
C H A P T E R 29

Tree-Structured Graphs
Andreas Brandstädt

Feodor F. Dragan

CONTENTS

29.1 Graphs with Tree Structure, Related Graph Classes,
and Algorithmic Implications . 752

29.2 Chordal Graphs and Variants . 753
29.2.1 Chordal Graphs . 753
29.2.2 Some Subclasses of Chordal Graphs . 756

29.3 α-Acyclic Hypergraphs and Their Duals . 757
29.3.1 Motivation from Relational Database Theory . 757
29.3.2 Some Basic Hypergraph Notions . 759
29.3.3 Hypergraph 2-Coloring . 763
29.3.4 Kőnig Property . 764
29.3.5 α-Acyclic Hypergraphs and Tree Structure . 764
29.3.6 Graham’s Algorithm, Running Intersection Property, and Other

Desirable Properties Equivalent to α-Acyclicity . 767
29.3.7 Dually Chordal Graphs, Maximum Neighborhood Orderings, and

Hypertrees . 770
29.3.8 Bipartite Graphs, Hypertrees, and Maximum

Neighborhood Orderings . 773
29.3.9 Further Matrix Notions . 775

29.4 Totally Balanced Hypergraphs and Matrices . 776
29.4.1 Totally Balanced Hypergraphs versus β-Acyclic Hypergraphs 776
29.4.2 Totally Balanced Matrices . 778

29.5 Strongly Chordal and Chordal Bipartite Graphs . 779
29.5.1 Strongly Chordal Graphs . 779

29.5.1.1 Elimination Orderings of Strongly Chordal Graphs 779
29.5.1.2 Γ-Free Matrices and Strongly Chordal Graphs 782
29.5.1.3 Strongly Chordal Graphs as Sun-Free Chordal Graphs 783

29.5.2 Chordal Bipartite Graphs . 786
29.6 Tree Structure Decomposition of Graphs . 788

29.6.1 Cographs . 788
29.6.2 Optimization on Cographs . 790
29.6.3 Basic Module Properties . 791
29.6.4 Modular Decomposition of Graphs . 793
29.6.5 Clique Separator Decomposition of Graphs . 794

29.7 Distance-Hereditary Graphs, Subclasses, and γ-Acyclicity . 794
29.7.1 Distance-Hereditary Graphs . 794
29.7.2 Minimum Cardinality Steiner Tree Problem in Distance-Hereditary

Graphs . 799

C5955–C0029.tex 751 2015/10/22 9:14pm

751

752 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

29.7.3 Important Subclasses of Distance-Hereditary Graphs 801
29.7.3.1 Ptolemaic Graphs and Bipartite Distance-Hereditary

Graphs . 801
29.7.3.2 Block Graphs . 802
29.7.3.3 γ-Acyclic Hypergraphs . 802

29.8 Treewidth and Clique-Width of Graphs . 803
29.8.1 Treewidth of Graphs . 803
29.8.2 Clique-Width of Graphs . 805

29.9 Complexity of Some Problems on Tree-Structured Graph Classes 807
29.10 Metric Tree-Like Structures in Graphs . 808

29.10.1 Tree-Breadth, Tree-Length, and Tree-Stretch of Graphs 808
29.10.2 Hyperbolicity of Graphs and Embedding Into Trees . 810

29.1 GRAPHS WITH TREE STRUCTURE, RELATED GRAPH CLASSES,
AND ALGORITHMIC IMPLICATIONS

The aim of this chapter is to present various aspects of tree structure in graphs and hyper-
graphs and its algorithmic implications together with some important graph classes having
nice and useful tree structure. In particular, we describe the hypergraph background and the
tree structure of chordal graphs (introduced in Chapter 28) and some graph classes which
are closely related to chordal graphs such as chordal bipartite graphs, dually chordal graphs,
and strongly chordal graphs as well as important subclasses.

As already defined in Chapter 28, a graph is chordal if each of its induced cycles has only
three vertices (i.e., each cycle with at least four vertices has a so-called chord). The study
of chordal graphs goes back to [1], and the many aspects of chordal graphs are described
in surveys and monographs such as [2–5] and others. The interest in chordal graphs and
related classes comes from applications in computer science, in particular, relational database
schemes [6,7], matrix analysis, models in biology, statistics, and others. Chordal graphs are
closely related to the famous concept of treewidth introduced by Robertson and Seymour [8]
but appears also under the name of partial k-trees in [9, 10] (see, e.g., [11]). The notion of
treewidth plays a central role in algorithmic and complexity aspects on graphs.

Chordal graphs appear in the literature under different names such as triangulated graphs
(Chapter 4 of [4]), rigid-circuit graphs, perfect elimination graphs and others. Most of the
applications are due to the tree structure of chordal graphs which can be described in terms
of so-called clique trees (arranging the maximal cliques of the graph in a tree).

The hypergraph-theoretical background of chordal graphs is given by α-acyclic hyper-
graphs which play an important role in the theory of relational database schemes. Various
desirable properties of such schemes can be expressed in terms of various levels of acyclic-
ity of hypergraphs [6,7]: Chordal graphs correspond to α-acyclic hypergraphs, dually chordal
graphs correspond to the dual hypergraphs of α-acyclic hypergraphs, strongly chordal graphs
correspond to β-acyclic hypergraphs (which are equivalent to totally balanced hypergraphs),
ptolemaic graphs correspond to γ-acyclic hypergraphs, and block graphs correspond to Berge-
acyclic hypergraphs. Actually, tree structure of hypergraphs was captured as arboreal hyper-
graphs by Berge [12,13]; a hypergraph is α-acyclic if and only its dual is arboreal.

We discuss also another width parameter of graphs, namely clique-width, and its rela-
tionship to treewidth as well as its algorithmic applications. Very similar to treewidth, it is
known that whenever a problem is expressible in a certain kind of Monadic Second-Order
Logic, and one deals with a class of graph whose clique-width is bounded by a constant
then the problem is efficiently solvable on this class. This is one of the main reasons for the

C5955–C0029.tex 752 2015/10/22 9:14pm

Tree-Structured Graphs � 753

great interest in treewidth and clique-width of (special) graphs. In general, it is NP-hard to
determine the clique-width of a graph, and for many important graph classes, the clique-
width is unbounded. For some interesting classes, however, clique-width is bounded.

Finally, we discuss some other graph parameters, namely, the tree-length and the tree-
breadth of a graph, the tree-distortion and the tree-stretch of a graph, the Gromov’s
hyperbolicity of a graph. All these parameters try to capture and measure tree likeness
of a graph from a metric point of view. The smaller such a parameter is for a graph, the
closer graph is to a tree metrically. Graphs for which such parameters are bounded by small
constants have many algorithmic advantages; they allow efficient approximate solutions for
a number of optimization problems. Note also that recent empirical and theoretical work has
suggested that many real-life complex networks and graphs arising in Internet applications,
in biological and social sciences, in chemistry and physics have tree-like structures from a
metric point of view.

29.2 CHORDAL GRAPHS AND VARIANTS

In this section, we collect some notions and well-known facts on chordal graphs which are
described in Chapter 28 (see also the monograph [4] and the survey [3] as well as [5] for
details). In order to make this section self-contained, we briefly repeat some of the basic
definitions and properties. Throughout this section, let G = (V, E) be a finite undirected
graph which is simple (i.e., loop-free and without multiple edges).

29.2.1 Chordal Graphs

Definition 29.1 A graph is chordal if it does not contain any chordless cycle with at least
four vertices.

Obviously, trees and forests are chordal since they are cycle-free for any cycle length. Chordal
graphs have a nice separator property which was found by Dirac [14].

Definition 29.2

i. The vertex set S ⊆ V is a separator (or cutset) for nonadjacent vertices a, b ∈ V
(a−b-separator) if a and b are in different connected components in G[V \ S].

ii. S is a minimal a-b-separator if S is an a-b-separator and no proper subset of S is
an a−b-separator.

iii. S is a (minimal) separator if there are vertices a, b such that S is a (minimal)
a−b-separator.

Theorem 29.1 [14] A graph G is chordal if and only if every minimal separator in G induces
a clique. �

Definition 29.3

i. A vertex v ∈ V is simplicial in G if N(v) induces a clique in G.

ii. An ordering (v1, . . ., vn) of the vertices of V is a perfect elimination ordering (p.e.o.)
of G if for all i ∈ {1, . . ., n}, the vertex vi is simplicial in the remaining subgraph
Gi := G[{vi, . . ., vn}].

Obviously, the notion of a simplicial vertex generalizes leaves in trees.

C5955–C0029.tex 753 2015/10/22 9:14pm

754 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Lemma 29.1 [14] Every chordal graph with at least one vertex contains a simplicial vertex.
If G is not a clique then G contains at least two nonadjacent simplicial vertices. �

Corollary 29.1 [14,15] G is chordal if and only if G has a perfect elimination ordering.
Moreover, every simplicial vertex of a chordal graph G can be the first vertex of a perfect
elimination ordering of G.

For a collection T of subtrees of a tree T , let the vertex intersection graph GT of T be the
graph having the elements of T as its vertices, and two subtrees t and t′ from T are adjacent
in GT if they share a vertex in T .

Proposition 29.1 The vertex intersection graph of a collection of subtrees in a tree is
chordal.

Proof. Let G = (V, E) be the vertex intersection graph of a collection of subtrees in a tree
T . Suppose G contains a chordless cycle (v0, v1, . . . , vk−1, v0) with k > 3 corresponding to
the sequence of subtrees T0, T1, . . . , Tk−1, T0 of the tree T ; that is, Ti ∩ Tj ̸= ∅ if and only if
i and j differ by at most one modulo k. All arithmetic will be done modulo k.

Choose a point ai from Ti ∩ Ti+1 (i = 0, . . . , k − 1). Let bi be the last common point on
the (unique) simple paths from ai to ai−1 and ai to ai+1. These paths lie in Ti and Ti+1,
respectively, so that bi also lies in Ti and Ti+1. Let Pi+1 be the simple path connecting bi to
bi+1 in T . Clearly Pi ⊆ Ti, so Pi∩Pj = ∅ for i and j differing by more than 1 mod k. Moreover,
Pi ∩ Pi+1 = {bi} for i = 0, . . . , k − 1. Thus,

∪
i Pi is a simple cycle in T , contradicting the

definition of a tree. �
The tree structure of chordal graphs is described in terms of so-called clique trees of the
maximal cliques of the graph; see Theorem 29.2. Let C(G) denote the family of ⊆-maximal
cliques of G. A clique tree T of G has the maximal cliques of G as its nodes, and for every
vertex v of G, the maximal cliques containing v form a subtree of T . This property will
be generalized in the hypergraph chapter; it can be taken for defining α-acyclicity of a
hypergraph (see Definition 29.17). The existence of a clique tree characterizes chordal graphs:

Theorem 29.2 [16–18] A graph is chordal if and only if it has a clique tree.

Proof. “⇐=”: Assume that G has a clique tree T . If T has only one node then G is a clique
and thus chordal. Now let T have k > 1 nodes and assume as induction hypothesis that the
assertion is true for clique trees with less than k nodes. Let C be a leaf node in T , let C ′ be
its neighbor in T , let VC be the subset of G vertices occuring only in C, and let T ′ be the
clique tree restricted to V \ VC . �
VC must be nonempty since otherwise, C ⊂ C ′ which is impossible by maximality of the
cliques. Now start a p.e.o. of G with the vertices of VC and then continue with a p.e.o. for
G − VC which must exist since T ′ has less nodes than T .

“=⇒”: For this direction, we use a version described by Spinrad in [19]: Assume that G is
chordal and let σ = (v1, . . ., vn) be a p.e.o. of G. We construct a clique tree for the subgraph
Gi = G[vi, . . ., vn] for all vertices, starting with i = n and ending with i = 1. Let Ci be the
clique consisting of vi and all neighbors vj of vi, j > i. After each vertex vi is processed, vi

is given a pointer to the clique Ci in the tree. We note that vertices may be added to this
clique later in the algorithm, but vi will always point to a clique which contains Ci.

Let vi be the next vertex considered, and assume we know the clique tree on the graph
induced by vertices vi+1, . . ., vn. We need to add Ci to the clique tree. Let vj be the first (i.e.,
leftmost) vertex of Ci on the right of vi in σ. If |Ci| = |Cj | + 1, and the clique pointed to

C5955–C0029.tex 754 2015/10/22 9:14pm

Tree-Structured Graphs � 755

by vj is equal to Cj then we add vi to this clique; in other words, Ci replaces Cj in the tree.
Otherwise, add Ci as a new node of the tree. Connect Ci to the tree by adding an edge from
Ci to the clique pointed to by vj .

To see that the algorithm is correct, it is sufficient to look at two cases. Either Cj is a
maximal clique in Gi+1 = G[{vi+1, . . ., vn}] or it is not. If Cj is a maximal clique, it clearly
must be replaced by Ci if Cj is contained in Ci, which occurs if Ci = Cj ∪ {vi}, and the
algorithm does this correctly. If Cj is not a maximal clique in Gi+1 or Ci does not contain
Cj , then Ci cannot contain any maximal clique of Gi+1, and must be added as a new node.
All elements of Ci − vi are in the clique pointed to by vj , so the subtrees generated by the
occurrences of all vertices remain connected. �
A consequence of Theorem 29.2 and Proposition 29.1 is:

Corollary 29.2 [16–18] A graph is chordal if and only if it is the intersection graph of
certain subtrees of a tree.

Since a p.e.o. of a chordal graph can be determined in linear time (see, e.g., [4,20]), the proof
of Theorem 29.2 implies the following.

Theorem 29.3 Given a chordal graph G = (V, E), a clique tree of G can be constructed in
linear time O(|V | + |E|). �
Interestingly, a clique tree of a chordal graph G gives also the minimal separators of G.

Lemma 29.2 [21,22] Let G = (VG, EG) be a chordal graph with clique tree T = (C(G), ET).
Then S ⊆ VG is a minimal separator in G if and only if there are maximal cliques Qi, Qj of
G with QiQj ∈ ET such that S = Qi ∩ Qj. �
The specific structure of chordal graphs allows to solve various problems efficiently which
is well described in [4]; as another example we give here a linear-time algorithm by Andras
Frank [23] for maximum weight independent set (MWIS) on chordal graphs.

Let G = (V, E) be a chordal graph with perfect elimination ordering (v1, . . ., vn) of G
and ω : V −→ R+ a nonnegative weight function on V . The algorithm of Frank efficiently
constructs a maximum weight stable set I of G in the following way:

(0) I := ∅; all vertices in V are unmarked

(1) for i := 1 to n do

if ω(vi) > 0 then mark vi and let ω(u) := max(ω(u) − ω(vi), 0) for all vertices
u ∈ Ni(vi).

(2) for i := n downto 1 do

if vi is marked then let I := I ∪ {vi} and unmark all vertices u ∈ N(vi).

Theorem 29.4 [23] The algorithm described above is correct and runs in linear time. �
It is clear that the algorithm runs in linear time. For the correctness, we need the following
(inductive) argument: As in the algorithm, let (v1, . . ., vn) be a p.e.o. of G and ω a weight
function on V . Now let ω′ be the weight function resulting from step (1) of the algorithm
for the simplicial vertex v1. We claim the following proposition.

Proposition 29.2 αω(G) = αω′(G − v1) + ω(v1).

This is clear by the following argument: If v1 is in a maximum weight stable set S in G then
none of its neighbors are in S, and the claim holds. Otherwise, if v1 /∈ S then exactly one
of its neighbors, say vi, i > 1, is in S (otherwise S would not be a maximal stable set), and
now ω′(vi) = ω(vi) − ω(v1) holds.

C5955–C0029.tex 755 2015/10/22 9:14pm

756 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

29.2.2 Some Subclasses of Chordal Graphs

As mentioned in Chapter 28, interval graphs are a very important subclass of chordal graphs.
Here is another subclass of chordal graphs which plays an important role in various contexts:

Definition 29.4 A graph is a split graph if its vertex set can be partitioned into a clique
and a stable set. Such a partition is called a split partition.

It is easy to see that the complement of a split graph is a split graph as well, and split graphs
are chordal. In what follows, we say a vertex x sees a vertex y if x is adjacent to y; otherwise
we say x misses y.

Theorem 29.5 [24] The following conditions are equivalent:

i. G is a split graph.

ii. G and G are chordal.

iii. G contains no induced 2K2 = C4, C4, C5 (i.e., G is (2K2, C4, C5)-free).

Proof. “(ii) ⇐⇒ (iii)”: If G and G are chordal then obviously G contains no induced 2K2, C4
and C5. In the other direction, note that for every k ≥ 6, Ck contains a 2K2, and C5 = C5.
Thus, if G contains no induced 2K2, C4 and C5 then G and G are chordal.

“(i) =⇒ (ii)”: If the vertex set V of G has a partition into a clique Q and a stable set
S then obviously, every vertex in S is simplicial in G. Thus, a p.e.o. of G can start with all
vertices of S and finish with all vertices of Q. Similar arguments hold for G, and thus G and
G are chordal.

“(i) ⇐= (ii)”: Suppose that G and G are chordal (or, equivalently, G contains no induced
2K2, C4, and C5).

If there is a vertex v ∈ V which is simplicial in G and G then N [v] is a clique and N [v]
is a stable set giving the desired split partition.

If there is a vertex v ∈ V which is neither simplicial in G nor simplicial in G then let
a, b ∈ N(v) be vertices with ab /∈ E and let c, d ∈ N [v] with cd ∈ E. Since G is 2K2-free, a
sees c or d, and similarly, b sees c or d but since G is C4-free, a and b do not have a common
neighbor in c, d. Thus, say, a sees c but not d and vice versa for b but now v, a, b, c, d induce
a C5 in G which is a contradiction.

Thus, every vertex v ∈ V is either simplicial in G or simplicial in G. Let V1 := {v ∈ V | v
is simplicial in G} and V2 := {v ∈ V | v is simplicial in G}. Note that V = V1 ∪ V2 is a
partition of V . Now, if V1 is a stable set and V2 is a clique then this gives the desired split
partition. Suppose to the contrary that V1 contains an edge xy ∈ E. Then since G is 2K2-free,
the set of nonneighbors of x and y form a stable set, and since x and y are simplicial, the set
of neighbors of x and y form a clique which gives the desired split partition. �

Theorem 29.5 does not immediately give a linear-time recognition of split graphs. The follow-
ing nice characterization of split graphs in terms of their degree sequence leads to linear-time
recognition of split graphs:

Theorem 29.6 [25,26] Let G have the degree sequence d1 ≥ d2 ≥ . . . ≥ dn and ω := max{i |
di ≥ i − 1}. Then G is a split graph if and only if Σω

i=1di = ω(ω − 1) + Σn
i=ω+1di. �

See [25,26] for more details.

C5955–C0029.tex 756 2015/10/22 9:14pm

Tree-Structured Graphs � 757

Finally, another interesting subclass of chordal graphs should be mentioned which will
be discussed in more detail in the section on strongly chordal graphs and on β-acyclicity.
Assume that G is a chordal graph. A chord xixj in a cycle C = (x1, x2, . . ., x2k, x1) of even
length 2k is an odd chord if the distance in C between xi and xj is odd.

Farber [27] defined strongly chordal graphs in terms of strong elimination orderings rather
than odd chords in even cycles (see Definition 29.33), but he showed that chordal graphs
having odd chords in even cycles are exactly the strongly chordal graphs (see Theorem
29.34).

Chordal graphs can be generalized in a natural way by placing a variety of restrictions
on the number and type of chords with respect to a cycle. A fairly general scheme is given
in the following definition (which was motivated by relational database schemes).

Definition 29.5 [28] For k ≥ 4 and ℓ ≥ 1, a graph G is (k, ℓ)-chordal if each cycle in G of
length at least k contains at least ℓ chords.

Thus chordal graphs are the (4,1)-chordal graphs. Further conditions can be placed on the
parity of the cycles (chords in odd cycles), the parity of the cycle distance of the end vertices of
chords (odd chords), requiring crossing and/or parallel chords, requiring all these conditions
for G and G, and requiring these conditions in bipartite graphs (where all cycles are of even
length). Thus, for example, the (5,2)-odd-crossing-chordal graphs are the graphs such that
every odd cycle of length at least five has at least two crossing chords.

See [3] for more details and Theorem 29.45 for a characterization of (5,2)-chordal graphs.

29.3 α-ACYCLIC HYPERGRAPHS AND THEIR DUALS

29.3.1 Motivation from Relational Database Theory

Fagin [7] gives a very nice introduction into acyclic database schemes (of various degrees,
namely α-, β-, and γ-acyclicity) and their equivalence to desirable properties of relational
databases. Since Fagin’s introduction is mostly informal and we need some definitions, we
follow the presentation in papers such as [29] for this subsection.

A (relational) database scheme as introduced by Codd [30] can be thought of as a collec-
tion of table skeletons, or, alternatively, as a set of subsets of attributes, or column names in
the tables. These attribute subsets form the hyperedges of a finite hypergraph. A relational
database corresponds to a family of relations over the attributes.

Let V = {v1, . . ., vn} be a finite set of distinct symbols called attributes or column names
(name, first name, age, birthday, citizenship, married, home address, telephone number, etc).

Let Y ⊆ V . A Y -tuple is a mapping that associates a value (from a certain universe
U) with each attribute in Y . For instance, if Y = {name, age, citizenship, married} then a
Y -tuple is a 4-tuple such as (Higgins, 48, Canada, no).

If X ⊆ Y and t is a Y -tuple, then the projection t[X] denotes the X-tuple obtained by re-
stricting t to X. For instance, if X = {name, citizenship} and t = (Higgins, 48, Canada, no)
then t[X] = (Higgins, Canada).

A Y -relation is a finite set of Y -tuples. If r is a Y -relation and X ⊆ Y then by the
projection r[X] of r onto X, we mean the set of all tuples t[X], where t ∈ r.

If V is a set of attributes, then we define a relational database scheme (database scheme
for short) E = {E1, . . ., Em} to be a set of subsets of V , that is, (V, E) is a hypergraph over
vertex set V .

Intuitively, for each i, the set Ei of attributes is considered to be the set of column names
for a relation; the Ei’s are called relation schemes. If r1, . . ., rm are relations, where ri is a
relation over Ei, i ∈ {1, . . ., m}, then we call {r1, . . ., rm} a database over E.

C5955–C0029.tex 757 2015/10/22 9:14pm

758 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

The join r1 ◃▹ r2 of two relations r1 and r2 with attribute sets E1 and E2, respectively,
is the set of all tuples t with attribute set E1 ∪ E2 for which the projection t[Ei] is in ri,
i = 1, 2.

Example 29.1
r1 : A B r2 : B C r3 : A C

0 0 0 0 0 1
1 1 1 1 1 0

r1 ◃▹ r2 : A B C r1 ◃▹ r3 : A B C r2 ◃▹ r3 : A B C
0 0 0 0 0 1 1 0 0
1 1 1 1 1 0 0 1 1

More generally, the join r1 ◃▹ . . . ◃▹ rm of the relations r1, . . ., rm, m ≥ 2, with attribute sets
E1, . . ., Em, respectively, is the set of all tuples t with attribute set E1 ∪ . . . ∪ Em, such that
for each i ∈ {1, . . ., m}, the projection t[Ei] of tuple t onto attributes Ei fulfills t[Ei] ∈ ri.

The join of all three relations in Example 29.1 is empty: r1 ◃▹ r2 ◃▹ r3 = ∅.
We say that a relation r with attributes E1 ∪ . . . ∪ Em obeys the join dependency ◃▹

{E1, . . ., Em} if r = r1 ◃▹ . . . ◃▹ rm, where ri = r[Ei] for each i ∈ {1, . . ., m}.
A highly desirable property of a relational database r1, . . ., rm, m ≥ 2, is that the entries

in it are conflict-free. In general, the attribute sets are not pairwise disjoint, and it easily
might happen that an entry in one of the relations is updated while the same entry in another
relation is not. Pairwise consistency captures conflict-freeness for every two of the relations,
and global consistency, roughly saying, means that all of them together are conflict-free. If
the relations are globally consistent then they are pairwise consistent but not vice versa as
Example 29.1 shows; surprisingly, it turns out that the equivalence of pairwise and of global
consistency corresponds to a hypergraph acyclicity property of the underlying attribute sets.

