorithm may lead to an improved
leading constant.
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we denote a subgraph of G induced by vertices of S ⊆ V . Let also G \ S be the
graph G[V \ S] (which is not necessarily connected). A set S ⊆ V is called a sep-
arator of G if the graph G[V \ S] has more than one connected component, and
S is called a balanced separator of G if each connected component of G[V \ S]
has at most |V |/2 vertices. A set C ⊆ V is called a balanced clique-separator of G

if C is both a clique and a balanced separator of G. For a vertex v of G, the sets
NG(v) = {w ∈ V : vw ∈ E} and NG[v] = NG(v) ∪ {v} are called the open neighbor-
hood and the closed neighborhood of v, respectively.

In a graph G the length of a path from a vertex v to a vertex u is the number
of edges in the path. The distance dG(u, v) between vertices u and v is the length
of a shortest path connecting u and v in G. The diameter in G of a set S ⊆ V is
maxx,y∈S dG(x, y) and its radius in G is minx∈V maxy∈S dG(x, y) (in some papers
they are called the weak diameter and the weak radius to indicate that the distances
are measured in G not in G[S]). The disk of G of radius k centered at vertex v is
the set of all vertices at distance at most k to v: Dk(v,G) = {w ∈ V : dG(v,w) ≤ k}.
A disk Dk(v,G) is called a balanced disk-separator of G if the set Dk(v,G) is a
balanced separator of G.

Let G be a connected graph and t be a positive number. A spanning tree T of G is
called a tree t-spanner of G if the distance between every pair of vertices in T is at
most t times their distance in G, i.e., dT (x, y) ≤ tdG(x, y) for every pair of vertices
x and y of G. It is easy to see that the tree t-spanners can equivalently be defined as
follows.

Proposition 1 Let G be a connected graph and t be a positive number. A spanning
tree T of G is a tree t-spanner of G if and only if for every edge xy of G, dT (x, y) ≤ t

holds.

This proposition implies that the stretch of a spanning tree of a graph G is always
obtained on a pair of vertices that form an edge in G. Consequently, throughout this
paper t can be considered as an integer which is greater than 1 (if a graph G admits a
tree t-spanner with t = 1 then G itself must be a tree).

3 Tree Spanners of Chordal Graphs

As we have mentioned earlier the TREE t-SPANNER problem is NP-complete for
every t ≥ 4 even for the class of chordal graphs [9]. Recall that a graph G is called
chordal if each induced cycle of G has length 3. In this section, we show that every
chordal graph with n vertices admits a tree t-spanner with t ≤ 2 log2 n and that there
are chordal graphs for which any tree t-spanner has to have t ≥ log2

n
3 + 2.

3.1 Lower Bound

We use the construction of “bad” chordal graphs (so called snowflakes) presented in
[34]. They were used there to show that there is no constant t such that every chordal
graph admits a tree t-spanner. In this subsection, we give an alternative proof of this
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Fig. 1 Left picture: snowflakes SF1,SF2 and SF3. Right picture: any tree t -spanner of SF3 has to have
t ≥ 4

and notice that, in fact, any spanning tree of a snowflake on n vertices has stretch
Ω(logn).

Let Cl denote a simple cycle with l edges. A snowflake with one layer (denoted
by SF1) is just a triangle C3, i.e., an outerplanar graph whose outer face is C3.
A snowflake with two layers (denoted by SF2) is obtained from SF1 by adding, for
each edge of the outer face C3 of SF1, a new vertex adjacent in SF2 only to end-
vertices of that edge. New vertices are placed in the outer face of SF1 to have a
nice layered embedding of SF2 on the plane (see Fig. 1 for an illustration). Clearly,
SF2 is an outerplanar graph with the outer face (second layer) being C6. Generally,
a snowflake with k layers, k ≥ 2, (denoted by SFk) is obtained from the outerplanar
graph SFk−1 by adding, for each edge of the outer face C3·2k−2 of SFk−1, a new vertex
adjacent in SFk only to end-vertices of that edge. Again, all new vertices are placed
in the outer face of SFk−1. Clearly, SFk is an outerplanar graph with the outer face
being C3·2k−1 .

Proposition 2 (Follows from [34]) For every integer k ≥ 1, graph SFk is outerplanar
and chordal, it has n = 3 · 2k−1 vertices and has no tree t-spanners with t < k + 1 =
log2

n
3 + 2.

Proof Clearly, SFk is an outerplanar graph with n = 3 · 2k−1 vertices (the number
of vertices in SFk is twice the number of vertices in SFk−1). SFk is a chordal graph
(even a 2-tree) since it can be constructed from an edge by repeatedly adding a new
vertex and making it adjacent to two old adjacent vertices (see survey [11] for details).
Assume that SFk is naturally embedded on the plane (see the construction above and
Fig. 1). To show that the outerplanar graph SFk has no tree t-spanners with t < k +1,
consider an arbitrary spanning tree T of SFk . Since T is a planar graph with only
the outer face, we can connect by a Jordan curve C a point in the outer face of SFk

with a point of the plane inside the central triangle of SFk (i.e., the triangle of SF1;
see Fig. 1) without intersecting the tree T . Let xy be the first edge of SFk crossed
by C . Since C crosses at least k inner faces (triangles) of SFk and each of these faces
contributes at least 1 to dT (x, y) (the last face, i.e., SF1, contributes at least 2), we
get dT (x, y) ≥ k + 1. We have also dG(x, y) = 1. Thus, the stretch factor of T is at
least k + 1. �

3.2 Upper Bound

We start with three lemmas that are crucial to our method.
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Fig. 2 A graph G with a
clique-separator C and the
corresponding graphs
G+

1 , . . . ,G+
4 obtained from G

Let G = (V ,E) be an arbitrary connected graph with a clique-separator C, i.e.,
there is a clique C ⊆ V in G such that the removal of the vertices of C from G

results in a graph with more than one connected component. Let G1, . . . ,Gk be those
connected components of G[V \ C]. Denote by Si := {x ∈ V (Gi) : dG(x,C) = 1}
the neighborhood of C with respect to Gi . Let also G+

i be the graph obtained from
component Gi by adding a vertex ci (representative of C) and making it adjacent to
all vertices of Si , i.e., for a vertex x ∈ V (Gi), cix ∈ E(G+

i ) if and only if there is
a vertex xC ∈ C with xxC ∈ E(G) (see Fig. 2 for an illustration). Clearly, given a
connected m-edge graph G and a clique-separator C of G, the graphs G+

1 , . . . ,G+
k

can be constructed in total time O(m). Note also that the total number of edges in
graphs G+

1 , . . . ,G+
k does not exceed the number of edges in G.