More formally, let r and s be relations with attributes R and S, respectively, and let
Q = R ∩ S, that is, Q is precisely the set of attributes that r and s have in common. We
say that r and s are consistent if r[Q] = s[Q], that is, the projections of r and s onto their
common attributes are the same.

Example 29.2
r1 : A B C r2 : A D E

0 1 2 0 3 4
1 2 3 0 5 6
2 3 4 3 4 5

r1 ◃▹ r2 : A B C D E
0 1 2 3 4
0 1 2 5 6

In Example 29.2, r1 and r2 have only A as common attribute, and the projection r1[A] is
{0, 1, 2} while the projection r2[A] is {0, 3}; thus, r1 and r2 are not consistent.

In Example 29.1, each pair ri, rj of relations, i, j ∈ {1, 2, 3}, is consistent.

Definition 29.6 Let {r1, . . ., rm} be an arbitrary database over E = {E1, . . ., Em}.

i. {r1, . . ., rm} is pairwise consistent if for all i, j ∈ {1, . . ., m}, ri and rj are consistent.

ii. {r1, . . ., rm} is globally consistent if there is a relation r over the attribute set
E1 ∪ . . . ∪ Em such that for each i ∈ {1, . . ., m}, ri = r[Ei]. Then r is called
universal for {r1, . . ., rm}.

C5955–C0029.tex 758 2015/10/22 9:14pm

Tree-Structured Graphs � 759

Thus, {r1, . . ., rm} is globally consistent if and only if there is a (universal) relation r such
that each ri is the projection of r onto the corresponding attribute set of ri. Such a universal
relation need not be unique, but it is known that if there is such a universal relation r, then
also r1 ◃▹ . . . ◃▹ rm is such a universal relation:

Lemma 29.3 If r is a universal relation for r1, . . ., rm with attribute sets E1, . . ., Em then r
⊆ r[E1] ◃▹ . . . ◃▹ r[Em] = r1 ◃▹ . . . ◃▹ rm.

It is clear that if {r1, . . ., rm} is globally consistent then it is pairwise consistent but in
general, the converse is false as the relations r1, r2, r3 in Example 29.1 show which are
pairwise consistent but not globally consistent.

Honeyman et al. [31] have shown the following theorem.

Theorem 29.7 [31] The global consistency of a relational database is an NP-complete
problem. �

In [29], it is shown that for a relational database scheme, pairwise consistency implies global
consistency if and only if it is α-acyclic (see Theorem 29.17).

29.3.2 Some Basic Hypergraph Notions

A pair H = (V, E) is a (finite) hypergraph if V is a finite vertex set and E is a collection
of subsets of V (the edges or hyperedges of H). Hypergraphs are a natural generalization
of undirected graphs; unlike edges, hyperedges are not necessarily two-elementary. In many
cases, hyperedges containing exactly one vertex (so-called loops) are excluded. Equivalently,
a hypergraph H = (V, E) with V = {v1, . . ., vn} and E = {e1, . . ., em} can be described by its
n × m vertex-hyperedge incidence matrix M(H) with entries mij ∈ {0, 1} and mij = 1 ⇐⇒
vi ∈ ej for i ∈ {1, . . ., n} and j ∈ {1, . . ., m}.

Subsequently, we collect some basic notions and properties—see, for example, [13].

Definition 29.7 A hypergraph H = (V, E) is simple if it has no repeated edges. Moreover,
if no hyperedge e ∈ E is properly contained in another hyperedge e′ ∈ E then H is called a
Sperner family or clutter.

In the database community (see, e.g., [29]), clutters are called reduced hypergraphs.

Definition 29.8 Let H = (V, E) be a finite hypergraph.

i. The subhypergraph induced by the subset A ⊆ V is the hypergraph H[A] = (A, EA)
with edge set EA = {e ∩ A | e ∈ E}.

ii. The partial hypergraph given by the edge subset E ′ ⊆ E is the hypergraph with the
vertex set

∪
E ′ and the edge set E ′.

Note that both restrictions A ⊂ V and E ′ ⊂ E can be combined in a subhypergraph H ′[A] =
(A, E ′

A) with edge set E ′
A = {e ∩ A | e ∈ E ′ ⊂ E} called partial subhypergraph in [13].

The partial hypergraphs [13] are called subhypergraphs in [6]. Since this may cause
confusion, we also use the name edge-subhypergraphs for partial hypergraphs and vertex-
subhypergraphs in case (i).

Dualization is a classical concept which is well-known from geometry; there, points
and hyperplanes exchange their role. Here, dualization means that vertices and hyperedges
exchange their role:

C5955–C0029.tex 759 2015/10/22 9:14pm

760 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Definition 29.9 Let H = (V, E) be a finite hypergraph. For v ∈ V , let Ev = {e ∈ E | v ∈ e}.
The dual hypergraph H∗ = (E , E∗) of H has vertex set E and hyperedge set {Ev | v ∈ V }.

If the hypergraph H is given in terms of its incidence matrix M(H) then the incidence matrix
of the dual of H is the transposal of M(H): M(H∗) = (M(H))T .

Evidently, the dual of the dual of H is isomorphic to H itself since the twofold transposal
of a matrix is the matrix itself:

Proposition 29.3 (H∗)∗ ∼ H.

Graphs and hypergraphs are closely related to each other. The next definition represents two
examples.

Definition 29.10 Let H = (V, E) be a finite hypergraph.

i. The 2-section graph 2SEC(H) of H has the vertex set V , and two vertices u, v are
adjacent if u and v are contained in a common hyperedge: ∃e ∈ E such that u, v ∈ e.

ii. The line graph L(H) = (E , F) is the intersection graph of E, that is, for any e, e′ ∈ E
with e ̸= e′, ee′ ∈ F ⇐⇒ e ∩ e′ ̸= ∅.

The 2-section graph of H is denoted by [H]2 in [13]; the line graph is also called representative
graph in [13]. Again, these notions have different names in different communities; the 2-section
graph is also called adjacency graph in [32], primal graph [33], or Gaifman graph [34] and has
no name but is denoted by G(H) in [29]. The line graph is also called dual graph in [35].

The following isomorphism is easy to see.

Proposition 29.4 2SEC(H) ∼ L(H∗).

A subfamily E ′ ⊆ E is called pairwise intersecting if for all e, e′ ∈ E ′, e ∩ e′ ̸= ∅.

Definition 29.11 Let H = (V, E) be a hypergraph.

i. H is conformal if every clique C in 2SEC(H) is contained in a hyperedge e ∈ E.

ii. H has the Helly property if every pairwise intersecting subfamily E ′ ⊆ E has
nonempty total intersection:

∩
E ′ ̸= ∅.

The following is easy to see.

Proposition 29.5 H has the Helly property if and only if H∗ is conformal.

The next theorem gives a polynomial time criterion for testing the Helly property of a
hypergraph. It is closely related to an earlier criterion for conformality given by Gilmore
which will be mentioned in Theorem 29.9.

For a hypergraph H = (V, E) and for any 3-elementary set A = {a1, a2, a3} ⊆ V , let EA

denote the set of all hyperedges e ∈ E such that |e ∩ A| ≥ 2.

Theorem 29.8 [13,36] A hypergraph H = (V, E) has the Helly property if and only if for all
3-elementary sets A = {a1, a2, a3} ⊆ V , the total intersection of all hyperedges containing at
least two vertices of A is nonempty:

∩
EA ̸= ∅.

C5955–C0029.tex 760 2015/10/22 9:14pm

Tree-Structured Graphs � 761

Proof. “=⇒”: Let H be a hypergraph with the Helly property, and let {e1, . . ., ek} ⊆ E be the
hyperedges for which |ei ∩ A| ≥ 2, i ∈ {1, . . ., k}. Then for all i ̸= j, i, j ∈ {1, . . ., k}, ei ∩ ej

is nonempty and thus, their total intersection is nonempty since H has the Helly property.
“⇐=”: Now assume that {e1, . . ., eℓ} ⊆ E is a collection of pairwise intersecting hyper-

edges. If ℓ = 2 then obviously their total intersection is nonempty; thus let ℓ > 2. We assume
inductively that the assertion of nonempty total intersection is true for less than ℓ hyperedges
with pairwise nonempty intersection.

Then by the induction hypothesis, e1 ∩ . . . ∩ eℓ−1 ̸= ∅; let a1 ∈ e1 ∩ . . . ∩ eℓ−1. Moreover,
e2 ∩ . . . ∩ eℓ ̸= ∅; let a2 ∈ e2 ∩ . . . ∩ eℓ. Finally e1 ∩ eℓ ̸= ∅; let a3 ∈ e1 ∩ eℓ.

Let A := {a1, a2, a3}. It is easy to see that in the case |A| < 3 we are done. Now let
|A| = 3. Thus every ei, i = 1, . . ., ℓ, contains at least two elements from the 3-elementary set
A, and by the assumption, their total intersection is nonempty. �

An obvious consequence of Theorem 29.8 is as follows:

Corollary 29.3 Testing the Helly property for a given hypergraph can be done in polynomial
time.

Corollary 29.4 Every collection of subtrees of a tree has the Helly property.

Proof. Let T be a tree with at least three vertices (otherwise the assertion is obviously
fulfilled), and let a, b, c be any three vertices in T . We consider the set of all subtrees of T
containing at least two of the vertices a, b, c. Let P (x, y) denote the uniquely determined
path in the tree T between x and y. Let x0 denote the last vertex in P (a, b) ∩ P (b, c) (this
intersection contains at least vertex b). Then P (a, c) consists of P (a, x0) followed by P (x0, c).
Thus the three paths P (a, b), P (b, c) and P (a, c) have vertex x0 in common, that is, x0 is
contained in every subtree of T which contains at least two of the vertices a, b, c. Thus, by
Theorem 29.8, every system of subtrees has the Helly property. �

A nice inductive proof of Corollary 29.4 is given in a script by Alexander Schrijver: The
induction is on |V (T)|. If |V (T)| = 1 then the assertion is trivial. Now assume |V (T)| ≥ 2,
and let S be a collection of pairwise intersecting subtrees of T . Let t be a leaf of T . If there
exists a subtree of T consisting only of t, the assertion is trivial. Hence we may assume that
each subtree in S containing t also contains the neighbor of t in T . So, after deleting t from
T and from all subtrees in S, this collection is still pairwise intersecting, and the assertion
follows by induction.

Actually, Theorem 29.8 is formulated in a more general way in [13]; there are various
interesting generalizations of the Helly property.

According to Proposition 29.5, Theorem 29.8 can be dualized as follows.

Theorem 29.9 (Gilmore, see [13]) Let H = (V, E) be a hypergraph. H is conformal if
and only if for all 3-elementary edge sets A = {e1, e2, e3} ⊆ E of hyperedges, there is a
hyperedge e ∈ E with (e1 ∩ e2) ∪ (e1 ∩ e3) ∪ (e2 ∩ e3) ⊆ e.

Proof. “=⇒”: Obviously, (e1 ∩ e2) ∪ (e1 ∩ e3) ∪ (e2 ∩ e3) is a clique in the 2-section graph
2SEC(H) of H. By conformality, there is a hyperedge e with (e1∩e2)∪(e1∩e3)∪(e2∩e3) ⊆ e.

“⇐=”: Let A = {e1, e2, e3} ⊆ E and let Eu be a hyperedge in H∗ containing at least
two of e1, e2, e3. Then u ∈ (e1 ∩ e2) ∪ (e1 ∩ e3) ∪ (e2 ∩ e3) and thus also u ∈ e. Thus,
e is in the total intersection of all hyperedges Eu which contain at least two of e1, e2, e3.
Then by Theorem 29.8, H∗ has the Helly property and thus, by Proposition 29.5, H is
conformal. �

C5955–C0029.tex 761 2015/10/22 9:14pm

762 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

There is a third type of graphs derived from a hypergraph H = (V, E), namely the bipartite
vertex-edge incidence graph I(H) (which is a reformulation of the incidence matrix of H in
terms of a bipartite graph). The two color classes of I(H) are the sets V and E , respectively,
and a vertex v and an edge e are adjacent if and only if v ∈ e. More formally:

Definition 29.12 Let H = (V, E) be a finite hypergraph. In the bipartite incidence graph
I(H) = (V, E , I) of H, v ∈ V and e ∈ E are adjacent if and only if v ∈ e.

In the other direction, namely from graphs to hypergraphs, the most basic constructions are
the following:

Definition 29.13 Let G = (V, E) be a graph.

i. The clique hypergraph C(G) consists of the ⊆-maximal cliques of G.

ii. The neighborhood hypergraph N (G) consists of the closed neighborhoods N [v] of
all vertices v in G.

iii. The disk hypergraph D(G) consists of the iterated closed neighborhoods N i[v], i ≥ 1,
of all vertices v in G, where N1[v] := N [v] and N i+1[v] := N [N i[v]].

Note that in general, the neighborhood hypergraph N (G) is not simple since different vertices
can have the same closed neighborhood in G. The following is easy to see.

Proposition 29.6 N (G) is self-dual, that is, (N (G))∗ ∼ N (G).

Moreover, the 2-section graph of C(G) is isomorphic to G and thus, C(G) is conformal. Note
that a hypergraph uniquely determines its 2-section graph but not vice versa.

Lemma 29.4 Every conformal Sperner hypergraph H = (V, E) is the clique hypergraph of
its 2-section graph 2SEC(H): H = C(2SEC(H)).

Proof. Let H be conformal and Sperner. We show:

1. For every e ∈ E , e is a maximal clique in 2SEC(H):
Obviously, e is a clique in 2SEC(H) and thus, there is a maximal clique C ′ in 2SEC(H)
with e ⊆ C ′. Since H is conformal, there is an e′ ∈ E with C ′ ⊆ e′, that is, e ⊆ C ′ ⊆ e′

and since H is Sperner, e = C ′ = e′ follows.

2. For every maximal clique C in 2SEC(H), C ∈ E holds:
By conformality of H, there is e ∈ E with C ⊆ e, and since e is a clique in 2SEC(H), there
is a maximal clique C ′ in 2SEC(H) with e ⊆ C ′, that is, C ⊆ e ⊆ C ′. By maximality of
C, C = e = C ′ follows. �

For a graph G = (V, E), let G2 = (V, E2) with xy ∈ E2 for x ̸= y if and only if dG(x, y) ≤ 2,
that is, either xy ∈ E or there is a common neighbor z of x and y.

The following is easy to see.

Proposition 29.7 G2 ∼ L(N (G)).

For graph G = (V, E), let B(G) = (V ′, V ′′, F) denote the bipartite graph with two disjoint
copies V ′ and V ′′ of V , and for v′ ∈ V ′ and w′′ ∈ V ′′, v′w′′ ∈ F if and only if either v = w
or vw ∈ E.

The following is easy to see.

C5955–C0029.tex 762 2015/10/22 9:14pm

Tree-Structured Graphs � 763

Proposition 29.8 B(G) ∼ I(N (G)).

The line graph of C(G) is the classical clique graph operator in graph theory.

Definition 29.14 Let G be a graph.

i. The clique graph K(G) of G is defined as K(G) = L(C(G)).

ii. G is a clique graph if there is a graph G′ such that G is the clique graph of G′, that
is, G = K(G′).

Theorem 29.10 [37] A graph G is a clique graph if and only if some class of complete
subgraphs of G covers all edges of G and has the Helly property. �

See [3,5] and in particular the survey [38] by Szwarcfiter for more details on clique graphs.
Recognizing whether a graph is a clique graph is NP-complete [39].

29.3.3 Hypergraph 2-Coloring

A hypergraph H = (V, E) is 2-colorable if its vertex set V has a partition V = V1 ∪ V2 such
that every hyperedge e ∈ E has at least one vertex from each of the sets V1 and V2. See
[13] for the more general notion of hypergraph coloring. The Hypergraph 2-Coloring Problem
(also called Bicoloring Problem, Set Splitting Problem [SP4] in [40]) is the question whether
a given hypergraph is 2-colorable.

Lovász [41] has shown that the Hypergraph 2-Coloring Problem is NP-complete even for
hypergraphs whose hyperedges have size at most 3 (see [40]); the original reduction in [41]
is from the graph coloring problem (which has been shown to be NP-complete in [42]) to
hypergraph 2-coloring.

The following nice reduction from the satisfiability problem SAT to the hypergraph
2-coloring problem was given in [43].

Let F = C1 ∧ . . . ∧ Cm be a Boolean expression in conjunctive normal form (CNF for
short) with clauses C1, . . ., Cm and variables x1, . . ., xn. Each clause consists of a disjunction
of literals, that is, unnegated or negated variables.

Let HF = (VF , EF) be the following hypergraph for F :

The vertex set VF = {x1, . . ., xn} ∪ {¬x1, . . ., ¬xn} ∪ {f} where f is a new symbol
different from the variable symbols.

The edge set EF of HF consists of the following edges:

i. For all i ∈ {1, . . ., n}, let Xi = {xi, ¬xi},
ii. For all j ∈ {1, . . ., m}, let Yj be the set of all literals in Cj plus, additionally, the

element f .

We show that F is satisfiable if and only if HF is 2-colorable:
Given a truth assignment which satisfies F , we associate with it the following 2-coloring

V1 ∪ V2. If xi has truth value 1 then xi ∈ V1 and ¬xi ∈ V2 and vice versa if xi has truth value
0. The element f belongs to V2. Now, for each i ∈ {1, . . ., n}, the edge {xi, ¬xi} intersects
both V1 and V2. An edge Yi intersects V2 on f and intersects V1 since it has a true literal.

On the other hand, given a 2-coloring V1 ∪ V2 of HF , with, say f ∈ V2 we assign true to
each xi in V1 and false to those in V2. This gives a truth assignment since the edges {xi, ¬xi}
meet both V1 and V2. The edge Yj of every clause Cj meets V1 on an element other than f
which ensures that every clause is satisfied. This shows the following theorems.

C5955–C0029.tex 763 2015/10/22 9:14pm

764 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 29.11 [41] The 2-coloring problem for hypergraphs is NP-complete. �

Based on Theorem 29.11, in [41], Lovász has shown the following theorem.

Theorem 29.12 [41] The 3-coloring problem for graphs is NP-complete. �

See [44] for another proof of the NP-completeness of the 3-coloring problem.

29.3.4 Kőnig Property

The following definition generalizes the fundamental notions of matching and vertex cover
in graphs to the corresponding notions in hypergraphs.

Definition 29.15 Let H = (V, E) be a hypergraph.

i. An edge set E ′ ⊆ E is called matching if the edges of E ′ are pairwise disjoint. The
matching number ν(H) is the maximum number of pairwise disjoint hyperedges of
H. This parameter ν(H) is also frequently called packing number of H.

ii. A transversal of E is a subset U ⊆ V such that U contains at least one vertex of
every e ∈ E. The transversal number τ(H) is the minimum number of vertices in
a transversal of H.

iii. H has the Kőnig Property if ν(H) = τ(H).

Note that for every hypergraph, ν(H) ≤ τ(H) holds. A well-known theorem of Kőnig states
that for bipartite graphs G, ν(G) = τ(G) holds. This justifies the name Kőnig property and
is closely related to the celebrated max-flow min-cut theorem by Ford and Fulkerson.

29.3.5 α-Acyclic Hypergraphs and Tree Structure

Unlike the case of graphs, there is a bewildering diversity of cycle notions in hypergraphs,
and some of them play an important role in connection with desirable properties of relational
database schemes [6,7,29,32,45]. Thus, for example, the desirable property of a relational
database scheme that pairwise consistency should imply global consistency turns out to be
equivalent to α-acyclicity of the scheme [6,29]; as shown in Theorems 29.16 and 29.17, a rela-
tional database scheme has this property if and only if it is α-acyclic. Moreover, α-acyclicity
is equivalent to many other desirable properties of such schemes. The most important prop-
erty of an α-acyclic hypergraph for applications in databases and other fields seems to be
the existence of a join tree for α-acyclic hypergraphs:

Definition 29.16 Let H = (V, E) be a hypergraph.

i. Tree T is a join tree of H if the node set of T is the set of hyperedges E and for every
vertex v ∈ V , the set Ev of hyperedges containing v forms a subtree in T .

ii. H is α-acyclic if H has a join tree.

Note that in this way, α-acyclicity of a hypergraph is defined without referring to any cycle
notion in hypergraphs.

Tarjan and Yannakakis [20] gave a linear-time algorithm for testing α-acyclicity of a given
hypergraph.

Tree structure in hypergraphs has been captured in the hypergraph community as arboreal
hypergraphs [13] (as well as its dual version, the co-arboreal hypergraphs) and tree-hypergraphs
in [46]. We call arboreal hypergraphs hypertrees.

C5955–C0029.tex 764 2015/10/22 9:14pm

Tree-Structured Graphs � 765

Definition 29.17 A hypergraph H = (V, E) is a hypertree if there is a tree T whose set of
nodes is V and such that every hyperedge e ∈ E induces a subtree in T .

Note that in [33], Gottlob et al. define the notion of hypertrees in a completely different way.
The following properties are easy to see:

Proposition 29.9 Let H = (V, E) be a hypergraph.

i. H is a hypertree if and only if its dual H∗ is α-acyclic.

ii. If H is a hypertree then every edge-subhypergraph of H is a hypertree as well but
not necessarily every vertex-subhypergraph of H.

iii. If H is α-acyclic then every vertex-subhypergraph of H is α-acyclic as well but not
necessarily every edge-subhypergraph of H.

The fact that α-acyclic hypergraphs may contain hyperedge cycles of a certain kind (there are
various cycle definitions in hypergraphs), and the fact that edge-subhypergraphs of α-acyclic
hypergraphs are not necessarily α-acyclic are somewhat counterintuitive in comparison with
cycles in graphs and led Goodman and Shmueli [32] to the name tree schema for α-acyclic
hypergraphs (see also [47] for a discussion).

The following theorem gives an important characterization of hypertrees (α-acyclic
hypergraphs, respectively).

Theorem 29.13 [48–50] A hypergraph H is a hypertree if and only if H has the Helly
property and its line graph L(H) is chordal.

Proof. “=⇒”: Let H = (V, E) be a hypertree and let T be a tree with vertex set V such that
for all e ∈ E , T [e] induces a subtree in T . By Corollary 29.4, every hypertree H has the Helly
property. By Proposition 29.1, L(H) is chordal.

“⇐=”: A dual variant of the assertion is the following: If H is conformal and 2SEC(H)
is chordal then H is α-acyclic. Without loss of generality we may assume that no hyperedge
of H is contained in another one. By Lemma 29.4, H is the clique hypergraph of its 2-section
graph, and by Theorem 29.2, the chordal graph 2SEC(H) has a clique tree. Thus, H is
α-acyclic. �
By Propositions 29.4 and 29.5, Theorem 29.13 can also be formulated in the following equiv-
alent way.

Corollary 29.5 H is α-acyclic if and only if H is conformal and 2SEC(H) is chordal.

See Definition 29.15 for the Kőnig property. As a consequence of Theorem 29.13, we obtain.

Corollary 29.6 Hypertrees have the Kőnig property.

Proof. Let H = (V, E) be a hypertree. Then by Theorem 29.13, H has the Helly property and
there is a p.e.o. (e1, . . ., em) of the edge set E of L(H). Since e1 is simplicial in L(H), the set E1
of hyperedges intersecting e1 is pairwise intersecting. By the Helly property, there is a vertex
v in the intersection of E1. Now assume inductively that the hypergraph H ′ = (V, E \ E1)
fulfills already the condition τ(H ′) = ν(H ′). A maximum packing of H consists of a packing
of H ′ and one additional hyperedge from E1, and a minimum transversal of H consists of a
minimum transversal of H ′ and additionally the vertex v. Thus, also τ(H) = ν(H) holds. �
The α-acyclicity of a hypergraph H can also be characterized in terms of an inequality
concerning the weighted line graph of H. This was shown by Acharya and Las Vergnas in
the hypergraph community (see Theorem 29.14) but was also discovered by Bernstein and
Goodman [51] in the database community.

C5955–C0029.tex 765 2015/10/22 9:14pm

766 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

a f e

db

c

e1 e3

e4

e2

1

2

2

1 1

2

Figure 29.1 A 3-sun with its four maximal cliques e1 = {a, b, f}, e2 = {b, c, d}, e3 = {d, e, f}
and e4 = {b, d, f} and the weighted line graph of them.