Denote by G/e the graph obtained from G by contracting its edge e. Recall that
edge e contraction is an operation which removes e from G while simultaneously
merging together the two vertices e previously connected. If a contraction results in
multiple edges, we delete duplicates of an edge to stay within the class of simple
graphs. The operation may be performed on a set of edges by contracting each edge
(in any order).

Lemma 1 If a graph G is chordal then G/e is chordal as well, for any edge
e ∈ E(G). Consequently, if a graph G is chordal then G+

i is chordal as well, for each
i = 1, . . . , k.

Proof Clearly, contracting any edge e in a chordal graph G cannot result in creat-
ing in G/e an induced cycle with more than 3 vertices (otherwise, a similar induced
cycle must be present in G as well, which is impossible). We can get G+

i from G

by repeatedly contracting (in any order) edges of G that are not incident to vertices
of Gi . �

Let Ti (i = 1, . . . , k) be a spanning tree of G+
i such that for any edge xy ∈ E(G+

i ),
dTi

(x, y) ≤ α holds, where α is some positive integer independent of i. We can form
a spanning tree T of G from trees T1, . . . , Tk and the vertices of the clique C in
the following way. For each i = 1, . . . , k, rename vertex ci in Ti to c. Glue trees
T1, . . . , Tk together at vertex c obtaining a tree T ′ (see Fig. 3). For the original clique
C of G, pick an arbitrary vertex rC of C and create a spanning star STC for C centered
at rC . Substitute vertex c in T ′ by that star STC . For each former edge xc of T ′, create
an edge xxC in T where xC is a vertex of C adjacent to x in G. We can show that
for any edge xy ∈ E(G), dT (x, y) ≤ α + 2 holds. Evidently, the tree T of G can be
constructed from trees T1, . . . , Tk and the vertices of the clique C in O(m) time.



Algorithmica (2014) 69:884–905 891

Fig. 3 Spanning trees T1, . . . , T4 of G+
1 , . . . ,G+

4 , resulting tree T ′ , and a corresponding spanning tree T

of G

Lemma 2 Let G be an arbitrary graph with a clique-separator C and G+
1 , . . . ,G+

k

be the graphs obtained from G as described above. Let also Ti (i ∈ {1, . . . , k}) be
a spanning tree of the graph G+

i , and T be a spanning tree of G constructed from
T1, . . . , Tk and the clique C as described above. Assume also that there is a positive
integer α such that, for each i ∈ {1, . . . , k} and every edge xy ∈ E(G+

i ), dTi
(x, y) ≤ α

holds. Then, for every edge xy ∈ E(G), dT (x, y) ≤ α + 2 must hold.

Proof Consider an arbitrary edge xy of G. If both x and y belong to C, then evidently
dT (x, y) ≤ 2 < α + 2. Assume now that xy is an edge of Gi for some i ∈ {1, . . . , k}.
Then, xy is an edge of G+

i and therefore dTi
(x, y) ≤ α. If the path P of Ti connecting

x and y does not contain vertex ci , then dT (x, y) = dTi
(x, y) ≤ α must hold. If ci is

between x and y in Ti (i.e., ci ∈ P ), then the distance in T between x and y is at
most dTi

(x, y)+ 2 (the path of T between x and y is obtained from P by substituting
the vertex c = ci by a path of star STC with at most 2 edges). It remains to consider
the case when x ∈ C and y ∈ V (Gi). By construction of G+

i , there must exist an
edge ciy in G+

i . We have dTi
(ci, y) ≤ α. Let z be the neighbor of ci in the path

of Ti connecting vertices y and ci (y = z is possible). Evidently, z ∈ V (Gi). By
construction, in T we must have an edge zzc where zC is a vertex of C adjacent to
z in G. Vertices x and zC both are in C and the distance in T between them is at
most 2. Thus, dT (x, y) ≤ dT (zC, y) + 2 = dTi

(ci, y) + 2 ≤ α + 2. �

The third important ingredient to our method is the famous chordal balanced sep-
arator result of Gilbert, Rose, and Edenbrandt [31].

Lemma 3 [31] Every chordal graph G with n vertices and m edges contains a max-
imal clique C such that if the vertices in C are deleted from G, every connected
component in the graph induced by any remaining vertices is of size at most n/2.
Such a balanced clique-separator C of a connected chordal graph G can be found in
O(m) time.

Now let G = (V ,E) be a connected chordal graph with n vertices and m edges.
Using Lemma 1 and Lemma 3, we can build a (rooted) hierarchical-tree H(G) for
G, which can be constructed as follows. If G is a connected graph with at most
5 vertices or is a clique of size greater than 5, then H(G) is a one node tree with



892 Algorithmica (2014) 69:884–905

root node (G,nil). Otherwise, find a balanced clique-separator C of G (which ex-
ists by Lemma 3 and which can be found in O(m) time) and construct the associ-
ated graphs G+

1 , . . . ,G+
k . For each graph G+

i , i ∈ {1, . . . , k}, which is chordal by
Lemma 1, construct a hierarchical-tree H(G+

i ) recursively and build H(G) by taking
the pair (G,C) to be the root and connecting the root of each tree H(G+

i ) as a child
of (G,C). The depth of this tree H(G) is the smallest integer k such that

n

2k
+ 1

2k−1
+ · · · + 1

2
+ 1 ≤ 5,

that is, the depth is at most log2 n − 1.
To build a tree t-spanner T of G, we use the hierarchical-tree H(G) and a

bottom-up construction. We know from Proposition 1 that a spanning tree T is a
tree t-spanner of a graph G if and only if for any edge xy of G, dT (x, y) ≤ t holds.
For each leaf (L,nil) of H(G) (we know that graph L is a clique or a connected
chordal graph with at most 5 vertices), we construct a tree 2-spanner TL of L. It is
known [8] that a connected chordal graph G with ≤ 5 vertices, that is not a tree, ei-
ther has a vertex adjacent to all other vertices of G or consists of a shortest path P

of length 3 (spanning 4 vertices) with one extra vertex adjacent to 2 or 3 consecutive
vertices of P . Thus, G always has a tree 2-spanner. Hence, for any edge xy of L, we
have dTL

(x, y) ≤ 2. Consider now an inner node (H,K) of H(G), and assume that
all its children H+

1 , . . . ,H+
l in H(G) have tree α-spanners T1, . . . , Tl for some posi-

tive integer α. Then, a tree (α + 2)-spanner of H can be constructed from T1, . . . , Tl

and clique K of H as described above (see Lemma 2 and paragraph before it). Since
the depth of the hierarchical-tree H(G) is at most log2 n − 1 and all leaves of H(G)

admit tree 2-spanners, applying Lemma 2 repeatedly, we will move from leaves to
the root of H(G) and get a tree t-spanner T of G with t being no more than 2 log2 n.

It is also easy to see that, given a chordal graph G with n vertices and m edges,
a hierarchical-tree H(G) as well as a tree t-spanner T of G with t ≤ 2 log2 n can be
constructed in O(m logn) total time since there are at most O(logn) levels in H(G)

and one needs to do at most O(m) operations per level.
Thus, we have the following result for the class of chordal graphs.

Theorem 1 Any connected chordal graph G with n vertices and m edges admits a
tree (2�log2 n�)-spanner constructible in O(m logn) time.

4 Tree Spanners of Generalized Chordal Graphs

It is known that the class of chordal graphs can be characterized in terms of exis-
tence of so-called clique-trees. Let C(G) denote the family of maximal (by inclusion)
cliques of a graph G. A clique-tree CT (G) of G has the maximal cliques of G as its
nodes, and for every vertex v of G, the maximal cliques containing v form a subtree
of CT (G).

Theorem 2 [12, 30, 43] A graph is chordal if and only if it has a clique-tree.
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In their work on graph minors [41], Robertson and Seymour introduced the
notion of tree-decomposition which generalizes the notion of clique-tree. A tree-
decomposition of a graph G is a tree T (G) whose nodes, called bags, are subsets
of V (G) such that:

(1)
⋃

X∈V (T (G)) X = V (G),
(2) for each edge vw ∈ E(G), there is a bag X ∈ V (T (G)) such that v,w ∈ X, and
(3) for each v ∈ V (G) the set of bags {X : X ∈ V (T (G)), v ∈ X} forms a subtree

Tv(G) of T (G).

Tree-decompositions were used in defining at least two graph parameters. The
tree-width of a graph G is defined as minimum of maxX∈V (T (G)) |X| − 1 over all
tree-decompositions T (G) of G and is denoted by tw(G) [41]. The length of a
tree-decomposition T (G) of a graph G is maxX∈V (T (G)) maxu,v∈X dG(u, v), and
the tree-length of G, denoted by tl(G), is the minimum of the length, over all tree-
decompositions of G [22]. These two graph parameters are not related to each other.
For instance, cliques (or, generally, all chordal graphs) have unbounded tree-width
and tree-length 1, whereas cycles have tree-width 2 and unbounded tree-length.

For the purpose of this paper, we introduce yet another graph parameter based on
the notion of tree-decomposition. It is very similar to the notion of tree-length but is
more appropriate for our discussions, and moreover it will lead to a better constant in
our approximation ratio presented in Sect. 5.1 for the TREE t-SPANNER problem on
general graphs.

Definition 1 The breadth of a tree-decomposition T (G) of a graph G is the mini-
mum integer k such that for every X ∈ V (T (G)) there is a vertex vX ∈ V (G) with
X ⊆ Dk(vX,G) (i.e., each bag X has radius at most k in G). Note that vertex vX does
not need to belong to X. The tree-breadth of G, denoted by tb(G), is the minimum
of the breadth, over all tree-decompositions of G. We say that a family of graphs G is
of bounded tree-breadth, if there is a constant c such that for each graph G from G ,
tb(G) ≤ c.

Evidently, for any graph G, 1 ≤ tb(G) ≤ tl(G) ≤ 2tb(G) holds. Hence, if one pa-
rameter is bounded by a constant for a graph G then the other parameter is bounded
for G as well.

In what follows, we will show that any graph G with tree-breadth tb(G) ≤ ρ ad-
mits a tree (2ρ�log2 n�)-spanner, thus generalizing the result for chordal graphs of
Sect. 3 (if G is chordal then tl(G) = tb(G) = 1). It is interesting to note that the TREE

t-SPANNER problem is NP-complete for graphs of bounded tree-breadth (even for
chordal graphs for every fixed t > 3; see [9]), while it is polynomial time solvable for
all graphs of bounded tree-width (see [40]).

First we present a balanced separator result.

Lemma 4 Every graph G with n vertices, m edges and with tree-breadth at most
ρ contains a vertex v such that if the vertices of disk Dρ(v,G) are deleted from G,
every connected component in the graph induced by any remaining vertices is of size
at most n/2.
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Proof The proof of this lemma follows from acyclic hypergraph theory. First we
review some necessary definitions and an important result characterizing acyclic hy-
pergraphs. Recall that a hypergraph H is a pair H = (V , E ) where V is a set of
vertices and E is a set of non-empty subsets of V called hyperedges. For these and
other hypergraph notions see [7].