Definition 29.18 Given a hypergraph H = (V, E) with E = {e1, . . ., em}, let Lw(H) denote
the weighted line graph of H whose nodes are the hyperedges of H which are pairwise con-
nected and the edges are weighted by w(eiej) = |ei ∩ej |. For any edge set F of L(H), let w(F)
denote the sum of all edge weights in F . Let wH denote the maximum weight of a spanning
tree in Lw(H). For a spanning tree T of Lw(H), let Tv denote the subgraph of T induced by
the hyperedges containing v, let N(Tv) denote its node set and E(Tv) its edge set.

If T is a spanning tree of Lw(H) then obviously for every vertex v ∈ V , the following
inequality holds (Figure 29.1):

1 ≤ |N(Tv)|−|E(Tv)|. (29.1)
Since any tree with k ≥ 2 nodes has k − 1 edges, equality holds in (29.1) exactly when Tv

is a subtree of T . The following lemma summarizes what is implicitly contained in Theorem
29.14.

Lemma 29.5 [52] Let H = (V, E) be a hypergraph with E = {e1, . . ., em} and let Lw(H) be
as in Definition 29.18. Then a spanning tree T of Lw(H) is a join tree of H if and only if

|V | =
m∑

j=1
|ej | −

∑
ij∈E(T)

|ei ∩ ej |. (29.2)

Proof. Suppose T is a spanning tree of Lw(H). For each v ∈ V , the subgraph Tv consisting
of all hyperedges containing v satisfies 1 ≤ |N(Tv)| − |E(Tv)| as described in (29.1), with
equality if and only if, for all v ∈ V , Tv is connected. Summing over all v ∈ V in (29.1)
proves that inequality

|V | ≤
m∑

j=1
|ej | −

∑
ij∈E(T)

|ei ∩ ej | (29.3)

holds, and equality holds in (29.3) if and only if the spanning tree T is a join tree. �
Note that the result of summing the right hand side of (29.1) is Σm

j=1|ej | − w(T) for the
spanning tree T of Lw(H). Thus also

|V | ≤
m∑

j=1
|ej | − max{w(T) | T spanning tree of Lw(H)} =

m∑
j=1

|ej | − wH (29.4)

with equality in (29.4) if and only if H has a join tree.
Inequality (29.4) led to the following parameter (see [53–55]):

Definition 29.19 Let H = (V, E) be a hypergraph and wH as in Definition 29.18. The
cyclomatic number µ(H) of H is defined as

µ(H) =
m∑

j=1
|ej | − |V | − wH .

C5955–C0029.tex 766 2015/10/22 9:14pm

Tree-Structured Graphs � 767

Note that the cyclomatic number of a hypergraph can be efficiently determined by any
maximum spanning tree algorithm. Now, the following theorem is a simple corollary of
Lemma 29.5.

Theorem 29.14 [53] A hypergraph H satisfies µ(H) = 0 if and only if H is α-acyclic. �

Note that Lemma 29.5 respectively Theorem 29.14 suggests a way how to find a join tree
of an α-acyclic hypergraph, namely, taking any maximum spanning tree (determined, e.g.,
by Kruskal’s greedy algorithm) of the weighted line graph Lw(H). Independently, this has
been discovered in the database community by Bernstein and Goodman [51] and rediscovered
several times; see Chapter 2 of the monograph by McKee and McMorris [5].

However, this is not the most efficient way to construct a clique tree of a given chordal
graph; Theorem 29.3 gives a linear-time algorithm for constructing a clique tree.

29.3.6 Graham’s Algorithm, Running Intersection Property, and Other Desirable
Properties Equivalent to α-Acyclicity

In this subsection, we collect some properties which are equivalent to α-acyclicity of a
hypergraph. Some of these conditions are desirable properties of relational database schemes
as mentioned in the introduction. Beeri et al. [29] give a long list of such equivalences; we
mention here only some of them and give a few proofs which might be suitable for a first
glance at this field of research.

In Corollary 29.1 we have seen: A graph G is chordal if and only if G has a p.e.o.
A generalization of this for α-acyclic hypergraphs is known under the name Graham’s

Algorithm (or Graham Reduction):

Definition 29.20 [56,57] Let H = (V, E) be a hypergraph.

i. Graham’s Algorithm on H applies the following two operations to H repeatedly as
long as possible:

1. If a vertex v ∈ V is contained in exactly one hyperedge e ∈ E then delete v
from e.

2. If a hyperedge e is contained in another hyperedge e′ then delete e.

ii. Graham’s Algorithm succeeds on H if repeatedly applying the two operations leads
to empty hypergraph, that is, to E = {∅}.

Graham’s algorithm is also called GYO algorithm since Yu and Ozsoyoglu [57] came to exactly
the same algorithm. Vertices which occur in only one edge are frequently called ear vertices
(isolated vertices in [29]) and edges containing such a vertex are frequently called ears (knobs
in [29]). Note that any ear node in H is simplicial in the 2-section graph of H.

Theorem 29.15 [29,32] H is α-acyclic if and only if Graham’s algorithm succeeds on H.

Proof. “=⇒”: Let H be α-acyclic, that is, by Corollary 29.5, H is conformal and 2SEC(H)
is chordal. If H is not Sperner then the (possibly repeated) application of rule (2) leads to a
Sperner hypergraph H ′ which is conformal and for which 2SEC(H ′) is chordal. By Lemma
29.4, H ′ is isomorphic to the maximal clique hypergraph C(2SEC(H ′)).

C5955–C0029.tex 767 2015/10/22 9:14pm

768 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Let (v1, . . ., vn) be a p.e.o. of 2SEC(H ′). Then v1 is simplicial and thus contained in only
one hyperedge of H ′, that is, v1 can be deleted by rule (1). Now the same argument can be
repeated and shows the assertion.

“⇐=”: Assume that Graham’s Algorithm succeeds on H. Then, the repeated application
of rules (1) and (2) defines a vertex ordering σ = (v1, . . ., vn) of V (i.e., the ordering in
which by rule (1), the vertices get deleted). We claim that σ is a p.e.o. Indeed, for each
i ∈ {1, . . ., n}, when (1) is applicable to vi, this vertex is contained in only one hyperedge
and thus is simplicial in the remaining 2-section graph.

We finally show that H is conformal: Let C be a clique in 2SEC(H) and let vi be its
leftmost element in σ. Then, when eliminating this vertex by rule (1), vi is contained in only
one hyperedge, say e, and all its neighbors in the 2-section graph are in e including C, that
is, C ⊆ e which means that H is conformal. �
Note that Graham’s algorithm produces a perfect elimination ordering of the 2-section graph
of H if H is α-acyclic.

The Running Intersection Property is another notion from the database community which
turns out to be equivalent to α-acyclicity of a hypergraph:

Definition 29.21 [29] Let H = (V, E) be a hypergraph. H has the running intersection
property if there is an ordering (e1, e2, . . ., em) of E such that for all i ∈ {2, . . ., m}, there is
a j < i such that ei ∩ (e1 ∪ . . . ∪ ei−1) ⊆ ej.

Theorem 29.16 [29,32] A hypergraph is α-acyclic if and only if it has the running inter-
section property.

Proof. “=⇒”: If the hypergraph H = (V, E) is α-acyclic then it has a join tree T . Select a
root for T . Let (e1, . . ., em) be an ordering of E by increasing depth. Thus, if ej is the parent
of ei, then j < i. Clearly, each path from ei to any of e1, . . ., ei−1 must pass through ei’s
parent ej . Now if v ∈ V is a vertex in ei ∩ ek for some k < i, then all hyperedges along the
T -path between ei and ek contain v. Since this path passes through ej , it follows that v ∈ ej

which implies ei ∩ (e1 ∪ . . . ∪ ei−1) ⊆ ej . Thus, H has the running intersection property.
“⇐=”: Let H = (V, E) be a hypergraph and let (e1, . . ., em) be an ordering of E fulfilling

the running intersection property. The proof is by induction on the number m of hyperedges.
The basis m = 2 is trivial. (e1, . . ., em−1) also has the running intersection property, and by
induction hypothesis, there is a join tree T ′ for e1, . . ., em−1. Let T be obtained from T ′ by
adding node em and edge emej for a j such that em ∩ (e1 ∪ . . . ∪ em−1) ⊆ ej . Obviously, T is
a join tree for e1, . . ., em. �
For the next theorem, we need a few more definitions.

A path between two vertices u, v ∈ V in hypergraph H = (V, E) is a sequence of k ≥ 1 edges
e1, . . ., ek ∈ E such that u ∈ e1, v ∈ ek and for all i = 1, . . ., k − 1, ei ∩ ei+1 ̸= ∅.

H is connected if for all pairs u, v ∈ V , there is a path between u and v in H.
The connected components of H are the maximal connected vertex-subhypergraphs of H.
For a reduced hypergraph H = (V, E) and two edges e, e′ ∈ E , e ∩ e′ is an edge-intersection-

separator, e.i.-separator for short (called an articulation set in [29]) if the reduced vertex-
subhypergraph H[V \ (e ∩ e′)] has more connected components than H.

A hypergraph H = (V, E) is edge-intersection-separable, e.i.-separable for short (called acyclic
in [29]) if for each U ⊆ V , if the reduction of H[U] is connected and has more than one
edge (i.e., is nontrivial) then it has an edge-intersection-separator.

A hyperedge subset F ⊆ E is closed if for each e ∈ E , there is an edge f ∈ F such that
e ∩

∪
F ⊆ f .

C5955–C0029.tex 768 2015/10/22 9:14pm

Tree-Structured Graphs � 769

A reduced hypergraph H = (V, E) is closed-e.i.-separable (called closed-acyclic in [29]) if for
each U ⊆ V , if H[U] is connected and has more than one edge and its set of edges is
closed then it has an e.-i.-separator. A hypergraph is closed-e.i.-separable if its reduc-
tion is.

Note that in this definition, separators are always intersections of edges.
In [58], it is shown that a hypergraph is acyclic if and only if it is closed-acyclic, that is,

e.i.-separable and closed-e.i.-separable are equivalent notions. This has the advantage that it
is not necessary to deal with partial edges that are not edges.

Recall that in Section 29.3.1, pairwise and global consistency, semijoins and full reducers,
monotone join expressions, and monotone sequential join expressions are defined.

Apparently, there is a close connection between the Helly property of a hypergraph and
the equivalence between pairwise and global consistency of a relational database scheme (see
Definition 29.6): A relational database r1, . . ., rm over scheme E = {e1, . . ., em} is pairwise
consistent if for every pair i, j ∈ {1, . . ., m}, ri, rj is consistent. Let Ri, i ∈ {1, . . ., m}, denote
the set of relations over at least the attributes ei such that the projection to ei is ri. In other
words, pairwise consistency means that for all i, j ∈ {1, . . ., m}, the intersection Ri ∩ Rj is
nonempty. Global consistency means that the intersection

∩m
i=1 Ri is nonempty.

The next theorem is part of the main theorem in [29] which contains various other con-
ditions. See the same paper for a detailed discussion of other papers where parts of these
equivalences were shown.

Theorem 29.17 [29] Let E be a hypergraph. The following conditions are equivalent:

i. E has the running intersection property.

ii. E has a monotone sequential join expression.

iii. E has a monotone join expression.

iv. every pairwise consistent database over E is globally consistent.

v. E is closed-e.i.-separable.

vi. every database over E has a full reducer.

vii. the GYO reduction algorithm succeeds on E.

viii. E has a join tree (i.e., E is α-acyclic).

Proof. In Theorems 29.16 and 29.17, it is already shown that conditions (i), (vii), and (viii)
are equivalent.

(i) =⇒ (ii): Assume that E has the running intersection property. Let (e1, e2, . . ., em)
be an ordering of E such that for all i ∈ {2, . . ., m}, there is a ji < i such that
ei ∩ (e1 ∪ . . . ∪ ei−1) ⊆ eji . Now we show that (. . . ((e1 ◃▹ e2) ◃▹ e3) . . . ◃▹ em) is a
monotone, sequential join expression: If r = {r1, . . ., rm} is a pairwise consistent
database over E = {e1, e2, . . ., em}, then the join r1 ◃▹ . . . ◃▹ ri (which we abbrevi-
ate as qi) is consistent with ri+1 (1 ≤ i < n).

An easy inductive argument shows that rk = qi[ek] whenever k ≤ i. In particu-
lar, let k = ji+1, and let V := ei+1 ∩ (e1 ∪ . . . ∪ ei). Since V ⊆ em, it follows that
rk[V] = qi[V]. But also ri+1[V] = rk[V] since ri+1 and rk are consistent. Hence
ri+1[V] = qi[V]. So ri+1 is consistent with qi which was to be shown.

(ii) =⇒ (iii): This is immediate since every monotone sequential join expression is a
monotone join expression.

C5955–C0029.tex 769 2015/10/22 9:14pm

770 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

(iii) =⇒ (iv): Assume that E has a monotone join expression. We must show that
every pairwise consistent database over E is globally consistent. Let r be a pairwise
consistent database over E . It is not hard to see that since no tuples are lost in
joining together the relations in r as dictated by the monotone join expression, it
follows that every member of r is a projection of the final result ◃▹ r. Hence r is
globally consistent, which was to be shown.

(iv) =⇒ (v): Details are described in [29].

(v) =⇒ (i): Details are described in [29]—GYO reduction succeeds.

(iv) =⇒ (vi): Assume that every pairwise consistent database over E is globally con-
sistent. Let r1, . . ., rm be a database over E . We have to show that r1, . . ., rm has
a full reducer, that is, after finitely many semijoins ri n rj , we obtain a globally
consistent database. Note that when further semijoin operations do not change
anything, the resulting relations are pairwise consistent. By assumption, these are
also globally consistent which means that we have a full reducer.

(vi) =⇒ (iv): Assume that every database over E has a full reducer. Let r1, . . ., rm be
a pairwise consistent database over E . By assumption, it has a full reducer but in
the case of pairwise consistent relations, the input and output of the full reducer is
the same, that is, the result of the full reducer is the database r1, . . ., rm itself, and
the result of a full reducer is guaranteed to be globally consistent. Thus, r1, . . ., rm

is globally consistent. �

29.3.7 Dually Chordal Graphs, Maximum Neighborhood Orderings, and Hypertrees

Theorem 29.2 says that a graph is chordal if and only if it has a clique tree, that is, a graph G
is chordal if and only if its hypergraph C(G) of maximal cliques is α-acyclic (or co-arboreal).
The dual variant of this means that C(G) is a hypertree; the corresponding graph class called
dually chordal graphs was studied in [59–61] and has remarkable properties. In particular,
the notion of maximum neighbor and maximum neighborhood ordering (used in [60,62,63])
has many consequences for algorithmic applications and is somehow dual to the notion of
a simplicial vertex. For the next definition, we need the notation of neighborhood in the
remaining subgraph.

Let G = (V, E) be a graph and (v1, . . ., vn) be a vertex ordering of G. For all i ∈ {1, . . ., n},
let Gi := G[{vi, . . ., vn}] and Ni[v] be the neighborhood of v in Gi: Ni[v] := N [v]∩{vi, . . ., vn}.

Definition 29.22 Let G = (V, E) be a graph.

i. A vertex u ∈ N [v] is a maximum neighbor of v if for all w ∈ N [v], N [w] ⊆ N [u],
that is, N2[v] = N [u]. (Note that possibly u = v in which case v sees all vertices
of G.)

ii. A vertex ordering (v1, v2, . . ., vn) of V is a maximum neighborhood ordering of
G if for all i ∈ {1, . . ., n}, vi has a maximum neighbor in Gi, that is, there is a
vertex ui ∈ Ni[vi] such that for all w ∈ Ni[vi], Ni[w] ⊆ Ni[ui] holds.

iii. A graph is dually chordal if it has a maximum neighborhood ordering.

Note that dually chordal graphs are not a hereditary class; adding a universal vertex makes
every graph dually chordal. The following characterization of dually chordal graphs shows
that these graphs are indeed dual (in the hypergraph sense) with respect to chordal graphs:

C5955–C0029.tex 770 2015/10/22 9:14pm

Tree-Structured Graphs � 771

Theorem 29.18 [59,61] For a graph G, the following conditions are equivalent:

i. G has a maximum neighborhood ordering.

ii. There is a spanning tree T of G such that every maximal clique of G induces a
subtree of T .

iii. There is a spanning tree T of G such that every disk of G induces a subtree of T .

iv. N (G) is a hypertree.

v. N (G) is α-acyclic.

Proof. Let G = (V, E) be a graph.
(i) =⇒ (ii): By induction on |V |. Let x be the leftmost vertex in a maximum neighborhood

ordering of G and let y be a maximum neighbor of x, that is, N2[x] = N [y]. If x = y, that
is, N2[x] = N [x], then x sees all other vertices of G; let T be a star with central vertex x
which fulfills (ii). Now assume that x ̸= y; by induction hypothesis, there is a spanning tree
of the graph G − x fulfilling (ii) for G − x. Among all such spanning trees, choose a tree T
in which y is adjacent to a maximum number of vertices from N(x).

Claim 29.1 In T , y sees all vertices of N(x) \ {y}.

Proof of Claim 29.1. Assume to the contrary that there is a vertex z ∈ N(x) \ {y} which is
nonadjacent to y in T . Consider the T -path y − . . . − v − z connecting y and z. Let Tv (Tz,
respectively) be the connected component of T obtained by deleting the T -edge vz such that
Tv contains v (Tz contains z, respectively). Adding to these subtrees Tv, Tz a new edge yz,
we obtain the tree T ′. Since y and z are adjacent in G − x, T ′ is a spanning tree of G − x.
Now we show that T ′ fulfills condition (ii) as well.

Let Q be a maximal clique of G − x. If z /∈ Q then Q is completely contained in one
of the subtrees Tv, Tz, that is, Q induces one and the same subtree in both T and T ′. Now
suppose that z ∈ Q. Since N [z] ⊆ N [y] = N2[x], we have y ∈ Q by maximality of Q. Let
u1, u2 be any two vertices of Q. If both belong to the same subtree Tv or Tz then u1 and u2
are connected by the same path in T and T ′, and we are done. Now let u1 be in Tv and u2
be in Tz. In Tv, the vertices y and u1 are connected by a T -path P1 consisting of vertices
from Q. In a similar way, the vertices z and u2 are connected by a T -path P2 in Tz. Gluing
together these paths P1 and P2 with the edge yz, we obtain a T ′-path connecting u1 and
u2 in T ′. Hence any maximal clique Q of G − x induces a subtree in T ′, that is, T ′ satisfies
condition (ii) as well. This, however, contradicts to the choice of T ; thus, in T , y sees all
vertices of N(x) \ {y} which shows Claim 29.1.

Now let T be a spanning tree fulfilling the claim for G − x. Let T ∗ be the tree obtained
from T by adding a leaf x adjacent to y. Obviously, T ∗ fulfills condition (ii).

(ii) =⇒ (iii): Let T be a spanning tree of G such that every clique of G induces a subtree
in T . We claim that every disk N r[z] induces a subtree in T as well. In order to prove this,
it is sufficient to show that the vertex z and every vertex v ∈ N r[z] are connected by a
T -path consisting of vertices from N r[z]. Let v = v1 − v2 − . . . − vk − vk+1 = z be a shortest
G-path between v and z. By Qi we denote a maximal clique of G containing the edge vivi+1,
i ∈ {1, . . ., k}. From the choice of T , it follows that vi and vi+1 are connected by a T -path
Pi ⊆ Qi. The vertices of P =

∪k
i=1 Pi induce a subtree T [P] of T . Thus, v and z are connected

by a T -path p. Since for all vertices w ∈ Qi, for the G-distances d(z, w) ≤ d(z, vi) ≤ r holds,

C5955–C0029.tex 771 2015/10/22 9:14pm

772 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

every clique Qi is contained in the disk N r[z]. Thus, the claim follows from the obvious
inclusion

p ⊆ P ⊆
k∪

i=1
Qi ⊆ N r[z]

(iii) =⇒ (iv) is obvious.
(iv) ⇐⇒ (v) is obvious by the self-duality of the neighborhood hypergraph N (G) and

the duality between hypertree and α-acyclicity.
(iv) =⇒ (i): Let N (G) be a hypertree. Then by Theorem 29.13, N (G) has the Helly

property and L(N (G)) is chordal. Let σ = (e1, . . ., em) be a perfect elimination order-
ing of L(N (G)). Since the hyperedges ei of N (G) are the closed neighborhoods, σ =
(N [v1], . . ., N [vn]). Suppose inductively that there is a maximum neighborhood ordering for
G − v1. It suffices to show that v1 has a maximum neighbor u1. Since N [v1] is simplicial
in L(N (G)), the closed neighborhoods intersecting N [v1] are pairwise intersecting. By the
Helly property of N (G), there is a vertex u1 in the intersection of all such closed neighbor-
hoods including N [v1] itself, that is, there is a vertex u1 with N2[v1] = N [u1]. Thus, u1 is a
maximum neighbor of v1.

The equivalence of (i) and (iv) can be shown in an easy direct way as follows: We know
already (iv) =⇒ (i). By Theorem 29.13, we can also show the other direction

(i) =⇒ (iv): Let G have the maximum neighborhood ordering σ = (v1, . . ., vn). We have
to show that N (G) has the Helly property and L(N (G)) is chordal.

Let N [x1], . . ., N [xk] be a collection of pairwise intersecting closed neighborhoods in G.
Without loss of generality, let x1 be the leftmost vertex of x1, . . ., xk in σ. Then x1 has
a maximum neighbor u1, that is, there is a vertex u1 for which N2[x1] = N [u1]. Then
u1 ∈

∩k
i=1 N [xi], and thus, N (G) has the Helly property.

Now we show that N [v1] is simplicial in L(N (G)): Let N [x] and N [y] be closed neighbor-
hoods intersecting N [v1]. Let v1 have a maximum neighbor u1, that is, N2[v1] = N [u1]. Since
x, y ∈ N2[v1], it follows that u1 ∈ N [x]∩N [y] and thus, N [v1] is simplicial in L(N (G)). Induc-
tively, it follows that σ = (N [v1], . . ., N [vn]) is a perfect elimination ordering of L(N (G)). �
Since L(N (G)) is isomorphic to G2 (recall Proposition 29.7), Theorem 29.18 implies the
following corollary.

Corollary 29.7 Graph G is dually chordal if and only if G2 is chordal and N (G) has the
Helly property.

Another characterization which follows from the basic properties is the following.

Corollary 29.8 Graph G is dually chordal if and only if G = L(H) for some α-acyclic
hypergraph H.

As a corollary of Theorem 29.18, dually chordal graphs can be recognized in linear time since
α-acyclicity of N (G) can be tested in linear time [20]. Parts of Theorem 29.18 were found also
by Szwarcfiter and Bornstein [64] and later again by Gutierrez and Oubiña [65]; in particular,
it was shown in [64] that dually chordal graphs are the clique graphs of intersection graphs
of paths in a tree. This implies that dually chordal graphs are the clique graphs of chordal
graphs (in the sense of Definition 29.14). See [63,66] for algorithmic applications of maximum
neighborhood orderings and [3] for more structural details. In [19], a linear-time algorithm
for constructing a special (canonical) maximum neighborhood ordering for a dually chordal
graph is described.

New characterizations of dually chordal graphs in terms of separator properties are given
by De Caria and Gutierrez in [67–70]. Another new characterization was found by Leitert
in [71].

C5955–C0029.tex 772 2015/10/22 9:14pm

Tree-Structured Graphs � 773

In [72], Moscarini introduced the concept of doubly chordal graphs, that is, the graphs
which are chordal and dually chordal. This class was introduced for efficiently solving the
Steiner problem (motivated by database theory); this can be done, however, also for the larger
class of dually chordal graphs (see [63]) and also for the class of homogeneously orderable
graphs which contain the dually chordal graphs [73]:

doubly chordal ⊂ dually chordal ⊂ homogeneously orderable

29.3.8 Bipartite Graphs, Hypertrees, and Maximum Neighborhood Orderings

For bipartite graphs B = (X, Y, E), the one-sided neighborhood hypergraphs are of funda-
mental importance. Let

N X(B) = {N(y) | y ∈ Y } as well as

N X(B) = {N(x) | x ∈ X}.

Note that (N X(B))∗ = N Y (B) and vice versa.
Motivated by database schemes, the following concepts were introduced.

Definition 29.23 [28] Let B = (X, Y, E) be a bipartite graph.

i. B is X-conformal if for all S ⊆ Y with the property that all vertices of S have
pairwise distance 2, there is an x ∈ X with S ⊆ N(x).

ii. B is X-chordal if for every cycle C in B of length at least 8, there is a vertex x ∈ X
which is adjacent to at least two vertices of C whose distance in C is at least 4.

Analogously, define Y -conformal and Y -chordal for bipartite graphs.

These notions are justified by the following simple facts.

Proposition 29.10 [28] Let B = (X, Y, E) be a bipartite graph.

i. B is X-conformal ⇐⇒ N Y (B) is conformal ⇐⇒ N X(B) has the Helly property.

ii. B is X-chordal ⇐⇒ 2SEC(N Y (B)) is chordal ⇐⇒ L(N X(B)) is chordal.

Corollary 29.9 The following conditions are equivalent:

i. B is X-chordal and X-conformal;

ii. N Y (B) is α-acyclic;

iii. N X(B) is a hypertree.

Maximum neighborhood orderings can be defined for bipartite graphs as well. For this we
need the following notations: Let B = (X, Y, E) be a bipartite graph, and let (y1, . . ., yn) be
a vertex ordering of Y . Then let BY

i = B[X ∪ {yi, yi+1, . . ., yn}] and let Ni(x) denote the
neighborhood of x in the remaining subgraph BY

i .

Definition 29.24 Let B = (X, Y, E) be a bipartite graph.

i. For y ∈ Y , a vertex x ∈ N(y) is a maximum neighbor of y if for all x′ ∈ N(y),
N(x′) ⊆ N(x) holds.

C5955–C0029.tex 773 2015/10/22 9:14pm

774 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

ii. A linear ordering (y1, . . ., yn) of Y is a maximum X-neighborhood ordering of B if
for all i ∈ {1, . . ., n}, there is a maximum neighbor xi ∈ Ni(yi) of yi:
for all x ∈ N(yi), Ni(x) ⊆ Ni(xi) holds.

Analogously, maximum Y -neighborhood orderings are defined.

Theorem 29.19 [59] Let B = (X, Y, E) be a bipartite graph. The following conditions are
equivalent:

i. B has a maximum X-neighborhood ordering;

ii. B is X-conformal and X-chordal.
Moreover, (y1, . . ., yn) is a maximum X-neighborhood ordering of B if and only if (y1, . . ., yn)
is a p.e.o. of 2SEC(N Y (B)).

Proof. (i) =⇒ (ii): Let σ = (y1, . . ., yn) be a maximum X-neighborhood ordering of Y .
(a) B is X-conformal: Assume that the vertices in S ⊆ Y have pairwise distance 2. Let

yj ∈ S be the leftmost vertex of S in σ and let x be a maximum neighbor of yj in BY
j . Since

every y′ ∈ S has a common neighbor x′ ∈ X with yj , also x is adjacent to y′ which implies
S ⊆ N(x). Thus, B is X-conformal.

(b) B is X-chordal: Let C = (xi1 , yi1 , . . ., xik
, yik

), k ≥ 4, be a cycle in B. If C has a
chord then it has an X-vertex which fulfills the condition. Now assume that C is a chordless
cycle. Let yi1 = yj be the leftmost Y -vertex of C in (y1, . . ., yn). Since yik

∈ Nj(xi1) \ Nj(xi2)
and yi2 ∈ Nj(xi2) \ Nj(xi1), the sets Nj(xi1) and Nj(xi2) are incomparable with respect to
set inclusion. Thus, neither xi1 nor xi2 are maximum neighbors of yi1 . Let x be a maximum
neighbor of yi1 = yj . Then yi1 , yi2 , yik

∈ Nj(x). Thus, B is X-chordal.
(ii) =⇒ (i): Let B be X-conformal and X-chordal. Then by Proposition 29.10, the line

graph G′ = L(N X(B)) is chordal and N X(B) has the Helly property. Let (y1, . . ., yn) be a
p.e.o. of G′. Thus NG′ [y1] is a a clique, that is, for all y, y′ ∈ NG′ [y1], N(y) ∩ N(y′) ̸= ∅.
By the Helly property of N X(B), the total intersection of all N(y) such that N(y) ∩
N(y1) ̸= ∅ is nonempty: there is a vertex x ∈ X in all these neighborhoods. Now, x
is a maximum neighbor of y1, and the same argument can be repeated with the smaller
graph B − y1. �

Corollary 29.10 Let B = (X, Y, E) be a bipartite graph. The following conditions are equiv-
alent:

i. B has a maximum X-neighborhood ordering.

ii. N X(B) is a hypertree.

iii. N Y (B) is α-acyclic.

Theorems 29.18 and 29.19 imply the following connection between maximum neighborhood
orderings in graphs and in bipartite graphs.

Corollary 29.11 [59] A graph G has a maximum neighborhood ordering if and only if B(G)
has a maximum X-neighborhood ordering (maximum Y -neighborhood ordering, respectively).

Proof. Recall that by Proposition 29.8, B(G) is isomorphic to the bipartite incidence graph
of N (G). By Theorem 29.18, G has a maximum neighborhood ordering if and only if N (G) is
a hypertree. Now, it is easy to see that the underlying tree of N (G) immediately leads to the
fact that N X(B(G)) is a hypertree as well, and for symmetry reasons the same happens for
N Y (B(G)). Conversely, if N X(B(G)) is a hypertree then the underlying tree immediately
leads to an underlying tree for N (G). �

C5955–C0029.tex 774 2015/10/22 9:14pm

Tree-Structured Graphs � 775

29.3.9 Further Matrix Notions

As already mentioned, a hypergraph H = (V, E) can be described by its incidence matrix.
The notion of a hypertree (see Definition 29.17) is also close to what is called subtree matrix
in [74].

Definition 29.25

i. A Γ matrix has the form

1 1
1 0

ii. A subtree matrix is the incidence matrix of a collection of subtrees of a tree, that
is, it is a (0, 1)-matrix with rows indexed by vertices of a tree T and columns in-
dexed by some subtrees of T and with an entry of 1 if and only if the corresponding
vertex is in the corresponding subtree.

iii. An ordered (0, 1)-matrix M is supported Γ if for every pair r1 < r2 of row indices
and c1 < c2 of column indices whose entries form a Γ, there is a row index r3 > r2
with M(r3, c1) = M(r3, c2) = 1. One says that row r3 supports the Γ.

Theorem 29.20 [74] A (0, 1)-matrix is a subtree matrix if and only if it is a matrix with
supported Γ ordering.

Proof. “=⇒”: Let M be a subtree matrix for a collection S of subtrees of a tree T . Pick
a vertex r of T and order the vertices of T by decreasing distance from r (breaking ties
arbitrarily). The distance between r and a subtree S is the minimum distance between r and
any vertex from S. Also order the subtrees from S by decreasing distance from r.

We claim that this is a supported Γ ordering of M , for suppose vertices v1 < v2 and
subtrees t1 < t2 form a Γ in M : For i ∈ {1, 2}, let ri be the vertex of ti closest to r. Then
r1 ≥ v2 since v2 is in t1. We claim that r1 supports the Γ: Since r1 is in t1, M(r1, t1) = 1. We
have to show that r1 is also in t2, that is, M(r1, t2) = 1. If r1 = v1 or r1 = r2, we are done.
Now suppose that r1 ̸= v1 and r1 ̸= r2.

Since t1 < t2, r2 is closer to r than r1 but t1 and t2 contain a common vertex v1, and thus
also r1 is on the T path between v1 and r2, that is, r1 is in subtree t2 and supports the Γ.

“⇐=”: If the ordered n × m matrix M is supported Γ, create a tree T on vertex set
{1, 2, . . ., n} by setting for i ∈ {1, 2, . . ., n − 1}

f(i) =
{

min{k | M(i, k) = 1} if there exists j > i, M(j, k) = 1
not defined otherwise

and b(i) = max{j | M(j, f(i)) = 1} and creating the edges (i, b(i)) if f(i) exists and (i, n)
otherwise. We claim that T defined in this way is a tree: Since b(i) > i when f(i) (and thus
also b(i)) exists, and the edges (i, n) otherwise, T is obviously cycle-free, and for the same
reason, T is connected.

Finally, we show that each column of M is the incidence vector of a subtree of T . It
suffices to show that for i < j, M(i, k) = M(j, k) = 1 implies M(b(i), k) = 1: If this were not
true then f(i) < k and rows i, b(i) and columns f(i), k would form an unsupported Γ in M . �
Note that Theorem 29.20 gives a characterization of hypertrees and of α-acyclic hypergraphs
in terms of a matrix property. This also gives corresponding characterizations of chordal as
well as of dually chordal graphs.

C5955–C0029.tex 775 2015/10/22 9:14pm

776 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Definition 29.26 A (0, 1)-matrix M is doubly lexically ordered if the rows (columns,
respectively) form a lexicographically increasing sequence from top to bottom (from left to
right, respectively) where for rows (columns, respectively), the rightmost position (lowest
position, respectively) has highest priority.

Theorem 29.21 [74] Every (0, 1)-matrix M can be doubly lexically ordered by some suitable
permutations of rows and columns.

Proof. Let M = (Mij) be an m × n matrix. We form a m · n vector d(M) as follows: The
entries of M will be ordered with respect to i + j, and for the same i + j with respect to j:

d(M) = M11, M21, M12, M31, M22, M13, M41, . . ., Mmn

d1 d3 d6 · . . .
d2 d5 ·
d4 ·
·
. . . dm·n

Claim 29.2 If two rows (columns, respectively) of M are permuted which do not appear in
lexical order then the result d(M) will be lexically larger (with highest priority at dm·n).

Proof.of Claim 29.2. Let k, l be row indices of M with k < l and the property that the kth
row is lexically larger than the lth row.

Let j ∈ {1, . . ., n} be the largest index for which Mkj ̸= Mlj ; then Mkj > Mlj . After
permuting the kth and lth row, the part of d(M) which was Mlj becomes Mkj and the parts
on its right hand side do not change their value, and analogously for columns. This shows
Claim 29.2.

By Claim 29.2, an ordering of M which maximizes d(M), is a doubly lexical ordering
of M . �
Theorem 29.21 holds also for other ordered matrix entries instead of {0, 1}.

There is an efficient way for finding a doubly lexical ordering: Let L := n + m+ number
of 1’s in a (0, 1)-matrix M .

Theorem 29.22 [75] A doubly lexical ordering of an m × n matrix M over entries {0, 1}
can be determined in O(L log L) steps. �

29.4 TOTALLY BALANCED HYPERGRAPHS AND MATRICES

29.4.1 Totally Balanced Hypergraphs versus β-Acyclic Hypergraphs

Fagin [6,7] defined β-acyclic hypergraphs in connection with desirable properties of rela-
tional database schemes. Recall that for α-acyclic hypergraphs, edge-subhypergraphs are not
necessarily α-acyclic.

Definition 29.27 [6,7] A hypergraph H = (V, E) isβ-acyclic if each of its edge-subhypergraphs
is α-acyclic, that is, for all E ′ ⊆ E, E ′ is α-acyclic.

Fagin [6] gives a variety of equivalent notions of β-acyclicity in terms of certain forbidden
cycles in hypergraphs (one of them goes back to Graham [56]) which Fagin in [6] shows to
be equivalent.

Actually, β-acyclic hypergraphs appear under the name totally balanced hypergraphs much
earlier in hypergraph theory (as it will turn out in Theorems 29.25 and 29.27).

C5955–C0029.tex 776 2015/10/22 9:14pm

Tree-Structured Graphs � 777

Definition 29.28 [12,76] Let H = (V, E) be a hypergraph.

i. A sequence C = (v1, e1, v2, e2, . . ., vk, ek) of distinct vertices v1, v2, . . ., vk and dis-
tinct hyperedges e1, e2, . . ., ek is a special cycle (or chordless cycle or induced cycle
or, in [77], unbalanced circuit) if k ≥ 3 and for every i, 1 ≤ i ≤ k, vi, vi+1 ∈ ei

(index arithmetic is done modulo k) and ei ∩ {v1, . . ., vk} = {vi, vi+1}. The length
of cycle C is k.

ii. H is balanced if it has no special cycles of odd length k ≥ 3.

iii. H is totally balanced if it has no special cycles of any length k ≥ 3.

Special cycles are called weak β-cycles by Fagin in [6], and a hypergraph is called β-acyclic
if it has no weak β-cycles. Actually, [6] mentions four other conditions and shows that all
five are equivalent.

We will see in Theorem 29.27 that a hypergraph is β-acyclic if and only if it is totally
balanced. Totally balanced hypergraphs are a natural generalization of trees.

Balanced hypergraphs are a natural generalization of bipartite graphs. See the monograph
of Berge [13] for many properties and characterizations of balanced hypergraphs, and in
particular, the following theorems.

Theorem 29.23 [13] A hypergraph is balanced if and only if its vertex-subhypergraphs are
2-colorable. �

Theorem 29.24 [78] A hypergraph is balanced if and only if its vertex- and edge-
subhypergraphs have the Kőnig property. �

Corollary 29.12 [13] Balanced hypergraphs have the Helly property and are conformal.

In this subsection, we focus on totally balanced hypergraphs.

Proposition 29.11 Let H = (V, E) be a totally balanced hypergraph. Then the following
holds:

i. The dual H∗ of H and any vertex- or edge-subhypergraph of H are totally balanced.

ii. H has the Helly property.

iii. L(H) is a chordal graph.

Proof. Let H = (V, E) be a totally balanced hypergraph.

i. By definition, it immediately follows that the dual H∗ and any vertex- or edge-
subhypergraph of a totally balanced hypergraph H is totally balanced.

ii. Since the Helly property is satisfied by any hypergraph without special cycle of
length three (see Theorem 29.8), H must have the Helly property.

iii. L(H) is a chordal graph since H contains no special cycle. �

Recall that vertex-subhypergraphs of hypertrees are not necessarily hypertrees. The next
theorem gives a characterization of totally balanced hypergraphs in terms of hypertrees.

Theorem 29.25 [36,46] A hypergraph H is totally balanced if and only if every vertex-
subhypergraph of H is a hypertree.

C5955–C0029.tex 777 2015/10/22 9:14pm

778 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Proof. Let H = (V, E) be a hypergraph. By Proposition 29.11, we have:
i. The dual of H and any vertex- or edge-subhypergraph are totally balanced.

ii. H has the Helly property.

iii. L(H) is a chordal graph.
Now by Theorem 29.13, H (and every vertex-subhypergraph of H) must be a hypertree and
vice versa. �
Actually, Lehel [46] gives a complete structural characterization of totally balanced hyper-
graphs in terms of certain tree sequences. Lehel’s result implies the following characterization
of totally balanced hypergraphs which was originally found by Brouwer and Kolen [79] and
nicely corresponds to the existence of simple vertices in strongly chordal graphs.

Theorem 29.26 [46,79] A hypergraph H is totally balanced if and only if every vertex-
subhypergraph H ′ has a vertex v (a so-called nested point) such that the hyperedges of H ′

containing v are linearly ordered by inclusion. �

By simple duality arguments, the next theorem follows immediately from Theorem 29.25.

Theorem 29.27 [80] A hypergraph H is totally balanced if and only if H is β-acyclic. �

29.4.2 Totally Balanced Matrices

Definition 29.29 Let Bk denote the k×k square (0, 1)-matrix consisting of rows with exactly
two consecutive 1’s beginning with 10 . . . 01, then 110 . . . and so on; 00 . . . 11 is the last row.

For example, B4 is the following matrix:

1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

Thus, a hypergraph is totally balanced if and only if its incidence matrix contains no square
submatrix Bk for k ≥ 3 (in any row and column order), and correspondingly for balanced
hypergraphs and odd k ≥ 3. Obviously, the dual of a balanced (totally balanced, resp.)
hypergraph is balanced (totally balanced, respectively).

Lubiw in [74] defines totally balanced matrices in the following way.
Definition 29.30

i. For n ≥ 3, a cycle matrix is an n × n (0, 1)-matrix with no identical rows and
columns which has exactly two 1’s in each row and in each column such that no
proper submatrix has this property.

ii. A totally balanced matrix is a (0, 1)-matrix with no cycle submatrices.
Recall Definition 29.25 for the notion of a Γ submatrix.

Definition 29.31 An ordered (0, 1)-matrix M is Γ-free if M has no Γ submatrix.

Theorem 29.28 [81–83] A (0, 1)-matrix is totally balanced if and only if it has a Γ-free
ordering. �

This is shown in [74] as a consequence of the existence of doubly lexical orderings and the
following.

C5955–C0029.tex 778 2015/10/22 9:14pm

Tree-Structured Graphs � 779

Observation 29.1 If a (0, 1)-matrix has a cycle submatrix then for any ordering of the
matrix there is a Γ submatrix (formed by a topmost, leftmost 1 of the cycle submatrix; the
other 1 in its row in the cycle; and the other 1 in its column in the cycle).

Theorem 29.29 [74] Any doubly lexical ordering of a totally balanced matrix is Γ-free. �

For example, the matrix B4 from Definition 29.29 has the following doubly lexical ordering
which is not Γ-free:

1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

(resulting from the matrix B4 by first permuting rows 1 and 2 and then permuting columns
3 and 4).

29.5 STRONGLY CHORDAL AND CHORDAL BIPARTITE GRAPHS

29.5.1 Strongly Chordal Graphs

The subsequently defined strongly chordal graphs are an important subclass of chordal graphs
for many reasons. Originally, they were introduced by Farber [27] as a subclass of chordal
graphs for which the domination problem ([GT2] in [40]), which remains NP-complete for
chordal graphs and even for split graphs [84], can be solved efficiently. Chang and Nemhauser
[85,86] independently studied the same class and also showed that some problems such as
domination can be solved efficiently. Later on, this has been extended to larger classes and
other problems (see, e.g., [63,66,73,87]).

The motivation from the database community is the fact that strongly chordal graphs
are the 2-section graphs of β-acyclic hypergraphs (as it will turn out in Theorem 29.32 as a
consequence of Theorem 29.27).

29.5.1.1 Elimination Orderings of Strongly Chordal Graphs

Farber [27] defined strongly chordal graphs in terms of so-called strong elimination orderings
which are closely related to neighborhood matrices of these graphs:

Definition 29.32 Let σ = (v1, . . ., vn) be an ordering of the vertex set V of G. The neigh-
borhood matrix Nσ(G) (N(G) if σ is understood) of G is the n × n matrix with entries

nij =
{

1 if vi ∈ N [vj]
0 otherwise

Note that this matrix is symmetric and the main diagonal has values 1:

vi ∈ N [vj] ⇐⇒ vj ∈ N [vi]

(N(G) is the incidence matrix of the closed-neighborhood hypergraph N (G)).
The subsequent Definition 29.33 must be read as follows: If in the (0, 1) neighborhood

matrix of graph G, for i < j and k < ℓ, the entries in row i and column k, in row i and
column ℓ as well as in row j and column k are 1, then the entry in row j and column ℓ must
be 1 as well (i.e., rows i < j and columns k < ℓ do not form a Γ—see Definition 29.25).

C5955–C0029.tex 779 2015/10/22 9:14pm

780 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

lk

i

j

Figure 29.2 Selected rows and columns.

Definition 29.33 [27] Let G = (V, E) be a graph.

i. A vertex ordering (v1, . . ., vn) of G is a strong elimination ordering (st.e.o.) if for
all i, j, k and ℓ with i < j, k < ℓ for vk, vℓ ∈ N [vi] holds: if vj ∈ N [vk] then also
vj ∈ N [vℓ].

ii. G is strongly chordal if G has a st.e.o.

Obviously, every st.e.o. is also a p.e.o. (let i = k in condition (i)); thus, strongly chordal
graphs are chordal.

Observation 29.2 Let σ = (v1, . . ., vn) be an ordering of the vertex set V of graph G. Then
σ is a st.e.o. of G if and only if the corresponding neighborhood matrix Nσ(G) is Γ-free.

Proof. Let (v1, . . ., vn) be a st.e.o. We consider the ith and the jth row as well as the kth and
the lth column of the matrix, i < j, k < l.

Figure 29.2 schematically indicates the selected rows and columns.
If nik = 1, nil = 1 and njk = 1 then vk ∈ N [vi], vl ∈ N [vi], vj ∈ N [vk] and thus also

vj ∈ N [vl], that is, njl = 1.
Conversely, if the submatrix 11

10 is forbidden then obviously (v1, . . ., vn) is a st.e.o.

Observation 29.2 describes an important matrix aspect of strongly chordal graphs. We will
also show that strongly chordal graphs are the hereditarily dually chordal graphs. For this,
we need the following notion:

Definition 29.34 [27] Let G = (V, E) be a graph.

i. A vertex v ∈ V is called simple if the set of closed neighborhoods {N [u] | u ∈ N [v]}
is linearly ordered with respect to set inclusion.

ii. A vertex ordering (v1, . . ., vn) of V is a simple elimination ordering (si.e.o.) if for all
i ∈ {1, . . ., n}, vi is simple in Gi = G[{vi, . . ., vn}].

It is easy to see that every simple vertex is also simplicial, that is, whenever a graph has a
simple elimination ordering, it is chordal.

For proving Theorem 29.30, we need the following property.

Lemma 29.6 Let v be simple in G = (V, E) and u0 ∈ N [v] be a vertex with smallest
neighborhood N [u0]. Then also u0 is simple in G.

C5955–C0029.tex 780 2015/10/22 9:14pm

Tree-Structured Graphs � 781

Proof. Assume that u0 is not simple. Then let x, y ∈ N [u0] be two vertices with incomparable
neighborhoods N [x], N [y]. Since {N [u] | u ∈ N [v]} is linearly ordered with respect to ⊆, for
all u ∈ N [v] N [u0] ⊆ N [u] holds, in particular for u = v, N [u0] ⊆ N [v]. Thus, v has two
neighbors with incomparable neighborhood—contradiction. �

Theorem 29.30 [27] A graph G has a st.e.o. if and only if every induced subgraph of G
contains a simple vertex.

Proof. “=⇒”: If G has a st.e.o. (v1, . . ., vn) then also every induced subgraph of G has such
an ordering by Definition 29.33. We show that v1 is simple.

Let vk, vl ∈ N [v1] with k < l and vj ∈ N [vk] with 1 < j. By Definition 29.33, it follows
immediately that vj ∈ N [vl]. Thus, N [vk] ⊆ N [vl], and v1 is simple (which means that the
st.e.o. is also a si.e.o.).

“⇐=”: Assume that every induced subgraph of G contains a simple vertex. We re-
cursively construct a st.e.o. (v1, . . ., vn) of G as follows: For every 1 ≤ i ≤ n, choose in
Gi = G({vi, . . ., vn}) a simple vertex vi with smallest |Ni[vi]|.

We claim that this ordering is a st.e.o. Since the vertex vi is simple in Gi, that is, for
their neighbors from Ni[vi], the neighborhoods are linearly ordered with respect to ⊆, we
have the following.

The vertices from Ni[vi] appear in (v1, . . ., vn) in the same order (this follows by Lemma
29.6 for Gi). Now, for i < j and k < l let vk, vl ∈ N [vi] and vj ∈ N [vk].
Case 1 i < k. Then vi is simple in Gi and vk, vl ∈ Ni[vi] with k < l. Thus, Ni[vk] ⊆ Ni[vl]
and therefore also vj ∈ N [vl].
Case 2 i = k. In this case, the assertion is fulfilled since any simple vertex is simplicial.
Case 3 i > k. Then vk is simple in Gk and vi, vj ∈ Nk[vk], i < j. Thus, Nk[vi] ⊆ Nk[vj].
From vl ∈ N [vi], l > k, it follows that vl ∈ Nk[vi], thus also vl ∈ Nk[vj] and finally
vj ∈ N [vl]. �

Corollary 29.13 The following conditions are equivalent:
i. G is strongly chordal.

ii. G has a si.e.o.

iii. G is hereditarily dually chordal, that is, every induced subgraph of G is dually
chordal.

iv. N (G) is β-acyclic (i.e., by Theorem 29.27, totally balanced).

Proof. Theorem 29.30 shows the equivalence of (i) and (ii).
For the equivalence of (ii) and (iii), assume first that G has a si.e.o. Then every induced

subgraph of G has a si.e.o. as well, and note that a si.e.o. is also a maximum neighborhood
ordering which means that every induced subgraph of G is dually chordal. Conversely, let
G be a hereditarily dually chordal graph. Let v1 have a maximum neighbor u1, that is, the
neighborhood of u1 is largest among all N [u], u ∈ N [v1]. Then a straightforward discussion
shows that also the subgraph of G induced by N [v1] − u1 has a maximum neighborhood
ordering and so on which leads to a linear ordering of neighborhoods w.r.t. v1, that is, v1 is
simple. Now the same can be repeated for G[{v2, . . ., vn}] which shows the equivalence.