Let H = (V , E ) be a hypergraph with the vertex set V and the hyperedge set E .
For every vertex v ∈ V , let E (v) = {e ∈ E : v ∈ e}. The 2-section graph 2SEC(H)

of a hypergraph H has V as its vertex set and two distinct vertices are adjacent in
2SEC(H) if and only if they are contained in a common hyperedge of H . A hyper-
graph H is called conformal if every clique of 2SEC(H) is contained in a hyperedge
e ∈ E , and a hypergraph H is called acyclic if there is a tree T with node set E such
that for all vertices v ∈ V , E (v) induces a subtree Tv of T . It is a well-known fact
(see, e.g., [3, 6, 7]) that a hypergraph H is acyclic if and only if H is conformal and
2SEC(H) of H is a chordal graph.

Let now G be a graph with tb(G) = ρ and T (G) be its tree-decomposition of
breadth ρ. Evidently, property (3) in the definition of tree-decomposition can be re-
stated as follows: the hypergraph H = (V (G), {X : X ∈ V (T (G))}) is an acyclic hy-
pergraph. Since each edge of G is contained in at least one bag of T (G), the 2-section
graph G∗ := 2SEC(H) of H is a chordal supergraph of the graph G (each edge of
G is an edge of G∗, but G∗ may have some extra edges between non-adjacent ver-
tices of G contained in a common bag of T (G)). By Lemma 3, the chordal graph
G∗ contains a balanced clique-separator C ⊆ V (G). By conformality of H , C must
be contained in a bag of T (G). Hence, there must exist a vertex v ∈ V (G) with
C ⊆ Dρ(v,G). As the removal of the vertices of C from G∗ leaves no connected
component in G∗[V \ C] with more that n/2 vertices and since G∗ is a supergraph
of G, clearly, the removal of the vertices of Dρ(v,G) from G leaves no connected
component in G[V \Dρ(v,G)] with more that n/2 vertices. Note that a similar argu-
ment can be used to show that a graph with tree-width k admits a balanced separator
of size k + 1. �

We do not need to know a tree-decomposition T (G) of breadth ρ to find such
a balanced disk-separator Dρ(v,G) of G. For a given graph G and an integer ρ,
checking whether G has a tree-decomposition of breadth ρ could be a hard problem.
For example, while graphs with tree-length 1 (as they are exactly the chordal graphs)
can be recognized in linear time, the problem of determining whether a given graph
has tree-length at most λ is NP-complete for every fixed λ > 1 (see [36]).

Instead, we can use the following result.

Proposition 3 For an arbitrary graph G with n vertices and m edges a balanced
disk-separator Dr(v,G) with minimum r can be found in O(nm) time.

Proof We need to show that for each vertex v of G a balanced disk-separator
Dr(v,G) with minimum r can be found in O(m) time. Then we can iterate over
all vertices of G and find a vertex v∗ whose Dr(v

∗,G) has the smallest radius r .
Construct a layering L0,L1, . . . ,Lq of G with respect to v, where Li = {u ∈ V :

dG(v,u) = i}, i ∈ {0,1,2, . . . , q} and q := maxx∈V dG(v, x). Let G1
i , . . . ,G

li
i be the
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connected components of the graph G[V \ Di−1(v,G)], i ∈ {1,2, . . . , q}. Let also
n

j
i := |V (G

j
i )|, i ∈ {1,2, . . . , q} and j ∈ {1,2, . . . , li}. We need to find the smallest

r such that all n
j

r+1, j ∈ {1,2, . . . , lr+1} are less than or equal to n/2 (hence, for

some j ∈ {1,2, . . . , lr}, n
j
r is larger than n/2). All we need is to iteratively compute

values n
j
i starting with i = q and ending with i = r . For this we can use the following

simple procedure (which needs to work on a copy of the original graph G since the
input graph gets modified during the procedure).

Initially, mult(x) := 1 for each vertex x of G; /* multiplicity of a vertex is set to 1 */

Compute connected components Ĝ1
q , . . . , Ĝ

lq
q of the graph G[Lq ] = G[V \ Dq−1(v,G)];

Compute the corresponding cardinalities n
j
q := |V (Ĝ

j
q)| = |V (G

j
q)|, j ∈ {1,2, . . . , lq };

For i = q downto 1 do

If for all j ∈ {1,2, . . . , li}, n
j
i

≤ n/2

Change G by contracting in G each component Ĝ
j
i

to a vertex a
j
i

, j = 1,2, . . . , li ;

Define the multiplicity of a
j
i

as mult(aj
i
) := n

j
i

;

Set L̂i−1 := Li−1 ∪ {a1
i
, . . . , a

li
i
};

Compute the connected components Ĝ1
i−1, . . . , Ĝ

li−1
i−1 of the graph G[L̂i−1];

Set n
j
i−1 := ∑

x∈V (Ĝ
j
i−1)

mult(x), j ∈ {1,2, . . . , li−1};
Else output i − 1.

For a given vertex v of G, this procedure finds the minimum radius r such that
Dr(v,G) = L0 ∪ L1 ∪ · · · ∪ Lr is a balanced disk-separator of G. Clearly, the pro-
cedure works in linear O(m) time since the construction of graphs G[Lq ],G[L̂q−1],
G[L̂q−2], . . . ,G[L̂1],G[L̂0] and their connected components costs no more than
O(m) time in total (each edge of G is considered only a constant number of times). �

Now let G = (V ,E) be an arbitrary connected n-vertex m-edge graph with a disk-
separator Dr(v,G). As in the case of chordal graphs, let G1, . . . ,Gk be the connected
components of G[V \ Dr(v,G)]. Denote by Si := {x ∈ V (Gi) : dG(x,Dr(v,G)) =
1} the neighborhood of Dr(v,G) with respect to Gi . Let also G+

i be the graph ob-
tained from component Gi by adding a vertex vi (representative of Dr(v,G)) and
making it adjacent to all vertices of Si , i.e., for a vertex x ∈ V (Gi), vix ∈ E(G+

i ) if
and only if there is a vertex xD ∈ Dr(v,G) with xxD ∈ E(G). Given graph G and
its disk-separator Dr(v,G), the graphs G+

1 , . . . ,G+
k can be constructed in total time

O(m). Furthermore, the total number of edges in the graphs G+
1 , . . . ,G+

k does not
exceed the number of edges in G, and the total number of vertices in those graphs
does not exceed the number of vertices in G[V \ Dr(v,G)] plus k.