The equivalence of (iii) and (iv) is a simple consequence of Theorem 29.18. �
The equivalence of (i) and (iv) has been obtained independently by Iijima and Shibata
[88]; they showed that a graph is sun-free chordal (see Theorem 29.33) if and only if its
neighborhood matrix is totally balanced.

C5955–C0029.tex 781 2015/10/22 9:14pm

782 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

6

5

1 4
2 3

Net

Figure 29.3 The net.

29.5.1.2 Γ-Free Matrices and Strongly Chordal Graphs

Definition 29.33 implies a useful characterization of strongly chordal graphs by matrices.
Observation 29.2 leads to the fastest known recognition algorithms for strongly chordal

graphs by using doubly lexical orderings of matrices as given in Definition 29.26 (which per-
mute rows and columns in a suitable way)—see the subsequent Theorem 29.31 and Corollary
29.14.

Example 29.3 Take the graph G from Figure 5.1 with vertices 1, . . ., 6, edges
12, 23, 25, 34, 35, 56 and vertex ordering σ1 = (1, 2, 3, 4, 5, 6) (Figure 29.3).

The adjacency matrix M of this graph corresponding to σ1:

1 2 3 4 5 6
1 1 1 0 0 0 0
2 1 1 1 0 1 0
3 0 1 1 1 1 0
4 0 0 1 1 0 0
5 0 1 1 0 1 1
6 0 0 0 0 1 1

M is not Γ-free and not doubly lexically ordered (e.g., the third and fifth row together
with the second and fourth column form a Γ, and likewise the fourth and fifth row to-
gether with the third and fourth column) and not doubly lexically ordered (e.g., the third
column from the left is larger than the fourth column).

A strong elimination ordering for G is σ2 = (1, 4, 6, 2, 3, 5). The adjacency matrix M ′ of
G resulting from this ordering σ2 is as follows:

1 4 6 2 3 5
1 1 0 0 1 0 0
4 0 1 0 0 1 0
6 0 0 1 0 0 1
2 1 0 0 1 1 1
3 0 1 0 1 1 1
5 0 0 1 1 1 1

M ′ is doubly lexically ordered.

Theorem 29.21 holds also for other ordered matrix entries instead of {0, 1}.
Recall Theorem 29.22 for an efficient way for finding a doubly lexical ordering. An effi-

cient (but not linear-time) recognition of strongly chordal graphs results from the following
property.

C5955–C0029.tex 782 2015/10/22 9:14pm

Tree-Structured Graphs � 783

Theorem 29.31 [74] A graph G is strongly chordal if and only if any doubly lexical ordering
of its neighborhood matrix N(G) is Γ-free. �

The connection to Γ-free matrices has been used by Paige and Tarjan in [75] as well as by
Spinrad in [89] (see also [19]) to design fast (but not linear-time) recognition algorithms for
strongly chordal graphs.

Corollary 29.14 Recognition of strongly chordal graphs can be done in time O(m · log n).

It is an open problem whether strongly chordal graphs can be recognized in linear time.
Recall that a hypergraph is defined to be totally balanced if it contains no special cycle

(Definition 29.28), and recall Corollary 29.13; this has been expressed in terms of totally
balanced matrices.

Recall also (see Definition 29.30) that a (0, 1)-matrix M is totally balanced if M contains
no submatrix which is the vertex-edge incidence matrix of a cycle of length ≥ 3 of an
undirected graph.

Example 29.4 The vertex-edge incidence matrix of C3 with vertices v1, v2, v3 and edges
e1 = {v1, v2}, e2 = {v2, v3}, e3 = {v1, v3} is

v1 v2 v3
e1 1 1 0
e2 0 1 1
e3 1 0 1

By Corollary 29.13, G is strongly chordal if and only if its closed neighborhood hypergraph
N (G) is totally balanced. Thus, the next theorem is no surprise:

Theorem 29.32 [27] A graph G is strongly chordal if and only if its neighborhood matrix
N(G) is totally balanced. �

29.5.1.3 Strongly Chordal Graphs as Sun-Free Chordal Graphs

Strongly chordal graphs have a variety of different characterizations, among them one in
terms of forbidden induced subgraphs. Recall that we say a vertex x sees a vertex y if x is
adjacent to y; otherwise we say x misses y.

Definition 29.35

i. A k-sun is a chordal graph G with 2k vertices, k ≥ 3, whose vertex set is par-
titioned into two sets W = {w0, . . ., wk−1} and U = {u0, . . ., uk−1}, such that
U = {u0, . . ., uk−1} induces a cycle (the central clique of the sun), W is a stable
set and for all i ∈ {0, . . ., k − 1}, wi sees exactly ui and ui+1 (index arithmetic
modulo k).

ii. A complete k-sun is a k-sun where G[U] is a clique.

See, for example, Figure 29.4 for 3-sun and complete 4-sun.

C5955–C0029.tex 783 2015/10/22 9:14pm

784 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Figure 29.4 3-sun and complete 4-sun.

As shown in [27,85], the following holds.

Lemma 29.7 In a chordal graph, every k-sun contains a complete k′-sun for some k′ ≤ k.

Proof. [85] Let U = {u1, . . ., un} and W = {w1, . . ., wn} describe the partition of the vertex
set of an n-sun G. Since G is chordal and the degree of every vertex wi in G is 2, its two
neighbors ui and ui+1 are adjacent. The proof is by induction on n. If n = 3 and n = 4 then
the claim is obviously fulfilled. Suppose that n > 4 and that Lemma 29.7 holds for all suns
on fewer than 2n vertices and suppose that G is an n-sun which is not complete. Let u1 miss
uj for some j with 1 < j < n. Since u1 sees u2 and un, there exist k and l such that u1 sees
uk and ul but misses up for any p with k < p < l. In that case,

G′ := G[{u1, uk, uk+1, . . ., ul, wk, . . ., wl−1}]

is a smaller sun for which U ′ := {uk, uk+1, . . ., ul} and W ′ := {u1, wk, wk+1, . . ., wl−1} gives
the required partition. By induction, G′ (and hence G) contains a complete sun. �

Lemma 29.8 [90] Let p ≥ 3 be an integer and suppose G is a graph in which every cycle of
length k, for 4 ≤ k ≤ 2p, has a chord. Then, N (G) has an induced special cycle Cp if and
only if G has an induced p-sun.

Proof. Clearly, if K is some induced subgraph of G, N (K) is isomorphic to an induced
partial subhypergraph of N (G). Thus, the if part of Lemma 29.8 is easy and left to the
reader.

The converse is proved by contradiction: Suppose that every cycle of G with length k,
4 ≤ k ≤ 2p, has a chord and suppose G has no induced sun while N (G) has an induced
special cycle Cp with p vertices and p hyperedges. Thus, by definition, there exists a set
A = {a1, . . ., ap} and a set B = {b1, . . ., bp} with the following properties:

1. (a1, N [b1], . . ., ap, N [bp]) is a special cycle in N (G).

2. N [bj]∩A = {aj , aj+1} for every j, 1 ≤ j ≤ p (index arithmetic modulo p). (2) is clearly
equivalent to

3. For j ̸= i or i + 1, ai ̸= bj and aibj is not an edge of G.

(Note that so far, we do not know whether A ∩ B = ∅.)

Claim 29.3 If (v1, v2, . . ., vq) is a cycle C of G (4 ≤ q ≤ 2p), then either v2vq is a chord of
C or C has a chord of the form v1vk for some k, 3 ≤ k ≤ q − 1

The proof easily follows from the assumption that every cycle of length k, for 4 ≤ k ≤ 2p,
has a chord.

C5955–C0029.tex 784 2015/10/22 9:14pm

Tree-Structured Graphs � 785

Claim 29.4 G contains an edge of the form aiaj (i ̸= j).

Otherwise, by (1), A ∩ B = ∅. Thus (a1, b1, a2, b2, . . ., ap, bp) is a cycle of length 2p in G
which must have a chord. Claim 29.3 together with (3) implies that such a chord is an edge
between two vertices from B, and since every cycle of length k, for 4 ≤ k ≤ 2p, has a chord,
it turns out that bkbk+1 is a chord of this cycle for each k (1 ≤ k ≤ p). Hence A ∪ B induces
a (chordal) subgraph of G which is a sun of order p: B is the central clique, and A is the
stable set. The contradiction proves Claim 29.4.

Claim 29.5 If aiaj is an edge of G, then aiai+1 is also an edge of G.

By symmetry, we may suppose i = 1. Let j be the smallest integer for which a1 sees aj .
If j > 2, the vertices a1, b1, a2, aj are different. (a2, b2, a3, b3, . . ., aj−1, bj−1, aj) is a walk not
passing through a1 or b1, by (3). This walk induces a minimal path, say P , from a2 to aj .
By (3) and the definition of j, the cycle (a1, b1, P) with length ≥ 4 has no chord containing
a1. Hence b1 must see aj (Claim 29.3), in contradiction with (3). So, j = 2.

Claim 29.6 (a1, . . ., ap) is a cycle of G.

Claim 29.6 is an easy consequence of the previous claim.

Claim 29.7 ai ̸= bj for all i, j, that is, A ∩ B = ∅.

Otherwise N [bj] would contain ai−1, ai and ai+1 (Claims 29.5 and 29.6), in contradiction with
(2) (i.e., the definition of a special cycle).

Claim 29.8 G contains some edge bibj.

Otherwise, A ∪ B would induce a p-sun with central clique A and stable set B.
For obtaining the final contradiction, we observe that in the last claim i and j play a

symmetrical role. So, we may assume without loss of generality that G contains an edge of
the form b1bj with j ̸= 2 (the arguments for j = 2 are similar). Then G has the following
cycle:

(b1, a2, a3, a4, . . ., aj , bj)

and, by Claim 29.3, some edge b1ai(3 ≤ i ≤ j) or the edge bja2 must exist, contradicting (3).

Theorem 29.33 [27] A graph G is strongly chordal if and only if G is sun-free chordal.

Proof. Theorem 29.33 follows by Lemma 29.8 and Corollary 29.13. �

A similar characterization of dually chordal graphs was obtained in [60]: A graph G is dually
chordal if and only if G is a Helly graph containing no isometric complete k-suns for k ≥ 4.
Recall that G is a Helly graph if its disk hypergraph D(G) is Helly. A subgraph S of G is
isometric if dS(x, y) = dG(x, y) for all vertices x and y of S.

An odd chord vivj in an even cycle (v1, . . ., v2k) is a chord with odd |i − j|.

Theorem 29.34 [27] A graph G is strongly chordal if and only if it is chordal and every
even cycle of length at least 6 in G has an odd chord.

C5955–C0029.tex 785 2015/10/22 9:14pm

786 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Proof. Let G be a chordal graph. If every even cycle of length at least 6 has an odd chord,
then G contains no induced k-sun, k ≥ 3. Thus, by Theorem 29.33, G is strongly chordal.

Conversely, we use Theorem 29.32: If G is strongly chordal then its neighborhood matrix
N(G) is totally balanced. If there is a cycle (v1, v2, . . ., v2k) in G without odd chord then
the submatrix of N(G) consisting of the rows corresponding to v1, v3, . . ., v2k−1 and the
columns corresponding to v2, v4, . . ., v2k is precisely the incidence matrix of a cycle of length k.
Consequently, G is not strongly chordal. �

Finally, we give yet another characterization.

Corollary 29.15 [27] Graph G is strongly chordal if and only if C(G) is totally balanced.

Proof. By Theorems 29.18 and 29.25 and Corollary 29.13, G is strongly chordal if and only
if C(G) is totally balanced. �

It follows from the basic properties that G is strongly chordal if and only if G = L(H) for
some totally balanced hypergraph H.

Recall that for a clique tree T of G, the intersections Q ∩ Q′ of maximal cliques for
which QQ′ ∈ E(T) form the minimal vertex separators in G. Let S(G) denote the separator
hypergraph of G. It can be considered as the first derivative of a chordal graph. McKee [91]
discusses this concept in detail.

Theorem 29.35 [92] Graph G is strongly chordal if and only if G is chordal and its separator
hypergraph S(G) is totally balanced. �

29.5.2 Chordal Bipartite Graphs

The most natural variant of chordality for bipartite graphs is the following.

Definition 29.36 [93] A bipartite graph is chordal bipartite if each of its cycles of length at
least six has a chord.

In the terminology of Definition 29.5, this means that a bipartite graph is chordal bipartite if
and only if it is (6, 1)-chordal. Note that chordal bipartite does not mean chordal and bipartite
(as the name might suggest); if graph G is chordal and bipartite, G is a forest, whereas C4
is chordal bipartite.

Thus, a better name for chordal bipartite graphs would have been weakly chordal bipartite
since graph G is chordal bipartite if and only if it is bipartite and weakly chordal, that is,
every cycle in G and in G of length at least five has a chord. See Chapter 28 and [94] for the
important class of weakly chordal graphs and their perfection.

Chordal bipartite graphs have various characterizations in terms of elimination orderings
and tree structure properties of related hypergraphs; see for example Theorem 29.36 and
[3,4] for more details. They are closely related to strongly chordal graphs.

Theorem 29.36 A bipartite graph B = (X, Y, E) is (6, 1)-chordal (i.e., chordal bipartite)
if and only if every induced subgraph of B is X-conformal, Y -conformal and X-chordal,
Y -chordal.

Proof. “=⇒”: Let B = (X, Y, E) be bipartite (6, 1)-chordal. Then every induced subgraph B′

of B is also bipartite (6, 1)-chordal.

C5955–C0029.tex 786 2015/10/22 9:14pm

Tree-Structured Graphs � 787

We first show that B is X- and Y -chordal. If C is a cycle of length at least 8 in B′ then C has
a chord {x, y}, x ∈ X, y ∈ Y . Let x1, x2 ∈ X be the neighbors of y in C and let y1, y2 ∈ Y
be the neighbors of x in C. Let C1, C2 denote the subcycles defined by the chord {x, y}
subdividing C. Without loss of generality, assume |C1| ≤ |C2|. Moreover, assume without
loss of generality that x2, y2 are in C2. Then y und y2 have distance at least 4 in C and x
is a neighbor of both vertices. Likewise, x and x2 have distance at least 4 in C and y is a
neighbor of both vertices. Thus, B′ is X-chordal and Y -chordal.

Now we show that B is X- and Y -conformal. Let S ⊆ Y be a vertex set with pairwise
distance 2 in B′. We show inductively the existence of a vertex x ∈ X with S ⊆ N(x): For
|S| = 2 and |S| = 3, the assertion is obviously fulfilled (for |S| = 3, the existence of a chord
in any cycle of length 6 is used).

Now, by induction hypothesis, let the assertion be fulfilled for all S′, |S′| ≤ k, with
pairwise distance 2 and let S ⊆ Y , |S| = k + 1 be a vertex set with pairwise distance 2.
Then for every k-elementary subset Si ⊆ S, i ∈ {1, . . .,

(k+1
k

)
} (note

(k+1
k

)
= k + 1) there is a

vertex xi for which Si ⊆ N(xi). If there is an i with S ⊆ N(xi) then the assertion is fulfilled.
Otherwise, we can assume that the vertices x1, . . ., xk+1 have exactly one nonneighbor in S:
Without loss of generality, let

xi /∈ N
(
y

i+2(mod k+1)

)
Now there is a C6 (x1, y1, x2, y3, xk, y4)—contradiction. Thus, there is an index i such that
S ⊆ N(Xi). Analogously, one shows Y -conformality of B′.

“⇐=”: If every induced subgraph of B is X-conformal, Y -conformal, X-chordal, and
Y -chordal then B cannot contain chordless cycles of length at least 6 since chordless cycles
of length 6 are neither X- nor Y -conformal and chordless cycles of length at least 8 are
neither X- nor Y -chordal. �
By Corollary 29.9, Theorem 29.36 implies the following.

Corollary 29.16 A bipartite graph B = (X, Y, E) is (6, 1)-chordal (i.e., chordal bipartite)
if and only if N X(B) and N Y (B) are β-acyclic.

Strongly chordal graphs are closely related to chordal bipartite graphs.

Definition 29.37 Let G = (V, E) be a graph.

i. The bipartite copy B(G) = (V ′, V ′′, F) of G is defined as follows: For every vertex
v ∈ V , there are two copies v′ ∈ V ′ and v′′ ∈ V ′′, and x′y′′ ∈ F if either x = y or
xy ∈ E.

ii. BC(G) denotes the bipartite incidence graph I(C(G)).

Note that B(G) is isomorphic to the bipartite incidence graph I(N (G)). It follows from the
basic properties that a graph is chordal bipartite if and only if it is the bipartite incidence
graph of a totally balanced hypergraph.

Lemma 29.9 [27] A graph G is strongly chordal if and only if BC(G) is chordal bipartite.

Proof. Lemma 29.9 is an obvious consequence of Theorem 29.36 and Corollary 29.15. �
A similar connection is given in the following lemma.

Lemma 29.10 [95] A graph G is strongly chordal if and only if B(G) is chordal bipartite.

C5955–C0029.tex 787 2015/10/22 9:14pm

788 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Proof. Lemma 29.10 is an obvious consequence of Corollary 29.13, Corollary 29.11, Corollary
29.10, and Theorem 29.36. �
For a bipartite graph B = (X, Y, E), let splitX(B) denote the one-sided completion when X
becomes a clique. Another relation between chordal bipartite and strongly chordal graphs is
the following (see also [59]).

Lemma 29.11 [96] A bipartite graph B = (X, Y, E) is chordal bipartite if and only if
splitX(B) is strongly chordal. �

Lemma 29.11 is a simple consequence of the following more general property.

Proposition 29.12 [59] Let B = (X, Y, E) be a bipartite graph. Then

i. N X(B) has the Helly property if and only if C(splitX(B)) has the Helly property;

ii. L(N X(B)) is chordal if and only if L(C(splitX(B))) is chordal.

Spinrad [19] gives simple direct proofs of Lemmas 29.10 and 29.11 in terms of Γ-free matrices
and discusses the relationship between fast recognition of strongly chordal graphs and fast
recognition of chordal bipartite graphs; linear time for recognizing chordal bipartite graphs
would imply linear time for recognizing strongly chordal graphs but not vice versa (a linear-
time algorithm for recognizing chordal bipartite graphs as claimed in [97] turned out to
contain a flaw). Linear-time recognition of strongly chordal graphs (chordal bipartite graphs,
respectively) is still an open problem. See [98] for other characterizations of chordal bipartite
graphs in terms of intersection graphs of compatible subtrees, and [99] for a relationship
between dismantlable lattices and chordal bipartite graphs.

29.6 TREE STRUCTURE DECOMPOSITION OF GRAPHS

Various kinds of decomposition of graphs such as modular decomposition and clique separa-
tor decomposition lead to decomposition trees and algorithmic applications. In this section,
we first describe cographs and modular decomposition (cographs are the completely de-
composable graphs with respect to modular decomposition) and then mention some other
decompositions, and in particular clique separator decomposition.

29.6.1 Cographs

In this subsection, we describe an auxiliary class, the cographs, which occur in many places
and which are fundamental for distance-hereditary graphs and for clique-width. See [3] for
additional information.

For disjoint vertex sets A, B ⊆ V , the join operation (denoted by O1) adds edges between all
pairs x, y with x ∈ A, y ∈ B, and the co-join operation (denoted by O0) adds nonedges between
all pairs x, y with x ∈ A and y ∈ B. These notions are closely related to connectedness of
a graph and its complement: G is disconnected if and only if G is decomposable into the
co-join of two subgraphs, and G is disconnected if and only if G is decomposable into the
join of two subgraphs. Subsequently we also use O1 and O0 in order to denote the relationship
between disjoint vertex sets.

Definition 29.38 Graph G is a cograph (complement-reducible graph) if G can be con-
structed from single vertices by a finite number of join and co-join operations.

See [3,100–102] for properties of this graph class.

C5955–C0029.tex 788 2015/10/22 9:14pm

Tree-Structured Graphs � 789

Theorem 29.37 G is a cograph if and only if G is P4-free.

Proof. “=⇒”: By induction on the number of vertices in G. For single vertices, the assertion
is obviously true. Now, let G = G1O1 G2 and G1, G2 being P4-free. If G would contain a P4
P = abcd then P has vertices from G1 and G2. Assume first that P has exactly one vertex
from G1. If a ∈ V (G1), b, c, d ∈ V (G2) then ac /∈ E contradicts to the join between G1 and
G2, if b ∈ V (G1), a, c, d ∈ V (G2) then bd /∈ E contradicts to the join between G1 and G2. Now
assume that P has exactly two vertices from each of G1, G2. If a, d ∈ V (G1), b, c ∈ V (G2)
then ac /∈ E contradicts to the join between G1 and G2, if b, d ∈ V (G1), a, c ∈ V (G2) then
ad /∈ E contradicts to the join between G1 and G2, and if a, b ∈ V (G1), c, d ∈ V (G2) then
ac /∈ E contradicts to the join between G1 and G2. In every case, there is a nonedge of the
P4 between G1 and G2, and thus G = G1O1 G2 is again P4-free.

In the same way one can show that G = G1O0 G2 is again P4-free if G1 and G2 are P4-free.
“⇐=”: Let G be a P4-free graph. We will show that then G is decomposable with respect

to the operations O1, O0 into subgraphs G1, G2, that is, either G or G is disconnected. Assume
that not every P4-free graph would have this property. Then let G = (V, E) be a smallest
P4-free graph not having this property, that is, G is P4-free connected and co-connected but
for every v ∈ V , either G−v is disconnected or G − v is disconnected. Note that in this case,
G has at least four vertices.

Case 1 G−v is disconnected. Let H1, . . ., Hk, k ≥ 2, be the connected components of G−v,
that is, there are no edges between Hi and Hj for i ̸= j, i, j ∈ {1, . . ., k} but since G is
connected, v has edges to each of H1, . . ., Hk. Let xi be a neighbor of v in Hi. Since G is
also co-connected, v has at least one nonneighbor in V \ {v}. Without loss of generality, let
y ∈ H1 be a vertex with vy /∈ E. Since H1 is connected, there is a path Px1y between x1
and y in H1. Let x′y′ be the first edge on this path for which vx′ ∈ E but vy′ /∈ E holds.
Since vx1 ∈ E, vy /∈ E, the existence of such an edge is guaranteed. But now the vertices
x2, v, x′, y′ induce a P4 in G—contradiction.

Case 2 The case that G − v is disconnected can be handled in the same way as the previ-
ous case. �
Theorem 29.37 implies that the property of being a cograph is a hereditary property, that
is, if G is a cograph then every induced subgraph G′ of G is a cograph as well.

The recursive generation of cographs by the two operations join and co-join is described
in a tree structure—the cotree. This tree has the vertices of the graph as its leaves, and
the internal nodes are labeled with O1 and O0 according to the operations. If G = G1O1 G2
(G = G1O0 G2, respectively) then the root vertex of the cotree of G carries the label O1 (O0 ,
respectively), and its two children are the root nodes of G1, G2, respectively.

A cotree is not necessarily a binary tree; for example, a clique with k vertices is represented
by one O1 node with the k vertices as its children.

In [102], it is described how to recognize in linear time O(n + m) whether a given input
graph G is a cograph; starting with a single vertex, the algorithm tries to incrementally
construct a cotree T of G, that is, in every step, a new vertex is added and the new cotree is
constructed if the graph is still a cograph; otherwise, an induced P4 in G is given as output.
The algorithm is performed by a complicated marking procedure which cannot be described
here. However, it has a remarkable property: It does not only give the correct Yes/No answer
to the recognition problem; if the answer is Yes then the algorithm gives a certificate namely
a cotree, and it is easily checkable whether the cotree indeed represents the graph, and if the
answer is No, it gives a certificate for this answer, that is, in the case of cograph recognition
a P4 in the input graph. Such recognition algorithms are called certified algorithms and are
known for various graph classes [103].

C5955–C0029.tex 789 2015/10/22 9:14pm

790 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

A simpler recognition of cographs is described in [104] which time bound, however is O(n+
m log n) (and not linear). In [105], a simple multisweep LexBFS algorithm for recognizing
cographs in linear time is given.

29.6.2 Optimization on Cographs

Various algorithmic graph problems being NP-complete in general, can be solved efficiently
in a bottom-up procedure along the cotree of a cograph. As examples, we describe this for
the problems MAXIMUM STABLE SET and MAXIMUM CLIQUE.

Let G = (V, E) be a graph. A vertex set U ⊆ V is stable (independent) if for all x, y ∈ U ,
xy /∈ E. U ⊆ V is a clique if U is stable in G. If G = (V, E) is a graph with vertex weight
function w then for U ⊆ V , w(U) := Σx∈U w(x).

Let αwG be the maximum weight of a stable set in G, and let ωwG be the maximum
weight of a clique in G. Now, obviously the values of αw(G) and ωw(G) can be computed
recursively for G = G1O1 G2 and G = G1O0 G2:

• If G = G1O1 G2 then
ωw(G) = ωw(G1) + ωw(G2)

and
αw(G) = max(αw(G1),αw(G2)).

• If G = G1O0 G2 then
ωw(G) = max(ωw(G1),ωw(G2))

and
αw(G) = αw(G1) + αw(G2).

This implies linear-time algorithms for these two problems on cographs.
As a further example, we show how to color cographs in an optimal way. The coloring

problem of a graph is how to assign a minimum number of colors to the vertices such that
adjacent vertices get different colors. The chromatic number χ(G) of the graph G is the
minimum number of colors needed to color G. Obviously, for every graph G, ω(G) ≤ χ(G)
holds. A graph is called χ-perfect if for every induced subgraph G′ of G (including G itself),
ω(G′) = χ(G′) holds. Let κ(G) = χ(G). Obviously, α(G) ≤ κ(G) holds. A graph is called
κ-perfect if for every induced subgraph G′ of G (including G itself), α(G′) = κ(G′) holds.
The following theorem is a celebrated result by Laszló Lovász (see, e.g., Chapter 28):

Theorem 29.38 (Perfect graph theorem) A graph is χ-perfect if and only if it is
κ-perfect.

Now, G is called perfect if G is χ-perfect (κ-perfect).

Corollary 29.17 A graph G is perfect if and only if its complement graph G is perfect.

Corollary 29.18 Cographs are perfect.

Proof. We show inductively on the number of vertices that cographs are perfect. For one-
vertex graphs, the claim is obviously fulfilled. Now assume first that G = G1O1 G2 and
ω(Gi) = χ(Gi) holds for i ∈ {1, 2}. Since there is a join between G1 and G2, χ(G) =
χ(G1) + χ(G2) = ω(G1) + ω(G2) = ω(G) which shows the claim.

C5955–C0029.tex 790 2015/10/22 9:14pm

Tree-Structured Graphs � 791

Now assume that G = G1O0 G2 and ω(Gi) = χ(Gi) holds for i ∈ {1, 2}. Since there is
a co-join between G1 and G2, χ(G) = max(χ(G1),χ(G2)) = max(ω(G1),ω(G2)) = ω(G)
which again shows the claim. Thus, cographs are perfect. �
See Chapter 28 for many other important subclasses of perfect graphs.

Another remarkable property of cographs is the fact that they are transitively orientable.
Hereby a graph G = (V, E) is called transitively orientable if its edge set E can be oriented
as E′ in such a way that for all oriented edges (x, y), (y, z) ∈ E′, (x, z) ∈ E′ holds. One can
easily show by induction that cographs have this property. Hereby, for G = G1O1 G2, the edges
of the join are oriented from G1 to G2 – this obviously gives again a transitive orientation
if it is assumed that G1 and G2 are already transitively oriented—and for a co-join, there is
nothing to show.

Subsequently, the modular decomposition of arbitrary graphs is described which gener-
alizes cographs and cotrees and gives a strong algorithmic tool for many problems. See [106]
for the connection between transitive orientation, cographs and modular decomposition.

29.6.3 Basic Module Properties

Let G = (V, E) be a graph. A vertex set M ⊆ V is a module in G if its vertices are
indistinguishable from outside M . More formally: For all u ∈ V \ M , either {u}O0 M or
{u}O1 M . Sets A and B overlap if A \ B ̸= ∅, B \ A ̸= ∅, and A ∩ B ̸= ∅.

Theorem 29.39 (Basic module properties) Let G be a graph and let M(G) denote the
set of modules in G. Then the following properties hold:

i. ∅, V and {v} for all v ∈ V are modules (the trivial modules);

ii. If M1, M2 ∈ M(G) then M1 ∩ M2 ∈ M(G);

iii. If M1, M2 ∈ M(G) and M1 ∩ M2 ̸= ∅ then M1 ∪ M2 ∈ M(G);

iv. If M1 and M2 are overlapping modules then M1 \M2 ∈ M(G), M2 \M1 ∈ M(G),
(M1 \ M2) ∪ (M2 \ M1) ∈ M(G);

v. If M is a module in G and U ⊆ V then M ∩ U is a module in G[U].

Proof.
i. This property is obviously fulfilled.
ii. Let M1 and M2 be modules in G. If their intersection is empty then due to (i), the

assertion is fulfilled. Now assume that M1 ∩M2 ̸= ∅. If M1 ⊆ M2 or M2 ⊆ M1 then again the
assertion holds true. Now assume that M1 and M2 are overlapping modules. Vertices outside
M1 ∩ M2 cannot distinguish two vertices from M1 ∩ M2: if a vertex x /∈ M1 ∪ M2 would
distinguish vertices a, a′ ∈ M1 ∩ M2, that is, xa ∈ E, xa′ /∈ E then this would contradict to
the module property of M1 (M2, respectively); if a vertex x ∈ M1 \ M2 would distinguish
vertices a, a′ ∈ M1 ∩ M2, that is, xa ∈ E, xa′ /∈ E then this would contradict the module
property of M2, and the same holds for x ∈ M2.

iii. Let M1 ∩ M2 ̸= ∅ with a ∈ M1 ∩ M2. If M1 ⊆ M2 or vice versa then the assertion is
trivial. Now assume that M1 and M2 are overlapping modules. Due to condition (ii), vertices
in M1 ∩ M2 cannot be distinguished from outside. The same holds for two vertices in M1
(M2, respectively). Now assume that vertices a′ ∈ M1 \ M2 and a′′ ∈ M2 \ M1 could be
distinguished by x /∈ M1 ∪ M2: xa′ ∈ E and xa′′ /∈ E. Since xa′ ∈ E and a, a′ ∈ M1, also
xa ∈ E holds but since a, a′′ ∈ M2, it follows that xa′′ ∈ E—contradiction. Thus M1 ∪ M2 is
a module.

C5955–C0029.tex 791 2015/10/22 9:14pm

792 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

iv. We first show that M1 \M2 is a module. Assume to the contrary that there are vertices
a, a′ ∈ M1 \ M2 and x /∈ M1 \ M2 such that ax ∈ E, a′x /∈ E. Then x ∈ M1 since M1 is
a module, that is, x ∈ M1 ∩ M2. Let b ∈ M2. Since x, b ∈ M2 and M2 is a module, also
ab ∈ E and a′b /∈ E holds but now b /∈ M1 is a vertex outside M1 distinguishing vertices
a, a′ ∈ M1—contradiction. Analogously, M2 is a module.

Now we show that ∆ := (M1 \ M2) ∪ (M2 \ M1) is a module: Let a, a′ ∈ ∆. Since M1 \ M2
(M2 \ M1) is a module, we can assume that a ∈ M1 \ M2 and a′ ∈ M2 \ M1. Due to (iii),
M1 ∪M2 is a module. Thus, a and a′ cannot be distinguished from outside M1 ∪M2. Assume
that there is a vertex x /∈ ∆, x ∈ M1 ∩ M2 such that xa ∈ E, xa′ /∈ E. Since x, a ∈ M1,
a′ /∈ M1 and M1 a module, aa′ /∈ E holds. Since x, a′ ∈ M2, a /∈ M2 and M2 a module,
aa′ ∈ E holds—contradiction.

v. If M ⊆ U then the assertion is obviously fulfilled. Assume now that M \ U ̸= ∅. If
M ∩ U = ∅ then again the assertion is obviously fulfilled. Now assume that M ∩ U ̸= ∅ and
M ∩ U is no module in G[U], that is, there are vertices a, a′ ∈ M ∩ U and a vertex v ∈ U \ M
distinguishing a and a′ from outside M but then M is no module—contradiction. �

Theorem 29.40 In a connected and co-connected graph G, the nontrivial ⊆-maximal mod-
ules are pairwise disjoint.

Proof. Let M1 and M2 be nontrivial modules in G being maximal with respect to set inclusion
and assume that M1 ∩ M2 ̸= ∅. This implies that they are overlapping modules. Then
according to Theorem 29.39 (iii), M1 ∪ M2 is a module. If M1 ∪ M2 ̸= V then M1 and M2
are not maximal—thus M1 ∪M2 = V . Note that vertices from M1 \M2 are either completely
adjacent to M2 or completely nonadjacent to M2, and the same holds for vertices from
M2 \ M1. Let M+

1 := {x : x ∈ M1 \ M2 and x has a join to M2}, M−
1 := {x : x ∈ M1 \ M2

and x has a cojoin to M2, and define the sets M+
2 and M−

2 in a completely analogous way.
Obviously, M1 \ M2 = M+

1 ∪ M−
1 and M2 \ M1 = M+

2 ∪ M−
2 . If one of the sets M+

1 , M−
1 ,

M+
2 , and M−

2 is empty then G is not connected or not co-connected. Thus, all of these sets
are nonempty. Now let x ∈ M+

1 , x′ ∈ M−
1 and y ∈ M+

2 . The fact that xy ∈ E and M1 is a
module implies that x′y ∈ E but now x′ is adjacent to a vertex from M2—contradiction. �
A graph is prime if it contains no nontrivial module. The characteristic graph G∗ of G is the
graph obtained by contracting the maximal modules of G to one vertex.

Theorem 29.41 The characteristic graph G∗ of a connected and co-connected graph G is
prime.

Proof. By Theorem 29.40, the maximal nontrivial modules in G = (V, E) are pairwise disjoint
and thus define a partition of V into equivalence classes. Let v∗ denote the equivalence class
of a vertex v. Let G∗ = (V ∗, E∗) and U ⊆ V ∗ and denote by Kx the equivalence class in V
belonging to x ∈ V ∗. Then the expansion E(U) of U is the union of the equivalence classes
belonging to U , that is, the vertex set E(U) =

∪
x∈U Kx. We first claim that for a module

M in G∗, its expansion E(M) is a module in G. Assume to the contrary that there are
a, b ∈ E(M) and x /∈ E(M) such that ax ∈ E and bx /∈ E. Then obviously, a and b are not in
the same class in E(M) since the classes are modules. This means that a∗ ̸= b∗, a∗, b∗ ∈ M
and x∗ /∈ M but now M is no module—contradiction. This shows the claim.

Now assume that M is a nontrivial module in G∗. If M consists only of vertices whose
classes are one-elementary then E(M) = M and M is a module in G; thus, after shrinking
the modules in G, M cannot have more than one element. If M contains at least one vertex
u whose class U is a nontrivial module in G then U ⊂ E(M) but U is a maximal module in
G and E(M) is a module in G—contradiction. Thus, G∗ is a prime graph. �

C5955–C0029.tex 792 2015/10/22 9:14pm

Tree-Structured Graphs � 793

29.6.4 Modular Decomposition of Graphs

Theorems 29.39 and 29.40 lead to the following tree structure of a given graph G: Every
vertex in G is contained in a unique (possibly one-elementary) maximal module different
from V , and these modules define a partition of V . The modular decomposition tree has V
as its root and the maximal modules smaller than V are the children of V in the tree. Then
the children of an inner vertex M are the maximal modules in G[M] smaller than M . Thus,
if the inner vertex M of the modular decomposition tree has the partition M1, M2, . . ., Mk

into its maximal modules then M1, M2, . . ., Mk are the children of M . Note that the leaf
descendants of M are the vertices of M , and the edges in M between Mi and Mj are given by
a sequence of join and co-join operations between the modules Mi and the vertices outside
Mi. The graphs being completely decomposable by join and co-join are the cographs.

The following decomposition theorem is implicitly contained in the seminal paper by
Tibor Gallai [107].

Theorem 29.42 (Modular decomposition theorem) Let G = (V, E) be an arbitrary
graph. Then precisely one of the following conditions is satisfied:

1. G is disconnected (i.e., decomposable by the co-join operation);

2. G is disconnected (i.e., decomposable by the join operation);

3. G and G are connected: There is some U ⊆ V and a unique partition P of V such that

a. |U | ≥ 4,
b. G[U] is a maximal prime subgraph of G, and
c. for every class S of the partition P, S is a module and |S ∩ U | = 1.

Each vertex of G forms a leaf of the decomposition tree. Each module M of G occuring as
a node in the tree contains exactly the vertices that are leaves of the subtree rooted at M .
According to the Decomposition Theorem, the tree has three kinds of nodes:

• Parallel nodes (co-join operation);
• Series nodes (join operation);
• Prime nodes.

Linear-time algorithms for finding the modular decomposition tree are given in [108,109] and
in [106]. See [110,111] for simpler linear-time algorithms.

The modular decomposition is of crucial importance in many algorithmic applications;
see [112] for many aspects of modular decomposition. Since for many algorithmic problems
the operations join and co-join are easy to handle (cf. the case of cographs), it is important
to look at prime graphs. There are some cases where prime graphs have simple structure.

A nice example for a graph class having simple prime graphs with respect to modular
decomposition are P4-sparse graphs.

A graph G = (V, E) is P4-sparse [113] if every five vertices induce at most one P4 in
G. Thus, cographs are P4-sparse, and the only one-vertex extensions of a P4 in a P4-sparse
graph G are the bull, gem and co-gem, that is, G is P4-sparse if and only if all the other seven
one-vertex extension (such as P5, C5, etc.) are forbidden induced subgraphs in G. Obviously,
the complement of a P4-sparse graph is P4-sparse.

A graph is a thin spider if its vertex set can be partitioned into a clique Q and a stable
set S such that the edges between Q and S form a matching, every vertex in S has exactly

C5955–C0029.tex 793 2015/10/22 9:14pm

794 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

one neighbor in Q, and at most one vertex in Q has no neighbor in S (the head of the spider).
Obviously, thin spiders are prime graphs and P4-sparse. A graph is a thick spider if it is the
complement of a thin spider; it is a spider if it is a thin or thick spider (these graphs were
called turtles in [113]).

Theorem 29.43 [113] A graph is P4-sparse if and only if its prime graphs are spiders.

Various structural and algorithmic consequences are given in [113–117].
A lot of research has been done in generalizing, refining and modifying modular decom-

position. Split (or join) decomposition was introduced and studied by Cunningham [118]. A
graph is split decomposable if its vertex set has a partition into A1, A2 and B1, B2 such that
A = A1 ∪ A2, B = B1 ∪ B2, and the set of all edges between A and B forms a join A1O1 B1.
The decomposition is discussed in detail in the monograph [19] by Spinrad, mentioning the
linear-time algorithm for split decomposition by Dahlhaus [119]. A simplified linear-time
algorithm for split decomposition is given in [120].

The class of graphs such that every induced subgraph on at least four vertices is decom-
posable by the join decomposition is of particular interest. It turns out that these are exactly
the distance-hereditary graphs which are the central topic of the next section.

Another interesting concept is the homogeneous decomposition where a third operation
is added which is a combination of join and co-join. This approach is based on a different
kind of connectedness—the p-connectedness—and is described in [121].

29.6.5 Clique Separator Decomposition of Graphs

A clique separator of a graph G is a separator of G which is a clique in G. For a chordal graph
G which is not a clique and a simplicial vertex v in G, obviously N(v) is a clique separator
of G. Clique separator decomposition of a graph is generalizing chordal graphs by repeatedly
choosing a clique separator in G until there is no longer a clique separator in the resulting
subgraphs; such subgraphs are called atoms of G. Note that such decomposition trees are not
uniquely determined. Obviously, chordal graphs are those graphs whose atoms are cliques.
This kind of decomposition was introduced in [122,123] and has a number of algorithmic
applications described in [122] among them efficiently solving the MWIS problem on a graph
class whenever it is efficiently solvable on the atoms of the class. This refers to the weight
modification approach described in the algorithm of Frank for the same problem on chordal
graphs—see Theorem 29.4.

Various examples of such classes were studied: In [124], a subclass of hole-free graphs,
namely hole- and paraglider-free graphs, is characterized by the structure of their atoms.
Among others, this is motivated by a result of Alekseev [125] showing that atoms of
(P5,paraglider)-free graphs are 3K2-free which implies polynomial time for MWIS on this
class. For P5-free graphs, the complexity of the MWIS problem was open for a long time;
meanwhile, it has been shown by Lokshtanov et al. [126] that it is polynomially solvable for
P5-free graphs. For hole-free graphs, the complexity of the MWIS problem is open.

29.7 DISTANCE-HEREDITARY GRAPHS, SUBCLASSES, AND γ-ACYCLICITY

29.7.1 Distance-Hereditary Graphs

Distance-hereditary graphs are another fundamental generalization of trees. They are closely
related to γ-acyclic hypergraphs (see Definition 29.44) and have bounded clique-width. Orig-
inally, they were defined via a distance property.

C5955–C0029.tex 794 2015/10/22 9:14pm

Tree-Structured Graphs � 795

Definition 29.39 [127] A graph G is distance hereditary if for each connected induced sub-
graph F of G, the distance functions dG in G and dF in F coincide.

Definition 29.40 A u-v-geodesic is a u-v-path α such that l(α) = dG(u, v). Let Φ be a cycle
of G. A path α is an essential part of Φ if α ⊂ Φ and 1/2l(Φ) < l(α).

Theorem 29.44 [127] The following conditions are equivalent:

i. G is distance hereditary.

ii. Every induced path of G is geodesic.

iii. No essential part of a cycle of G is induced.

iv. Each cycle of G of length ≥ 5 has at least two chords, and each 5-cycle of G has
a pair of crossing chords.

v. Each cycle of G of length ≥ 5 has a pair of crossing chords.

Proof. Howorka [127] has shown that (i) ⇐⇒ (ii) ⇐⇒ (iii) =⇒ (iv) =⇒ (v) =⇒ (iii); here,
we give his proof.

(i) =⇒ (ii): Let α be an induced path of a distance-hereditary graph G and let u and v
be the endpoints of α. Then dG(u, v) = dα(u, v) = l(α). Hence α is a geodesic.

(ii) =⇒ (i): Suppose that F is a connected induced subgraph of G. Let u, v be arbitrary
vertices of F , and let α be a u-v-geodesic of F . Thus naturally, α is an induced path of F
and, consequently, also an induced path of G. Hence, by assumption, α is a u-v-geodesic
of G. Thus dF (u, v) = l(α) = dG(u, v). This proves that G is distance hereditary.

(ii) =⇒ (iii): Since an essential part of a cycle cannot be a geodesic, (ii) clearly implies (iii).
(iii) =⇒ (ii): Let G be a graph satisfying (iii). Let u ̸= v be vertices of G and assume

that α = (u = a0, a1, . . ., am = v) is a u–v-path of G which is not a geodesic. Consider
any u-v-geodesic β = (u = b0, b1, . . ., bn = v), n < m. Let i be the largest index for which
bi = ai, 0 ≤ i < n. Let t be the least index > i for which bt ∈ α. Thus bt = aj for
some j > t. Consequently, the path δ = (ai, ai+1, . . ., aj) is an essential part of the cycle
(ai, ai+1, . . ., aj = bt, bt−1, . . ., bi = ai). By assumption, δ is not induced. Hence α is not
induced. This completes the proof.

(iii) =⇒ (iv): Let Φ = (a0, a1, . . ., an = a0), n ≥ 5, be a cycle of a graph G satisfying
(iii). By considering any essential part of Φ of length ≤ n − 2, we see from (iii) that Φ must
have at least one chord, say aiaj . Since, in turn, (ai+1, ai+2, . . ., ai−1) is an essential part of
Φ, then Φ must have a chord distinct from aiaj . This proves that each cycle of G of length
≥ 5 has at least two chords. An easy verification shows that if (iii) holds then a 5-cycle of G
must have a pair of crossing chords.

(iv) =⇒ (v): Assume that G satisfies (iv). We will prove by induction that each n-cycle
of G, n ≥ 5, has a pair of crossing chords. By assumption, the assertion is true for n = 5.
Let n > 5 and suppose that each cycle of length m, 5 ≤ m < n, has a pair of crossing
chords. Consider an n-cycle Φ = (a0, a1, . . ., an = a0) and let aiaj and aras be two distinct
chords of Φ. If they do not cross one another, we may assume without loss of generality that
0 ≤ i ≤ j ≤ r ≤ s ≤ n. Consider the cycles (ai, aj , aj+1, . . ., ai) and (ar, as, as+1, . . ., ar).
Since n ≥ 6, at least one of them has length ≥ 5 and hence, by induction hypothesis, it must
have a pair of crossing chords. This same pair is, of course, a pair of crossing chords of Φ.
This completes the proof.

C5955–C0029.tex 795 2015/10/22 9:14pm

796 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

(a) (b) (c)

Figure 29.5 House (a), domino (b), and gem (c) are not distance-hereditary.

(v) =⇒ (iii): Let G be a graph satisfying (v). We will prove by induction on n that no
essential part of an n-cycle of G is induced. This is trivially true if n = 3 or n = 4. Assume that
n > 4 and that the assertion is true for all cycles of length < n. Let Φ = (a0, a1, . . ., an = a0)
be a cycle of G and let α be an essential part of Φ, say α = (a0, a1, . . ., ak), where n/2 < k < n.
Let aiaj and aras be a pair of crossing chords of Φ. Without loss of generality we may
assume that 0 ≤ i < j < n, 0 ≤ r < s < n and i < r. If j ≤ k then aiaj joins two
vertices of α; hence α is not induced. If i ≥ k then α is an essential part of the cycle
(a0, a1, . . ., ak, . . ., ai, aj , . . ., an = a0) of length < n. Hence, by induction hypothesis, α is not
induced. We may assume therefore that 0 ≤ i < k < j < n. Applying the same argument to
aras, we obtain 0 ≤ r < k < s < n. Since the chords aiaj and aras cross one another, it follows
that 0 ≤ i < r < k < j < s < n. Denote α′ = (a0, a1, . . ., ar) and α′′ = (ai, ai+1, . . ., ak). We
claim that either α′ is an essential part of the cycle (as, as+1, . . ., ar, as) or α′′ is an essential
part of the cycle (ai, ai+1, . . ., aj , ai). We have indeed: l(α′) + l(α′′) ≥ k + 1 ≥ n − k + 2 >
n−s+j −k +2 = (n−s+1)+(j −k +1) and so, either l(α′) > n−s+1, or l(α′′) > j −k +1,
which proves our claim. It follows now from an induction hypothesis that either α′ or α′′

is not an induced path. Hence α cannot be induced. This completes the inductive step and
proves the theorem. �

Chordless cycles with at least five vertices are called holes. Obviously, holes are not distance
hereditary. Recall that, in connection with relational database schemes, (k, l)-chordal graphs
were defined (see Definition 29.5) (Figure 29.5).

Theorem 29.45 Let G be a graph.

i. G is (5, 2)-chordal if and only if G is (house, hole, domino)-free.

ii. G is distance-hereditary if and only if G is (house, hole, domino, gem)-free [128].

Proof. (i): Obviously, every (5, 2)-chordal graph is (house, hole, domino)-free. For the other
direction, let G be (house, hole, domino)-free, and let C = (x1, . . ., xk), k ≥ 5, be a cycle in
G. If k = 5 then C is no C5 and no house, that is, C must have at least two chords. If k = 6
then C is no C6 and no domino, and since G is C5-free, C must have at least two chords. If
k ≥ 7 then C has a chord xixj since G is hole-free. A cycle C ′ consisting of an essential part
of C together with the chord xixj has length at least 5 and thus has another chord (since G
is hole-free) which shows the assertion.