Let again G/e be the graph obtained from G by contracting its edge e.

Lemma 5 For any graph G and its edge e, tb(G) ≤ ρ implies tb(G/e) ≤ ρ. Conse-
quently, for any graph G with tb(G) ≤ ρ, tb(G+

i ) ≤ ρ holds for each i = 1, . . . , k.

Proof Let G be a graph with tb(G) = ρ and T (G) be its tree-decomposition of
breadth ρ. Let e = xy be an arbitrary edge of G. We can obtain a tree-decomposition
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T (G/e) of graph G/e by replacing in each bag X ∈ V (T (G)) vertices x and y

with a new vertex x′ representing them (if some bag A contained both x and y,
only one copy of x′ is kept). Evidently, properties (1) and (2) in the definition of
tree-decomposition are fulfilled for T (G/e). Furthermore, the topology of the tree-
decomposition did not really change. Still, for any vertex v 
= x′ of G/e , the bags of
T (G/e) containing v form a subtree in T (G/e). Since vertices x and y were adjacent
in G, there was a bag A of T (G) containing both those vertices. Hence, a subtree
of T (G/e) formed by bags of T (G/e) containing vertex x′ is nothing else but the
union of two subtrees (one for x and one for y) of T (G) sharing at least one common
bag A. Also, contracting an edge can only reduce the distances in a graph. Hence,
still, for each bag B of T (G/e), there must exists a corresponding vertex b in G/e

with B ⊆ Dρ(b,G/e).
We can get G+

i from G again by repeatedly contracting (in any order) edges of G

that are not incident to vertices of Gi . �

As in Sect. 3, let Ti (i = 1, . . . , k) be a spanning tree of G+
i such that for any edge

xy ∈ E(G+
i ), dTi

(x, y) ≤ α holds, where α is some positive integer independent of i.
For the disk Dr(v,G) of G, construct a shortest path tree SPTD rooted at vertex v

(and spanning all and only the vertices of the disk). We can form a spanning tree T

of G from trees T1, . . . , Tk and SPTD in the following way. For each i = 1, . . . , k,
rename vertex vi in Ti to v. Glue trees T1, . . . , Tk together at vertex v obtaining a
tree T ′ (consult with Fig. 3). Substitute vertex v in T ′ by the tree SPTD . For each
former edge xv of T ′, create an edge xxD in T where xD is a vertex of Dr(v,G)

adjacent to x in G. We can show that for any edge xy ∈ E(G), dT (x, y) ≤ α + 2r

holds. Evidently, the tree T of G can be constructed from trees T1, . . . , Tk and SPTD

in O(m) time.

Lemma 6 Let G be an arbitrary graph with a disk-separator Dr(v,G) and
G+

1 , . . . ,G+
k be the graphs obtained from G as described above. Let also Ti

(i ∈ {1, . . . , k}) be a spanning tree of the graph G+
i , and T be a spanning tree of

G constructed from T1, . . . , Tk and a shortest path tree SPTD of the disk Dr(v,G)

as described above. Assume also that there is a positive integer α such that, for each
i ∈ {1, . . . , k} and every edge xy ∈ E(G+

i ), dTi
(x, y) ≤ α holds. Then, for every edge

xy ∈ E(G), dT (x, y) ≤ α + 2r must hold.

Proof The proof is done along the lines of the proof of Lemma 2. Consider an arbi-
trary edge xy of G. If both x and y belong to Dr(v,G), then evidently dT (x, y) ≤
2r < α + 2r . Assume now that xy is an edge of Gi for some i ∈ {1, . . . , k}. Then,
xy is an edge of G+

i and therefore dTi
(x, y) ≤ α. If the path P of Ti connecting

x and y does not contain vertex vi , then dT (x, y) = dTi
(x, y) ≤ α must hold. If vi

is between x and y in Ti (i.e., vi ∈ P ), then the distance in T between x and y

is at most dTi
(x, y) + 2r (the path of T between x and y is obtained from P by

substituting the vertex v = vi by a path of tree SPTD with at most 2r edges). It re-
mains to consider the case when x ∈ Dr(v,G) and y ∈ V (Gi) (see Fig. 4 for an
illustration). By construction of G+

i , there must exist an edge viy in G+
i . We have

dTi
(vi, y) ≤ α. Let z be the neighbor of vi in the path of Ti connecting vertices y
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Fig. 4 Illustration to the proof
of Lemma 6

and vi (y = z is possible). Evidently, z ∈ V (Gi). By construction, we must have in
T an edge zzD where zD is a vertex of Dr(v,G) adjacent to z in G. Vertices x and
zD both are in Dr(v,G) and the distance in T between them is at most 2r . Thus,
dT (x, y) ≤ dT (zD, y) + 2r = dTi

(vi, y) + 2r ≤ α + 2r . �

Now we have all necessary ingredients to apply the technique used in Sect. 3 and
show that each graph G admits a tree (2tb(G)�log2 n�)-spanner.

Let G = (V ,E) be a connected n-vertex, m-edge graph and assume that
tb(G) ≤ ρ. Lemma 4 guarantees that G has a balanced disk-separator Dr(v,G) with
r ≤ ρ. Proposition 3 says that such a balanced disk-separator Dr(v,G) of G can be
found in O(nm) time by an algorithm that works directly on graph G and does not
require the construction of a tree-decomposition of G of breadth ≤ ρ. Using this and
Lemma 5, we can build as before a (rooted) hierarchical-tree H(G) for G. Only now,
the leaves of H(G) are connected graphs with at most 9 vertices and, therefore, the
depth of this tree H(G) is at most log2 n − 2.