(ii): Obviously, every distance-hereditary graph is (house, hole, domino, gem)-free. For
the other direction, let G be (house, hole, domino, gem)-free, and let C = (x1, . . ., xk), k ≥ 5,
be a cycle in G. By Theorem 29.44, (v), it is sufficient to show that C has two crossing
chords. If k = 5 then C is no C5, no house and no gem, that is, C must have two crossing
chords. If k = 6 then C is no C6 and no domino, and since G is C5- and gem-free, C must
have two crossing chords. If k ≥ 7 then C has a chord xixj since G is hole-free. A cycle C ′

consisting of an essential part of C together with the chord xixj has length at least 5 and
thus, by an induction hypothesis, has two crossing chords which shows the assertion. �

C5955–C0029.tex 796 2015/10/22 9:14pm

Tree-Structured Graphs � 797

For most of the algorithmic applications, a characterization of distance-hereditary graphs in
terms of three simple operations is crucial which is described in the next theorem:

Theorem 29.46 [128] A connected graph G is distance-hereditary if and only if G can be
generated from a single vertex by repeatedly adding a pendant vertex, a false twin or a true
twin.

Proof. Assume first that graph G can be generated from a single vertex by repeatedly adding
a pendant vertex, a false twin or a true twin. Then it can easily be seen that G must be
(house, hole, domino, gem)-free.

For the other direction, we give the short proof of Theorem 29.46 contained in [129].
Actually, [128] is claiming more namely that every distance-hereditary graph with at least
two vertices contains either a pair of twins or two pendant vertices. In [130], an even slightly
stronger version is given (and an incorrectness of the proof in [128] is corrected).

Let G be a distance-hereditary graph, thus having crossing chords in each cycle of length
at least 5. It suffices to show that G has a pendant vertex or a pair of twins since every
induced subgraph of G is again distance hereditary. This is trivially fulfilled if G is a disjoint
union of cliques. We may assume that some component H of G is not a clique. Let Q be a
minimal cutset of H and R1, . . ., Rm be the components of H − Q. Suppose that |Q| ≥ 2;
we show that Q is a homogeneous set. If not, there are two vertices p, q ∈ Q and a vertex
r ∈ V (H) − Q with rp ∈ E and rq ̸∈ E. Let r ∈ R1. Since Q is a minimal cutset of H, vertex
q has a neighbor s ∈ R1. Note that there is an r-s-path P1 in R1. We choose s so that P1
is as short as possible. Similarly p has a neighbor t ∈ R2 and q has a neighbor u ∈ R2. We
choose t and u so that a shortest t-u-path P2 in R2 has smallest length (possibly t = u). The
vertices s, q, u, t, p, r and the paths P1 and P2 form a cycle C of length at least 5. The only
possible chords of C join p to q or to some vertices of P1. Thus, C has no crossing chords, a
contradiction.

Now if x is any vertex in R1 which is adjacent to Q, it must be adjacent to all vertices of
Q and thus Q is P4-free (otherwise, G has a gem). We know that a nontrivial P4-free graph
has a pair of twins. They will also be twins in G because Q is homogeneous.

Now suppose that every minimal cutset contains only one vertex. Let R be a terminal
block of H, that is, a maximal 2-connected subgraph of H that contains just one cut-vertex,
say x, of H. If |R| = 2, the vertex in R − x is a pendant vertex of G. If |R| ≥ 3 and
R − x ⊆ N(x), the set R − x must induce a P4-free subgraph. So R contains a pair of twins,
and clearly they are also twins in G.

If R \ N(x) ̸= ∅, N(x) ∩ R is a cutset of H and so it contains a minimal cutset of size
one but then R is not 2-connected, a contradiction which proves the theorem. �
For a distance-hereditary graph G, a pruning sequence of G describes how G can be generated
(dismantled, respectively) by repeatedly adding (deleting, respectively) a pendant vertex, a
false twin or a true twin. Pruning sequences and pruning trees are a fundamental tool for
most of the efficient algorithms on distance-hereditary graphs. There is a more general way,
however, to efficiently solve problems on graph classes captured in the notion of clique-width
described in the section on clique-width.

Definition 29.41 Let G be a graph with vertices v1, . . ., vn, and let S = (s2, . . ., sn) be a
sequence of tuples of the form ((vi, vj), type), where j < i and type ∈ {leaf, true, false}. S is
a pruning sequence for G, if for all i, 2 ≤ i ≤ n, the subgraph of G induced by {v1, . . ., vi} is
obtained from the subgraph of G induced by {v1, . . ., vi−1} by adding vertex vi and making it
adjacent only to vj if type = leaf , making it a true twin of vj if type = true, and making
it a false twin of vj if type = false.

C5955–C0029.tex 797 2015/10/22 9:14pm

798 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

By Theorem 29.46, a graph is distance hereditary if and only if it has a pruning sequence.

Definition 29.42 Let G be a graph with vertices v1, . . ., vn, and let S = (s2, . . ., sn) be a
pruning sequence for G. The pruning tree corresponding to S is the labeled ordered tree T
constructed as follows:

1. Set T1 as the tree consisting of a single root vertex v1, and set i := 1.

2. Set i := i + 1. If i > n then set T := Tn and stop.

3. Let si = ((vi, vj), leaf) (respectively, si = ((vi, vj), true), or si = ((vi, vj), false)),
then set Ti as the tree obtained from Ti−1 by adding the new vertex vi and making
it a rightmost son of the vertex vj, and labeling the edge connecting vi to vj by leaf
(respectively by true or false).

4. Go back to step (2) above.

A linear-time recognition algorithm for distance-hereditary graphs using pruning sequences
was claimed already in [129]; however, their algorithm contained a flaw. Damiand et al. [104]
used the following characterization given by Bandelt and Mulder for linear-time recognition
of distance-hereditary graphs.

Theorem 29.47 [128] Let G be a connected graph and L1, . . ., Lk be the distance levels of a
hanging from an arbitrary vertex v of G. Then G is a distance-hereditary graph if and only
if the following conditions hold for any i ∈ {1, . . ., k}:

i. If x and y belong to the same connected component of G[Li] then Li−1 ∩ N(x) =
Li−1 ∩ N(y).

ii. G[Li] is a cograph.

iii. If u ∈ Li and vertices x and y from Li−1 ∩ N(u) are in different connected
components X and Y of G[Li−1] then X ∪ Y ⊆ N(u) and Li−2 ∩ N(x) = Li−2 ∩
N(y).

iv. If x and y are in different connected components of G[Li] then sets Li−1 ∩ N(x)
and Li−1 ∩ N(y) are either disjoint or comparable with respect to set inclusion.

v. If u ∈ Li and vertices x and y from Li−1 ∩ N(u) are in the same connected
component C of G[Li−1] then the vertices of C which are nonadjacent to u are
either adjacent to both x and y or to none of them.

The next theorem gives yet another characterization of distance-hereditary graphs. It will be
used in the following subsection.

Theorem 29.48 [128,131] For a graph G, the following conditions are equivalent:

1. G is distance-hereditary,

2. For each vertex v of G and every pair of vertices x, y ∈ Li(v), that are in the same
connected component of the graph G[V \ Li−1(v)], we have

N(x) ∩ Li−1(v) = N(y) ∩ Li−1(v).

Here, L1(v), . . ., Lk(v) are the distance levels of a hanging from vertex v of G.

For many other graph classes defined in terms of metric properties in graphs, related convexity
properties and connections to geometry, see the recent survey by Bandelt and Chepoi [132].

C5955–C0029.tex 798 2015/10/22 9:14pm

Tree-Structured Graphs � 799

29.7.2 Minimum Cardinality Steiner Tree Problem in Distance-Hereditary Graphs

For a given graph G = (V, E) and a set S ⊆ V (of target vertices), a Steiner tree T (S, G)
is a tree with the vertex set S ∪ S′ (i.e., T (S, G) spans all vertices of S) and the edge set
E′ such that S′ ⊆ V and E′ ⊆ E. The minimum cardinality Steiner tree problem asks for a
Steiner tree with minimum |S ∪ S′|.

An O(|V ||E|) time algorithm for the minimum cardinality Steiner tree problem on
distance-hereditary graphs was presented in [131]. Later, in [133], a linear-time algorithm
was obtained as a consequence of a linear-time algorithm for the connected r-domination
problem on distance-hereditary graphs. Here, we present a direct linear-time algorithm for
the minimum cardinality Steiner tree problem.

Algorithm ST-DHG (Find a minimum cardinality Steiner tree in a distance-hereditary
graph)

Input: A distance-hereditary graph G = (V, E) and a set S ⊆ V of target vertices.
Output: A minimum cardinality Steiner tree T (S, G).

begin
pick an arbitrary vertex s ∈ S and build in G the distance levels

L1(s), . . ., Lk(s)
of a hanging from vertex s;
for i = k, k − 1, . . . , 2 do

if S ∩ Li(s) ̸= ∅ then
find the connected components A1, A2, . . . , Ap of G[Li(s)];
in each component Aj pick an arbitrary vertex xj ;
order these components in nondecreasing order with respect to
d′(Aj) = |N(xj) ∩ Li−1(s)|;
for all components Aj taken in nondecreasing order with respect to
d′(Aj) do

set B := N(xj) ∩ Li−1(s);
if (S ∩ Aj ̸= ∅ and S ∩ B = ∅) then

add an arbitrary vertex y from B to set S;
T (S, G) := a spanning tree of a subgraph G[S] of G induced by vertices S;

end

Clearly, this is a linear-time algorithm. The correctness proof is based on Theorem 29.47,
Theorem 29.48 and the following claims.

Let G = (V, E) be a distance-hereditary graph, S ⊆ V be a set of target vertices, and
s ∈ S be an arbitrary vertex from S.

Claim 29.9 There exists a minimum cardinality Steiner tree T (S, G) such that dT (S,G)(x, s) =
dG(x, s) for any vertex x of T (S, G).

Proof. Let L1(s), . . ., Lk(s) be the distance levels of a hanging of G from vertex s ∈ S. It is
enough to show that there exists a minimum cardinality Steiner tree T (S, G) such that if
T (S, G) is rooted at s then for any vertex x of T (S, G) the following property holds:

(P ∗) if x belongs to Li(s) (i ∈ {1, . . . , k}) then its parent x∗ in T (S, G) belongs to Li−1(s).

Let T (S, G) be a minimum cardinality Steiner tree with maximum number of vertices satis-
fying property (P ∗) and let x be a vertex of T (S, G) not satisfying (P ∗) and with maximum
dG(x, s). Assume x belongs to Li(s). Consider the (x, s)-path P (x, s) in T (S, G) and let

C5955–C0029.tex 799 2015/10/22 9:14pm

800 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

y ∈ P (x, s) be the vertex closest to x in P (x, s) with y ∈ Li(s) and y∗ ∈ Li−1(s), where y∗ is
the parent of y in T (S, G). From choices of vertices x and y, we conclude that the subpath of
P (x, s) between vertices x and y lays entirely in Li(s)∪Li+1(s). By Theorem 29.48, vertices x
and y∗ must be adjacent in G. Hence, we can modify tree T (S, G) by removing edge xx∗ and
adding edge xy∗. The new tree obtained spans all vertices of S and has the same vertex-set.
Since T (S, G) was chosen to have maximum number of vertices satisfying property (P ∗),
such a vertex x ∈ Li(s) with x∗ /∈ Li−1(s) cannot exist, proving the claim. �
Let A1, A2, . . . , Ap be the connected components of G[Li(s)]. By Theorem 29.48, N(x) ∩
Li−1(s) = N(y) ∩ Li−1(s) for every pair of vertices x, y ∈ Aj , j ∈ {1, . . . , p}. Hence, N(Aj) ∩
Li−1(s) = N(xj) ∩ Li−1(s) for any vertex xj ∈ Aj . Denote d′(Aj) := |N(Aj) ∩ Li−1(s)|.
Assume, without loss of generality, that d′(A1) ≤ d′(A2) ≤ · · · ≤ d′(Ap). Let Bj := N(u) ∩
Li−1(s) = N(Aj) ∩ Li−1(s), where u is an arbitrary vertex of Aj .

Claim 29.10 For any vertices x, y ∈ Bj, N(x) \ (Bj ∪ A1 ∪ · · · ∪ Aj−1) = N(y) \ (Bj ∪ A1 ∪
· · · ∪ Aj−1).

Proof. We have u ∈ Li(s), x, y ∈ Li−1(s) ∩ N(u) and every vertex of Aj is adjacent to both
x and y. By Theorem 29.48, any vertex z ∈ Li−2(s) either adjacent to both x and y or to
none of them. Since d′(Aj) ≤ d′(Aj′) for j′ > j, by Theorem 29.47(iv), any vertex from
Aj+1 ∪· · ·∪Ap = Li(s)\ (A1 ∪· · ·∪Aj) is adjacent to both or neither one of x and y. Assume
now that there is a vertex z ∈ Li−1(s) \ Bj which is adjacent to x but not to y. Since path
(z, x, u, y) lays in Li(s) ∪ Li−1(s), by Theorem 29.48, there must exist a vertex w in Li−2(s)
adjacent to all y, x, z. But then, it is easy to see that the vertices u, x, y, z, w induce either a
house or a gem in G, which is impossible. �
Let now i be the largest number such that Li(s) ∩ S ̸= ∅ and, as before, A1, A2, . . . , Ap be
the connected components of G[Li(s)] with d′(A1) ≤ d′(A2) ≤ · · · ≤ d′(Ap). Let also j be
the smallest number such that Aj ∩ S ̸= ∅. Set B := N(Aj) ∩ Li−1(s). We know that any
vertex of Aj ∩ S is adjacent to all vertices of B.

Claim 29.11 Let S ∩B ̸= ∅, x ∈ S ∩Aj and y ∈ S ∩B. T ′ is a minimum cardinality Steiner
tree of G for target set S \{x} if and only if T , obtained from T ′ by adding vertex x and edge
xy, is a minimum cardinality Steiner tree of G for target set S.

Proof. By Claim 29.9, for G and target set S, there exists a minimum cardinality Steiner
tree T where vertex x is a leaf and its neighbor x∗ in T belongs to Li−1(s), that is, to B.
If x∗ ̸= y, we can get a new minimum cardinality Steiner tree for G and target set S by
replacing edge xx∗ in T with edge xy. We can do that since vertex y is in T and vertices x
and y are adjacent in G. �

Claim 29.12 Let S ∩ B = ∅, x ∈ S ∩ Aj, and y is an arbitrary vertex from B. T ′ is a
minimum cardinality Steiner tree of G for target set S ∪ {y} \ {x} if and only if T , obtained
from T ′ by adding vertex x and edge xy, is a minimum cardinality Steiner tree of G for target
set S.

Proof. By Claim 29.9, for G and target set S, there exists a minimum cardinality Steiner tree
T such that dT (v, s) = dG(v, s) for any vertex v of T . In particular, vertex x is a leaf and
its neighbor x∗ in T belongs to Li−1(s), that is, to B. Furthermore, any neighbor of x∗ in T
must belong to Aj ∪ Aj+1 ∪ · · · ∪ Ap or to Li−2(s). If x∗ ̸= y, we can get a new minimum
cardinality Steiner tree for G and target set S by replacing in T vertex x∗ with y and any

C5955–C0029.tex 800 2015/10/22 9:14pm

Tree-Structured Graphs � 801

edge ux∗ of T with edge uy. We can do that since, by Claim 29.10, vertex y is adjacent in
G to every vertex u to which vertex x∗ was adjacent in T (recall, u ∈ Aj ∪ Aj+1 ∪ · · · ∪ Ap ∪
Li−2(s)). �
Thus, we have the following theorem.

Theorem 29.49 [133] The minimum cardinality Steiner tree problem in distance-hereditary
graphs can be solved in linear O(|V | + |E|) time. �

29.7.3 Important Subclasses of Distance-Hereditary Graphs

29.7.3.1 Ptolemaic Graphs and Bipartite Distance-Hereditary Graphs

In this subsection, we describe the chordal and distance-hereditary graphs.
The ptolemaic inequality (∗) in metric spaces is defined as follows.

Definition 29.43 [134] A connected graph G is ptolemaic if, for any four vertices u, v, w, x
of G,

(∗) d(u, v)d(w, x) ≤ d(u, w)d(v, x) + d(u, x)d(v, w).

Theorem 29.50 [135] Let G be a graph. The following conditions are equivalent:

i. G is ptolemaic.

ii. G is distance hereditary and chordal.

iii. G is chordal and does not contain an induced gem.

iv. For all distinct nondisjoint cliques P and Q of G, P ∩ Q separates P \ Q and
Q \ P .

The equivalence of (ii) and (iii) follows from Theorem 29.45: If G is distance-hereditary then
obviously G is gem-free. Conversely, if G is gem-free chordal then G is (house, hole, domino,
gem)-free and by Theorem 29.45, it is distance-hereditary.

Ptolemaic graphs are characterized in various other ways; see, for example, [136] where
the laminar structure of maximal cliques of ptolemaic graphs is described. This is closely
related to Bachman Diagrams as described in [6].

Recall that G is chordal if and only if C(G) is α-acyclic and G is strongly chordal if and
only if C(G) is β-acyclic. A similar fact holds for ptolemaic graphs (see Definition 29.44 for
γ-acyclicity).

Theorem 29.51 [80] Graph G is ptolemaic if and only if the hypergraph C(G) of its maximal
cliques is γ-acyclic. �

Theorems 29.45 and 29.44 imply the following corollary.

Corollary 29.19 A graph is bipartite distance-hereditary if and only if it is bipartite (6, 2)-
chordal.

Proof. Obviously, bipartite (6, 2)-chordal graphs are (house, hole, domino, gem)-free and
thus, by Theorem 29.45, are distance-hereditary. Conversely, let G be a bipartite distance-
hereditary graph. Then, by Theorem 29.45, every cycle of length at least 5 has two (crossing)
chords which shows the assertion. �

C5955–C0029.tex 801 2015/10/22 9:14pm

802 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

29.7.3.2 Block Graphs

There is an even more restrictive subclass of chordal distance-hereditary graphs, namely the
block graphs which can be defined as the connected graphs whose blocks (i.e., 2-connected
components) are cliques. Let K4 − e denote the clique of four vertices minus an edge (also
called diamond).

Buneman’s four-point condition (∗∗) for distances in connected graphs requires that for
every four vertices u, v, x and y the following inequality holds:

(∗∗) d(u, v) + d(x, y) ≤ max {d(u, x) + d(v, y), d(u, y) + d(v, x)}.

It characterizes the metric properties of trees as Buneman [137] has shown. A connected
graph is a tree if and only if it is triangle-free and fulfills Buneman’s four-point condition
(∗∗).

Theorem 29.52 [138] Let G be a connected graph. The following conditions are equivalent:

i. G is a block graph.

ii. G is (K4 − e)-free chordal.

iii. G fulfills Buneman’s four-point condition (∗∗). �

Theorem 29.53 [13] G is a block graph if and only if C(G) is Berge-acyclic. �

There are various other characterizations of block graphs—see for example [3] for a survey.

29.7.3.3 γ-Acyclic Hypergraphs

The basic subject of this subsection are γ-acyclic hypergraphs. Fagin [6,7] gives various
equivalent definitions of γ-acyclicity.

Definition 29.44 [6,7] Let H = (V, E) be a hypergraph.

i. A γ-cycle in a hypergraph H = (V, E) is a sequence C = (v1, E1, v2, E2, . . ., vk, Ek),
k ≥ 3, of distinct vertices v1, v2, . . ., vk and distinct hyperedges E1, E2, . . ., Ek such
that for all i, 1 ≤ i ≤ k, vi ∈ Ei ∩ Ei+1 holds and for all i, 1 ≤ i < k, vi ̸∈ Ej for
j ̸= i, i + 1 holds (index arithmetic modulo k).

ii. A hypergraph is γ-acyclic if it has no γ-cycle.

Note that the only difference to special cycles is the condition 1 ≤ i < k instead of 1 ≤ i ≤ k.
Fagin [6] gives some other variants of γ-acyclicity and shows that all these conditions are
equivalent. A crucial property among them is the following separation property:

Theorem 29.54 A hypergraph H = (V, E) is γ-cyclic if and only if there is a nondisjoint
pair E, F of hyperedges such that in the hypergraph that results by removing E ∩F from every
edge, what is left of E is connected to what is left of F . �

This leads to the following tree structure of separators in γ-acyclic hypergraphs (it has been
rediscovered under various names in subsequent papers on ptolemaic graphs, e.g., in [136]).

C5955–C0029.tex 802 2015/10/22 9:14pm

Tree-Structured Graphs � 803

Definition 29.45 [6,139–141] For a hypergraph H = (V, E), we define:

i. Bachman (H) is the hypergraph obtained by closing E under intersection, that is,
S is in Bachman(H) if it is the intersection of some hyperedges from H (including
the hyperedges from E themselves).

ii. The Bachman diagram of H is the following undirected graph with Bachman (H)
as its node set, and with an edge between two nodes S, T if S is a proper subset
of T , that is, S ⊂ T and there is no other W in Bachman (H) with S ⊂ W ⊂ T .

iii. A Bachman diagram is loop-free if it is a tree.

The tree property of the Bachman diagram is closely related to uniqueness properties in
data connections; see [6] for a detailed discussion of various properties which are equivalent
to γ-acyclicity and related work on desirable properties of relational database schemes.

The main theorem on γ-acyclicity is the following:

Theorem 29.55 [6] Let H = (V, E) be a connected hypergraph. The following are equivalent:

1. H is γ-acyclic.

2. Every connected join expression over H is monotone.

3. Every connected, sequential join expression over H is monotone.

4. The join dependency ◃▹ H implies that every connected subset of H has a lossless join.

5. There is a unique relationship among each set of attributes for each consistent database
over H.

6. The Bachman diagram of H is loop-free.

7. H has a unique minimal connection among each set of its nodes. �

29.8 TREEWIDTH AND CLIQUE-WIDTH OF GRAPHS

29.8.1 Treewidth of Graphs

Treewidth of a graph measures the tree-likeness of a graph. Treewidth of trees has value one,
and if the treewidth of a graph class is bounded by a constant, this has important conse-
quences for the efficient solution of many problems on the class. Treewidth was introduced
by Robertson and Seymour in the famous graph minor project by Robertson and Seymour
(see, e.g., [142–145] and is one of the most important concepts of algorithmic graph theory.
It also came up as partial k-trees which have many applications (see e.g., [9]). A good survey
is given by Bodlaender [11] and Kloks [146].

We first define k-trees recursively.

Definition 29.46 Let k ≥ 1 be an integer. The following graphs are k-trees:

i. Any clique Kk with k vertices is a k-tree.

ii. Let G = (V, E) be a k-tree, let x /∈ V be a new vertex and let C ⊆ V be a clique
with k vertices. Then also G′ = (V ∪ {x}, E ∪ {ux | u ∈ C}) is a k-tree.

iii. There are no other k-trees.

C5955–C0029.tex 803 2015/10/22 9:14pm

804 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

It is easy to see that for k = 1, the k-trees are exactly the trees, and for any k, k-trees are
chordal with maximum clique size k + 1 if the graph is no clique. More exactly, all maximal
cliques have size k + 1 in this case. See [147] for simple characterizations of k-trees.

Definition 29.47 Graph G′ = (V, E′) is a partial k-tree if there is a k-tree G = (V, E) with
E′ ⊆ E.

Obviously, every graph with n vertices is a partial n-tree, and every k-tree is a partial k-tree.
The following parameter is of tremendous importance for the efficient solution of algorithmic
problems on graphs.

Definition 29.48 The treewidth tw(G) of a given graph G is the minimum value k for
which G is a partial k-tree.

Determining the treewidth of a graph is NP-hard [9].
Treewidth was defined in a different way by Robertson and Seymour (see, e.g., [142–145])

via tree decompositions of graphs:

Definition 29.49 A tree decomposition of a graph G = (V, E) is a pair D = (S, T) with
the following properties:

i. S = {Vi | i ∈ I} is a finite collection of subsets of vertices (sometimes called
bags).

ii. T = (I, F) is a tree with one node for each subset from S.

iii.
∪

i∈I Vi = V .

iv. For all edges (v, w) ∈ E, there is a subset (i.e., a bag) Vi ∈ S such that both v
and w are contained in Vi.

v. For each vertex x ∈ V , the set of tree nodes {i | x ∈ Vi} forms a subtree of T .

Condition (v) corresponds to the join tree condition of α-acyclic hypergraphs and to the
clique tree condition of chordal graphs. Thus, a graph is chordal if and only if it has a tree
decomposition into cliques.