We note that any leaf of H(G) has a tree t-spanner with t ≤ 4ρ. The case when ρ ≥
2 is trivial; any 9-vertex graph has a tree 8-spanner. Hence, one needs to check only
that any graph G with at most 9 vertices and tree-breadth 1 admits a tree 4-spanner.
One can verify this by going over all finitely many such instances. To reduce the
number of different instances to consider, we note that G must have a vertex v whose
closed neighborhood NG[v] is a balanced separator of G. We can choose such a
closed neighborhood balanced separator with the maximum cardinality, to ensure
that NG[v] has at least 3 vertices. Furthermore, the largest connected component C

of G[V \ NG[v]] has at most 4 vertices (at most 9/2). Using this and the facts that
the tree-breadth of G is equal to 1 and that C either has a vertex adjacent to all other
vertices of C or C is either an induced path on 4 vertices or an induced cycle on
4 vertices, one can verify that G indeed has a tree 4-spanner (see also the proof of
Lemma 6). We leave remaining details to the reader.

To build a tree t-spanner T of G, we again use the hierarchical-tree H(G) and a
bottom-up construction. Each leaf (L,nil) of H(G) has a tree (4ρ)-spanner. A tree
t-spanner with minimum t of such a small graph L can be computed directly. Con-
sider now an inner node (H,Dr(v,G)) of H(G) (where Dr(v,G) is a balanced disk-
separator of H ), and assume that all its children H+

1 , . . . ,H+
l in H(G) have tree

α-spanners T1, . . . , Tl for some positive integer α. Then, a tree (α + 2r)-spanner
of H can be constructed from T1, . . . , Tl and a shortest path tree SPTD of the disk
Dr(v,G) as described above (see Lemma 6 and paragraph before it). Since the depth
of the hierarchical-tree H(G) is at most log2 n − 2 and all leaves of H(G) admit tree
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(4ρ)-spanners, applying Lemma 6 repeatedly, we move from leaves to the root of
H(G) and get a tree t-spanner T of G with t being no more than 2ρ log2 n. It is also
easy to see that, given a graph G with n vertices and m edges, a hierarchical-tree
H(G) as well as a tree t-spanner T of G with t ≤ 2tb(G) log2 n can be constructed in
O(nm log2 n) total time. There are at most O(logn) levels in H(G), and one needs
to do at most O(nm logn) operations per level since the total number of edges in the
graphs of each level is at most m and the total number of vertices in those graphs
can not exceed O(n logn) (each of those graphs, additionally to original vertices
(of G), can have at most one new vertex per each level of H(G), i.e., altogether up to
O(logn) new vertices).

Here is a summarized recursive version of our algorithm. G is an arbitrary input
graph.

Tree_Spanner(G)
If G has at most 9 vertices

Find a tree t-spanner T of G with minimum t directly;
Output T .

Else
Find a balanced disk-separator Dr(v,G) of G with minimum r (see Proposition 3);
Find connected components G1, . . . ,Gk of graph G[V \ Dr(v,G)];
Build graphs G+

1 , . . . ,G+
k

as described before Lemma 5;

Set Ti :=Tree_Spanner(G+
i

), for each i = 1, . . . , k;
Construct a shortest path tree SPTD of G[Dr(v,G)] rooted at vertex v;
Construct a spanning tree T of G from trees T1, . . . , Tk and SPTD as described before

Lemma 6;
Output T .

Note that the algorithm does not need to know the value of tb(G), neither it needs
to know any appropriate Robertson-Seymour’s tree-decomposition of G. It works
directly on an input graph. To indicate this, we say that the algorithm constructs an
appropriate tree spanner from scratch.

Thus, we have the following results.

Theorem 3 There is an algorithm that for an arbitrary connected graph G

with n vertices and m edges constructs a tree (2tb(G)�log2 n�)-spanner of G in
O(nm log2 n) total time.

Corollary 1 Any connected n-vertex, m-edge graph G with tb(G) ≤ ρ admits a tree
(2ρ�log2 n�)-spanner constructible in O(nm log2 n) time from scratch.

Corollary 2 Any connected n-vertex, m-edge graph G with tl(G) ≤ λ admits a tree
(2λ�log2 n�)-spanner constructible in O(nm log2 n) time from scratch.

There is another natural generalization of chordal graphs. A graph G is called
k-chordal if its largest induced cycle has length at most k. Chordal graphs are exactly
3-chordal graphs. It was shown in [29] that every k-chordal graph has tree-length at
most k/2. Thus, we have one more corollary.
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Fig. 5 From tree T to tree-decomposition T with t = 2

Corollary 3 Any connected n-vertex, m-edge k-chordal graph G admits a tree
(2�k/2��log2 n�)-spanner constructible in O(nm log2 n) time from scratch.

5 Approximating Tree t-Spanners of General Graphs

In this section, we show that the results obtained for tree t-spanners of generalized
chordal graphs lead to an approximation algorithm for the TREE t-SPANNER problem
on general (unweighted) graphs.

5.1 Graphs Admitting Tree t-Spanners Have Tree-Breadth at Most �t/2�

Here, we show that every graph G admitting a tree t-spanner has tree-breadth at
most �t/2�. From this and Theorem 3 it will follow that there is an algorithm which
produces for every n-vertex and m-edge graph G a tree (2�t/2��log2 n�)-spanner in
O(nm log2 n) time, whenever G admits a tree t-spanner. The algorithm does not even
need to know the true value of t .

Lemma 7 If a graph G admits a tree t-spanner then its tree-breadth is at most �t/2�.

Proof Let T be a tree t-spanner of G. We can transform this tree T to a tree-
decomposition T of G by expanding each vertex x in T to a bag X and putting
all vertices of disk D�t/2�(x, T ) into that bag (note that the disk here is considered
in T ; see Fig. 5 for an illustration). The edges of T and of T are identical: XY is
an edge in T if and only if xy ∈ E(T ), where X is a bag that replaced vertex x in
T and Y is a bag that replaced vertex y in T . Since dG(u, v) ≤ dT (u, v) for every
pair of vertices u and v of G, we know that every bag X := D�t/2�(x, T ) is con-
tained in a disk D�t/2�(x,G) of G. Thus, it remains to show that all three properties
of tree-decomposition are fulfilled for T .

Evidently, every vertex x of G is in at least one bag of T . Consider an arbitrary
edge uv of G. Since T is a tree t-spanner of G, dT (u, v) ≤ t holds. Let x be a middle
vertex of the path connecting vertices u and v in T . Then, both u and v belong to the
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disk D�t/2�(x, T ), i.e., there is a bag X = D�t/2�(x, T ) containing u and v. For a ver-
tex v ∈ V (G) consider the set of all bags Φ := {X ∈ V (T ) : v ∈ X = D�t/2�(x, T )}
of T containing vertex v. Let Φ = {Xi = D�t/2�(xi, T ) : i = 1,2, . . . , l}. This set of
bags Φ induces a subtree in T since the corresponding vertices x1, . . . , xl induce a
subtree in T . Note that v ∈ Xi if and only if dT (v, xi) ≤ �t/2�. �

Combining Lemma 7 with Theorem 3 we get our main result.

Theorem 4 There is an algorithm that for an arbitrary connected graph G with n

vertices and m edges constructs a tree (2�t/2��log2 n�)-spanner in O(nm log2 n)

time, whenever G admits a tree t-spanner.

5.2 Improving Run-Time on Expense of Approximation Ratio

The complexity of our algorithm is dominated by the complexity of finding a bal-
anced disk-separator Dr(v,G) of a graph G with minimum r . Proposition 3 says that
for an n-vertex, m-edge graph such a balanced disk-separator can be found in O(nm)

time. In this subsection, we show that a balanced disk-separator with a slightly larger
radius can be found in linear O(m) time. This will immediately lead to an O(m logn)

algorithm (as in the case of chordal graphs; see Sect. 3), which produces for every
graph G a tree (6t�log2 n�)-spanner, whenever G admits a tree t-spanner.

We will need the notion of layering partition introduced in papers [8, 14] and
recently used in a slightly more general form in both approximation algorithms for
embedding graph metric into trees [4, 5, 17] as well as in some other similar contexts
[15–18, 21, 22].

Let G = (V ,E) be a connected graph with n vertices and m edges and with
an arbitrarily chosen start vertex s. Consider a layering L0,L1, . . . ,Lq of G with
respect to s, where Li = {u ∈ V : dG(s,u) = i}, i ∈ {0,1,2, . . . , q} and q :=
maxx∈V dG(s, x). A layering partition LP (s) = {L1

i , . . . ,L
pi

i : i = 0,1,2, . . . , q} of
G is a partition of each Li into clusters L1

i , . . . ,L
pi

i such that two vertices u,v ∈ Li

belong to the same cluster L
j
i if and only if they can be connected by a path outside

the disk Di−1(s,G). It was shown in [14] that for a given graph G such a layering
partition can be found in O(m) time. Let Γ be a graph whose vertex set is the set of

all clusters L
j
i in a layering partition LP of G. Two vertices C = L

j
i and C′ = L

j ′
i′

are adjacent in Γ if and only if there exist u ∈ L
j
i and v ∈ L

j ′
i′ such that u and v are

adjacent in G (see Fig. 6). It was shown in [14] that Γ is a tree, called the layering
tree of G, and that Γ is computable in linear time in the size of G, i.e., in O(m) time.

Let assign to each vertex L
j
i of Γ a weight w

j
i := |Lj

i |. Clearly,

W :=
∑

i=0,1,2,...,q, j=1,2,...,pi

w
j
i

is equal to n. It is known that every vertex-weighted tree T with the total weight of
vertices equal to W has a vertex x, called a median of T , such that the total weight
of vertices in each subtree of T \ {x} does not exceed W/2. Furthermore, such a
vertex x of T can be found in O(|V (T )|) time [32]. Let C = L

j
i (i ∈ {0,1,2, . . . , q},
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Fig. 6 A layering partition of G and the tree Γ associated with this layering partition

j ∈ {1,2, . . . , pi}) be a median vertex of weighted tree Γ . Then, each subtree of
Γ \ {C} has total weight of vertices not exceeding n/2. Since each edge of G is either
between vertices of the same cluster or between vertices of clusters that are adjacent
in Γ , the set C separates in G any two vertices that belong to clusters from different
subtrees of Γ \ {C}. Consequently, C is a balanced separator of G as any connected
component of G[V \ C] has no more than n/2 vertices. Note that, given a graph G,
such a cluster C of a layering partition LP of G can be found in linear time in the
size of G. Thus, we have the following proposition.

Proposition 4 For any graph G with m edges there is a cluster C of a layering
partition LP of G such that C is a balanced separator of G and can be found in
O(m) total time.

We show now that if graph G has tree-breadth ρ then there is a vertex v in G such
that C ⊆ D3ρ(v,G).

Lemma 8 If a graph G has tree-breadth ρ then for any cluster C of a layering
partition LP of G there exists a vertex vC ∈ V (G) such that C ⊆ D3ρ(vC,G).

Proof The proof is analogous to the proof of a similar result for graphs with tree-
length λ (see [21], Lemma 5). Let T be a tree-decomposition of G with breadth ρ.
It is known [20] that if X1X2 is an edge of a tree-decomposition T of G, and T1, T2
are the subtrees of T obtained after removing edge X1X2 from T , then I = X1 ∩ X2
separates in G vertices belonging to bags of T1 but not to I from vertices belonging
to bags of T2 but not to I . We will need this property of a tree-decomposition below.

Assume that T is rooted at a bag containing vertex s, the source of layering parti-
tion LP . Let C be a cluster from layer Li (i.e, C = L

j
i for some j ∈ {1,2, . . . , pi}).

We have dG(x, s) = i for every x ∈ C. Let Z be the nearest common ancestor of all
bags of T containing vertices of C. Let z be a vertex of G such that Z ⊆ Dρ(z,G).

Consider an arbitrary vertex x of C. It is easy to see that there is a vertex y ∈ C

and two bags X and Y of T containing vertices x and y, respectively, such that
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Fig. 7 Illustration to the proof
of Lemma 8

Z = NCAT (X,Y ) (i.e., Z is the nearest common ancestor of X and Y in T ; see
Fig. 7). Let P be a shortest path of G from s to x. Necessarily, P intersects Z. Let
a be a vertex of P ∩ Z closest to s in G. Since x and y both are in C, there exists
a path Q from x to y in G using only intermediate vertices w with dG(w, s) ≥ i.
Assume Q intersects Z at vertex b. We have dG(s, x) = i = dG(s, a) + dG(a, x) and
i ≤ dG(s, b) ≤ dG(s, a) + dG(a, z) + dG(z, b) ≤ dG(s, a) + 2ρ. Hence, dG(a, x) =
i − dG(s, a) ≤ 2ρ and therefore dG(x, z) ≤ dG(x, a) + dG(a, z) ≤ 2ρ + ρ = 3ρ.

Thus, any vertex x of C is at distance at most 3ρ from z in G, i.e., C ⊆
D3ρ(z,G). �

Given a cluster C of a layering partition of G, although we know that a vertex
vC ∈ V (G) exists such that C ⊆ D3ρ(vC,G), we do not currently know how to find
vC in O(m) time. Instead, we can consider any vertex v of C and use D6ρ(v,G) as
a “small radius” balanced disk-separator of G. Clearly, C ⊆ D6ρ(v,G) and therefore
D6ρ(v,G) is a balanced disk-separator of G.

Corollary 4 There is an algorithm that for an arbitrary connected graph G with n

vertices and m edges finds a balanced disk-separator D6ρ(v,G) of G in linear O(m)

time, where ρ = tb(G).

As a consequence, we have the following variant of Theorem 3.

Theorem 5 There is an algorithm that for an arbitrary connected graph G with n

vertices and m edges constructs a tree (12tb(G)�log2 n�)-spanner of G in O(m logn)

total time.

This theorem already implies that there is an algorithm that for an arbitrary con-
nected graph G with n vertices and m edges constructs a tree (12�t/2��log2 n�)-
spanner in O(m logn) time, whenever G admits a tree t-spanner. But, if we decided
to use an arbitrary vertex v of C as the center of a balanced disk-separator, we can
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get a similar (even slightly better for odd ts) result using just notions of tree-length
and t-powers of trees. We can prove the following result.

Theorem 6 There is an algorithm that for an arbitrary connected graph G with
n vertices and m edges constructs a tree (6t�log2 n�)-spanner in O(m logn) time,
whenever G admits a tree t-spanner.

Proof First, we can show that if G = (V ,E) admits a tree t-spanner, then the tree-
length of G is at most t . Indeed, let T be a tree t-spanner of G. The t-power T t of T

is a graph obtained from T by adding to T all new edges between vertices at distance
at most t in T , i.e., for each x, y ∈ V , xy ∈ E(T t ) if and only if dT (x, y) ≤ t . Since
T is a tree t-spanner of G, i.e., dT (x, y) ≤ t for every edge xy of G, G is a spanning
subgraph of T t . It is known that any power of a tree is a chordal graph (see, e.g., [11]).
Consequently, T t is chordal and has a clique-tree (see Theorem 2). This clique-tree
of T t gives a tree-decomposition of G. Each bag of that tree-decomposition forms a
clique in T t and, therefore, is a set of vertices S ⊆ V such that dG(x, y) ≤ dT (x, y) ≤
t for every x, y ∈ S. Thus, tl(G) ≤ t .

Second, it was proven in [21] that if tl(G) ≤ t , then for any cluster C of a layering
partition LP of G and every two vertices x, y ∈ C, dG(x, y) ≤ 3t holds. Hence, for
any vertex v ∈ C, C ⊆ D3t (v,G). Moreover, given G, we can find a balanced disk-
separator D3t (v,G) of G in total O(m) time (see Proposition 4).

Third, it is easy to see that if tl(G) ≤ t then tl(G/e) ≤ t for any edge e of G (see
the proof of Lemma 5).

Consequently, these facts together with Lemma 6, plugged into our method, prove
the theorem. �

6 Concluding Remarks

In this paper, we examined the TREE t-SPANNER problem on chordal graphs, gen-
eralized chordal graphs and general graphs. Using a graph decomposition technique
based on balanced disk-separators, we developed an algorithm which produces for
any input unweighted graph a tree t-spanner with t close to minimum.

We conclude the paper with some problems for future research.

1. Investigate graphs with bounded tree-breadth. A better structural understanding
may lead to a better approximation algorithm for the TREE t-SPANNER problem. Is
o(logn)-approximation algorithm for the TREE t-SPANNER problem achievable?

2. Characterize and recognize graphs with tree-breadth 1 (with tree-breadth at
most ρ).

3. Get faster algorithms for finding a “small radius” balanced disk-separator of a
graph. Can a balanced disk-separator with minimum radius be found in o(nm)

time (in O(m) time)?
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4. Bǎdoiu, M., Demaine, E.D., Hajiaghayi, M.T., Sidiropoulos, A., Zadimoghaddam, M.: Ordinal em-
bedding: approximation algorithms and dimensionality reduction. In: Proceedings of the Interna-
tional Workshop on Approximation, Randomization, and Combinatorial Optimization: Algorithms
and Techniques (APPROX-RANDOM 2008), Boston, MA, USA, 25–27 August 2008. Lecture Notes
in Computer Science, vol. 5171, pp. 21–34. Springer, Berlin (2008)
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