The width of a tree decomposition is the maximum bag size minus one. It is not hard to
see that the following holds (see, e.g., [146]):

Lemma 29.12 The treewidth of a graph equals the minimum width over all of its tree
decompositions. �

The fundamental importance of treewidth for algorithmic applications is twofold: First of
all, many problems can be solved by dynamic programming in a bottom-up way along a tree
decomposition (or equivalently, an embedding into a k-tree) of the graph, and the running
time is quite good for small k. The literature [10,148] give many examples for this approach.
Second, there is a deep relationship to Monadic Second-Order Logic described in various
papers by Courcelle [149] (and in many other papers of this author; see also Bodlaender’s
tourist guide [11]). Roughly speaking, the following holds.

Whenever a problem Π is expressible in Monadic second-order logic and C is a graph class
of bounded treewidth (with given tree decomposition for each input graph) then problem Π
can be efficiently solved on every input graph from C.

As an example, consider 3-colorability of a graph (which is well known to be NP-
complete):

C5955–C0029.tex 804 2015/10/22 9:14pm

Tree-Structured Graphs � 805

∃W1 ⊆ V ∃W2 ⊆ V ∃W3 ⊆ V ∀v ∈ V (v ∈ W1 ∨v ∈ W2 ∨v ∈ W3)∧∀v ∈ V ∀w ∈ V (vw ∈
E ⇒ (¬(v ∈ W1 ∧ w ∈ W1) ∧ ¬(v ∈ W2 ∧ w ∈ W2) ∧ ¬(v ∈ W3 ∧ w ∈ W3))).

The detour via logic, however, leads to astronomically large constant factors in the running
time of such algorithms. Therefore it is of crucial importance to have a tree decomposition
of the input graph with very small width. We know already that the problem of determining
treewidth is NP-complete.

Theorem 29.56 [150] For each integer k ≥ 1 there is a linear-time algorithm which for given
graph G either determines that tw(G) > k holds or otherwise finds a tree decomposition with
width k. �

Some classes of graphs (cactus graphs, series-parallel graphs, Halin graphs, outerplanar
graphs, etc.) have bounded treewidth. See [11] for more information.

Thorup [151] gives important examples of small treewidth in computer science applica-
tions.

Another closely related graph parameter called tree-length is proposed by Dourisboure
and Gavoille [152]. It measures how close a graph is to being chordal. The tree-length of
G is defined using tree decompositions of G (see Definition 29.49). Graphs of tree-length k
are the graphs that have a tree decomposition where the distance in G between any pair of
vertices that appear in the same bag of the tree decomposition is at most k. We discuss this
and related parameters in Section 29.10.

29.8.2 Clique-Width of Graphs

The notion of clique-width of a graph, defined by Courcelle et al. (in the context of graph
grammars) in [153], is another fundamental example of a width parameter on graphs which
leads to efficient algorithms for problems expressible in some kind of Monadic second-order
logic.

More formally, the clique-width cw(G) of a graph G is defined as the minimum number
of different integer labels which allow to generate graph G by using the following four kinds
of operations on vertex-labeled graphs:

i. Creation of a new vertex labeled by integer l.

ii. Disjoint union of two (vertex-labeled and vertex-disjoint) graphs (i.e., co-join).

iii. Join between the set of all vertices with label i and the set of all vertices with
label j for i ̸= j (i.e., all edges between the two sets are added).

iv. Relabeling of all vertices of label i by label j.

A k-expression for a graph G of clique-width k describes the recursive generation of G by
repeatedly applying these operations using at most k different labels.

Obviously, any graph with n vertices can be generated using n labels (for each vertex a
specific one). Thus cw(G) ≤ n if G has n vertices.

Clique-width is more powerful than treewidth in the sense that if a class of graphs has
bounded treewidth then it also has bounded clique-width but not vice versa [154]—the
clique-width of cliques of arbitrary size is two whereas their treewidth is unbounded. In
particular, an upper bound for the clique-width of a graph is obtained from its treewidth as
follows.

C5955–C0029.tex 805 2015/10/22 9:14pm

806 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Theorem 29.57 [155] For any graph G, cw(G) ≤ 3 · 2tw(G)−1. �

Similarly as for treewidth, the concept of clique-width of a graph has attracted much attention
due to the fact that there is a similarly close connection to Monadic second-order logic. In
[156], Courcelle et al. have shown that every graph problem definable in LinMSOL(τ1) (a
variant of Monadic second-order logic using quantifiers on vertex sets but not on edge sets)
is solvable in linear time on graphs with bounded clique-width if a k-expression describing
the input graph is given.

The problems maximum weight stable set, maximum weight clique, k-coloring for fixed
k, Steiner tree, and domination are examples of LinMSOL(τ1) definable problems whereas
coloring and Hamiltonian circuit are not.

Theorem 29.58 [156] Let C be a class of graphs of clique-width at most k such that there is
an O(f(|E|, |V |)) algorithm, which for each graph G in C, constructs a k-expression defining
it. Then for every LinMSOL(τ1) problem on C, there is an algorithm solving this problem in
time O(f(|E|, |V |)). �

Moreover, for some other problems which are not expressible in this way, there are polynomial
time algorithms for classes of bounded clique-width [157–159].

It is not hard to see that the class of cographs is exactly the class of graphs having
clique-width at most 2, and a 2-expression can be found in linear time along the cotree of a
cograph:

Proposition 29.13 The clique-width of graph G is at most 2 if and only if G is a cograph.

Clique-width is closely related to modular decomposition as the following proposition shows:

Proposition 29.14 [154,156] The clique-width of a graph G is the maximum of the clique-
width of its prime subgraphs, and the clique-width of the complement graph G is at most twice
the clique-width of G.

It is easy to see that the clique-width of thin spiders is at most 4. Thus, a simple consequence
of Proposition 29.14 is that the clique-width of P4-sparse graphs is bounded.

The fact that the clique-width of distance-hereditary graphs is at most three (which, at
first glance, does not seem to be surprising but the proof is quite technical) is based on
pruning sequences (see Theorem 29.46).

Theorem 29.59 [160] The clique-width of distance-hereditary graphs is at most 3, and cor-
responding 3-expressions can be constructed in linear time.

In the same paper [160] it is shown that unit interval graphs have unbounded clique-width.
For very similar reasons, bipartite permutation graphs have unbounded clique-width [161].
Various other classes of bounded and unbounded clique-width are described in [162–167] and
many other papers. See [168] for recent results on graph classes of bounded clique-width.

In [169], Fellows et al. show that determining clique-width is NP-complete. The recogni-
tion problem for graphs of clique-width at most three is solvable in polynomial time [170].
For any fixed k ≥ 4, the problem of recognizing all graphs with clique-width at most k in
polynomial time is open.

The notion of NLC-width introduced by Wanke [171] is closely related to clique-width.
The NLC-width of a graph is not greater than its clique-width, and the clique-width of a
graph is twice its NLC-width [172]. Computing the NLC-width of a graph is NP-complete
[173]. The graphs of NLC-width 1 are the cographs, and the class of graphs of NLC-width at

C5955–C0029.tex 806 2015/10/22 9:14pm

Tree-Structured Graphs � 807

most 2 can be recognized in polynomial time [174]. Similarly as for clique-width (with k ≥ 4),
recognition of NLC-width at most k is open for k ≥ 3.

Oum and Seymour [175,176] investigated the important concept of rank-width and its
relationship to clique-width, treewidth and branchwidth. Oum showed that a graph has
rank-width 1 if and only if it is distance hereditary.

29.9 COMPLEXITY OF SOME PROBLEMS ON TREE-STRUCTURED
GRAPH CLASSES

The most prominent classes with tree structure in this chapter are chordal and dually chordal
graphs, strongly chordal graphs and chordal bipartite graphs as well as distance-hereditary
graphs. In the following, we describe a variety of complexity results for some problems on
these classes. See also [19] for a final chapter on such results.

Recall that the recognition problem for chordal and dually chordal graphs is solvable in
linear time, while the recognition of strongly chordal and of chordal bipartite graphs can be
done in time O(min(n2, m log n)) (see [19]). Recall also that distance-hereditary graphs can
be recognized in linear time [104,129].

The graph isomorphism problem was shown to be isomorphism-complete, that is as hard
as in the general case, for strongly chordal graphs and chordal bipartite graphs [177]. The
graph isomorphism problem for distance-hereditary graphs is solvable in linear time [136]
(a first step for this was done in [178]); see also [179].

The four basic problems independent set [GT20], clique [GT19], chromatic number [GT4],
and partition into cliques [GT15] (see [40]), are known to be polynomial-time solvable for
perfect graphs [180,181] and thus for chordal graphs as well as strongly chordal graphs and
chordal bipartite graphs. In some cases, there are better time bounds using prefect elimination
orderings and similar tools. For dually chordal graphs, however, these four problems are
NP-complete [63].

Hamiltonian circuit ([GT37] of [40]) is NP-complete for strongly chordal graphs and for
chordal bipartite graphs [182] (and thus it is NP-complete for chordal as well as for dually
chordal graphs).

Dominating set [GT2] and Steiner tree [ND12] [40] are solvable in linear time for dually
chordal graphs [63] and thus for strongly chordal graphs while they are NP-complete for
chordal graphs (even for split graphs [84]) and for chordal bipartite graphs [183].

For a given graph G = (V, E), the maximum induced matching problem asks for a maxi-
mum set of edges having pairwise distance at least 2. While it is well known that the maximum
matching problem is solvable in polynomial time, the maximum induced matching problem
was shown to be NP-complete even for bipartite graphs [184,185]. For chordal graphs and for
chordal bipartite graphs, however, it is solvable in polynomial time [184,186] and for chordal
graphs, it is solvable in linear time [187]. It is NP-complete for dually chordal graphs [188].
Maximum induced matching can be generalized to hypergraphs and is solvable in polynomial
time for α-acyclic hypergraphs but NP-complete for hypertrees [188].

For a given hypergraph H = (V, E), the exact cover problem ([SP2] of [40]) asks for the
existence of a subset E ′ ⊆ E such that every vertex of V is in exactly one of the sets in E ′.
The exact cover problem is NP-complete even for 3-regular hypergraphs [42]. In [188], it is
shown that the exact cover problem is NP-complete for α-acyclic hypergraphs but solvable
in linear time for hypertrees.

For a given graph G = (V, E), the efficient domination problem asks for the existence
of a set of closed neighborhoods of G forming an exact cover of V ; thus, the efficient domi-
nation problem for G corresponds to the Exact Cover problem for the closed neighborhood
hypergraph of G. It was introduced by Biggs [189] under the name perfect code.

C5955–C0029.tex 807 2015/10/22 9:14pm

808 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

The efficient domination problem is NP-complete for chordal graphs [190] and for chordal
bipartite graphs [191]. In [188], it is shown that the efficient domination problem is solvable
in linear time for dually chordal graphs.

For a given graph G = (V, E), the efficient edge domination problem is the efficient dom-
ination problem for the line graph L(G). It appears under the name dominating-induced
matching problem in various papers; see for example [192]. The efficient edge domination
problem is solvable in linear time for chordal graphs [188] and for dually chordal graphs [188]
as well as for chordal bipartite graphs (and even solvable in polynomial time for hole-free
graphs) [194].

For distance-hereditary graphs, there is a long list of papers showing that certain problems
are efficiently solvable on this class. Most of these papers were published before the clique-
width aspect was found. Theorem 29.58 covers many of these problems; on the other hand, it
might be preferable to have direct dynamic programming algorithms using the tree structure
of distance-hereditary graphs since the constant factors in algorithms using Theorem 29.58
are astronomically large (and similarly for graphs of bounded treewidth). However, various
problems such as Hamilton cycle (HC) and variants cannot be expressed in MSOL; see also
the algorithm for Steiner tree on distance-hereditary graphs.

The four basic problems can be solved in time O(n) if a pruning sequence of the input
graph is given [129].

HC was shown to be solvable in time O(n3) [195,196], in time O(n2) [197] and finally in
time O(n + m) for the HC problem [198,199] for HC and variants giving a unified approach.
In [199], a detailed history of the complexity results for HC on distance-hereditary graphs
is given. For the subclass of bipartite distance-hereditary graphs, a linear-time algorithm for
HC was given already in [200].

The dominating set problem was solved in linear time in [201,202] for distance-hereditary
graphs. The efficient domination and efficient edge domination problems are expressible in
MSOL and thus efficiently solvable for distance-hereditary graphs.

29.10 METRIC TREE-LIKE STRUCTURES IN GRAPHS

There are few other graph parameters measuring tree likeness of a (unweighted) graph from
a metric point of view. Two of them are also based on the notion of tree-decomposition of
Robertson and Seymour [145] (see Definition 29.49).

29.10.1 Tree-Breadth, Tree-Length, and Tree-Stretch of Graphs

The length of a tree-decomposition T of a graph G is λ := maxi∈I maxu,v∈Vi dG(u, v) (i.e.,
each bag Vi has diameter at most λ in G). The tree-length of G, denoted by tl(G), is the
minimum of the length over all tree-decompositions of G [152]. As chordal graphs are exactly
those graphs that have a tree decomposition where every bag is a clique [16–18], we can
see that tree-length generalizes this characterization and thus the chordal graphs are exactly
the graphs with tree-length 1. Note that tree-length and treewidth are not related to each
other graph parameters. For instance, a clique on n vertices has tree-length 1 and treewidth
n − 1, whereas a cycle on 3n vertices has treewidth 2 and tree-length n. One should also
note that many graph classes with unbounded treewidth have bounded tree-length, such
as chordal, interval, split, AT-free, and permutation graphs [152]. Analysis of a number
of real-life networks, taken from different domains like Internet measurements, biological
datasets, web graphs, social and collaboration networks, performed in [203,204] shows that
those networks have sufficiently large treewidth but their tree-length is relatively small.

C5955–C0029.tex 808 2015/10/22 9:14pm

Tree-Structured Graphs � 809

The breadth of a tree-decomposition T of a graph G is the minimum integer r such that
for every i ∈ I there is a vertex vi ∈ V with Vi ⊆ N r[vi] (i.e., each bag Vi can be covered
by a disk N r[vi] := {u ∈ V (G) : dG(u, vi) ≤ r} of radius at most r in G). Note that
vertex vi does not need to belong to Vi. The tree-breadth of G, denoted by tb(G), is the
minimum of the breadth over all tree-decompositions of G [205]. Evidently, for any graph G,
1 ≤ tb(G) ≤ tl(G) ≤ 2tb(G) holds. Hence, if one parameter is bounded by a constant for a
graph G then the other parameter is bounded for G as well.

Note that the notion of acyclic (R, D)-clustering of a graph introduced in [206] combines
tree-breadth and tree-length into one notion. Graphs admitting acyclic (D, D)-clustering are
exactly graphs with tree-length at most D, and graphs admitting acyclic (R, 2R)-clustering
are exactly graphs with tree-breadth at most R. Hence, all chordal, chordal bipartite, and
dually chordal graphs have tree-breadth 1 [206].

In view of tree-decomposition T of G, the smaller parameters tl(G) and tb(G) of G are,
the closer graph G is to a tree metrically. Unfortunately, while graphs with tree-length 1
(as they are exactly the chordal graphs) can be recognized in linear time, the problem of
determining whether a given graph has tree-length at most λ is NP-complete for every fixed
λ > 1 (see [207]). Judging from this result, it is conceivable that the problem of determining
whether a given graph has tree-breadth at most ρ is NP-complete, too. 3-Approximation
algorithms for computing the tree-length and the tree-breadth of a graph are proposed in
[152,204,205].

Proposition 29.15 [152] There is a linear-time algorithm that produces for any graph G a
tree-decomposition of length at most 3tl(G) + 1.

Proposition 29.16 [204,205] There is a linear-time algorithm that produces for any graph
G a tree-decomposition of breadth at most 3tb(G).

It follows from results of [208] and [152] also that any graph G with small tree-length or
small tree-breadth can be embedded to a tree with a small additive distortion.

Proposition 29.17 For any (unweighted) connected graph G = (V, E) there is an un-
weighted tree H = (V, F) (on the same vertex set but not necessarily a spanning tree of
G) for which the following is true:

∀u, v ∈ V, dH(u, v) − 2 ≤ dG(u, v) ≤ dH(u, v) + 3 tl(G) ≤ dH(u, v) + 6 tb(G).

Such a tree H can be constructed in O(|E|) time.

Previously, these type of results were known for chordal graphs and dually chordal graphs
[209], k-chordal graphs [210], and δ-hyperbolic graphs [211].

Graphs with small tree-length or small tree-breadth have many other nice properties.
Every n-vertex graph with tree-length tl(G) = λ has an additive 2λ-spanner with O(λn +
n log n) edges and an additive 4λ-spanner with O(λn) edges, both constructible in polynomial
time [212]. Every n-vertex graph G with tb(G) = ρ has a system of at most log2 n collective
additive tree (2ρ log2 n)-spanners constructible in polynomial time [213]. Those graphs also
enjoy a 6λ-additive routing labeling scheme with O(λ log2 n) bit labels and O(log λ) time
routing protocol [214], and a (2ρ log2 n)-additive routing labeling scheme with O(log3 n) bit
labels and O(1) time routing protocol with O(log n) message initiation time (by combining
results of [213] and [215]). See appropriate papers for more details.

Here we elaborate a little bit more on a connection established in [205] between the
tree-breadth and the tree-stretch of a graph (and the corresponding tree t-spanner problem).

C5955–C0029.tex 809 2015/10/22 9:14pm

810 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

The tree-stretch ts(G) of a graph G = (V, E) is the smallest number t such that G admits
a spanning tree T = (V, E′) with dT (u, v) ≤ tdG(u, v) for every u, v ∈ V. T is called a tree
t-spanner of G and the problem of finding such tree T for G is known as the tree t-spanner
problem. Note that as T is a spanning tree of G, necessarily dG(u, v) ≤ dT (u, v) and E′ ⊆ E.
It is known that the tree t-spanner problem is NP-hard [216]. The best known approximation
algorithms have approximation ratio of O(log n) [205,217].

The following two results were obtained in [205].

Proposition 29.18 [205] For every graph G, tb(G) ≤ ⌈ts(G)/2⌉ and tl(G) ≤ ts(G).

Proposition 29.19 [205] For every n-vertex graph G, ts(G) ≤ 2tb(G) log2 n. Furthermore,
a spanning tree T of G with dT (u, v) ≤ (2tb(G) log2 n) dG(u, v), for every u, v ∈ V, can be
constructed in polynomial time.

Proposition 29.19 is obtained by showing that every n-vertex graph G with tb(G) = ρ

admits a tree (2ρ log2 n)-spanner constructible in polynomial time. Together with Proposition
29.18, this provides a log2 n-approximate solution for the tree t-spanner problem in general
unweighted graphs.

29.10.2 Hyperbolicity of Graphs and Embedding Into Trees

δ-Hyperbolic metric spaces have been defined by Gromov [218] in 1987 via a simple
4-point condition: for any four points u, v, w, x, the two larger of the distance sums
d(u, v) + d(w, x), d(u, w) + d(v, x), d(u, x) + d(v, w) differ by at most 2δ. They play an impor-
tant role in geometric group theory, geometry of negatively curved spaces, and have recently
become of interest in several domains of computer science, including algorithms and network-
ing. For example, (a) it has been shown empirically in [219] (see also [220]) that the Internet
topology embeds with better accuracy into a hyperbolic space than into an Euclidean space
of comparable dimension, (b) every connected finite graph has an embedding in the hyper-
bolic plane so that the greedy routing based on the virtual coordinates obtained from this
embedding is guaranteed to work (see [221]).

A connected graph G = (V, E) equipped with standard graph metric dG is δ-hyperbolic
if the metric space (V, dG) is δ-hyperbolic. More formally, let G be a graph and u, v, w and
x be its four vertices. Denote by S1, S2, S3 the three distance sums, dG(u, v) + dG(w, x),
dG(u, w) + dG(v, x) and dG(u, x) + dG(v, w) sorted in nondecreasing order S1 ≤ S2 ≤ S3.
Define the hyperbolicity of a quadruplet u, v, w, x as δ(u, v, w, x) = S3−S2

2 . Then the hyper-
bolicity δ(G) of a graph G is the maximum hyperbolicity over all possible quadruplets of G,
that is,

δ(G) = max
u,v,w,x∈V

δ(u, v, w, x).

δ-Hyperbolicity measures the local deviation of a metric from a tree metric; a metric is a
tree metric if and only if it has hyperbolicity 0. Note that chordal graphs have hyperbolicity
at most 1 [222], while k-chordal graphs have hyperbolicity at most k/4 [223].

The best known algorithm to calculate hyperbolicity has time complexity of O(n3.69),
where n is the number of vertices in the graph; it was proposed in [224] and involves matrix
multiplications. Authors of [224] also propose a 2-approximation algorithm for calculating
hyperbolicity that runs in O(n2.69) time and a 2 log2 n-approximation algorithm that runs in
O(n2) time.

According to [211], if a graph G has small hyperbolicity then it can be embedded to a
tree with a small additive distortion.

C5955–C0029.tex 810 2015/10/22 9:14pm

Tree-Structured Graphs � 811

Proposition 29.20 [211] For any (unweighted) connected graph G = (V, E) with n vertices
there is an unweighted tree H = (V, F) (on the same vertex set but not necessarily a spanning
tree of G) for which the following is true:

∀u, v ∈ V, dH(u, v) − 2 ≤ dG(u, v) ≤ dH(u, v) + O(δ(G) log n).

Such a tree H can be constructed in O(|E|) time.

Thus, the distances in n-vertex δ-hyperbolic graphs can efficiently be approximated
within an additive error of O(δ log n) by a tree metric and this approximation is sharp
(see [211,218,225]). An earlier result of Gromov [218] established similar distance approxi-
mations, however Gromov’s tree is weighted, may have Steiner points and needs O(n2) time
for construction.

It is easy to show that every graph G admitting a tree T with dG(x, y) ≤ dT (x, y) ≤
dG(x, y) + r for any x, y ∈ V is r-hyperbolic. So, the hyperbolicity of a graph G is an
indicator of an embedability of G in a tree with an additive distortion.

Graphs and general geodesic spaces with small hyperbolicities have many other algo-
rithmic advantages. They allow efficient approximate solutions for a number of optimization
problems. For example, Krauthgamer and Lee [226] presented a PTAS for the traveling sales-
man problem when the set of cities lie in a hyperbolic metric space. Chepoi and Estellon [227]
established a relationship between the minimum number of balls of radius r + 2δ covering a
finite subset S of a δ-hyperbolic geodesic space and the size of the maximum r-packing of S
and showed how to compute such coverings and packings in polynomial time. Chepoi et al.
gave in [211] efficient algorithms for fast and accurate estimations of diameters and radii of
δ-hyperbolic geodesic spaces and graphs. Additionally, Chepoi et al. showed in [228] that
every n-vertex δ-hyperbolic graph has an additive O(δ log n)-spanner with at most O(δn)
edges and enjoys an O(δ log n)-additive routing labeling scheme with O(δ log2 n) bit labels
and O(log δ) time routing protocol.

The following relations between the tree-length and the hyperbolicity of a graph were
established in [211].

Proposition 29.21 [211] For every n-vertex graph G, δ(G) ≤ tl(G) ≤ O(δ(G) log n).

Combining this with results from [205] (see Propositions 29.18 and 29.19), one gets the
following inequalities.

Proposition 29.22 [229] For any n-vertex graph G, δ(G) ≤ ts(G) ≤ O(δ(G) log2 n).

This proposition says, in particular, that every δ-hyperbolic graph G admits a tree
O(δ log2 n)-spanner. Furthermore, such a spanning tree for a δ-hyperbolic graph can be con-
structed in polynomial time (see [205]).

The problem of approximating a given graph metric by a simpler metric is well motivated
from several different perspectives. A particularly simple metric of choice, also favored from
the algorithmic point of view, is a tree metric, that is, a metric arising from shortest path
distance on a tree containing the given points. In recent years, a number of authors consid-
ered problems of minimum distortion embeddings of graphs into trees (see [208,230–232]),
most popular among them being a noncontractive embedding with minimum multiplicative
distortion.

Let G = (V, E) be a graph. The (multiplicative) tree-distortion td(G) of G is the smallest
number α such that G admits a tree (not necessarily a spanning tree, possibly weighted and
with Steiner points) with

∀u, v ∈ V, dG(u, v) ≤ dT (u, v) ≤ α dG(u, v).

C5955–C0029.tex 811 2015/10/22 9:14pm

812 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

The problem of finding, for a given graph G, a tree T = (V ∪ S, F) satisfying dG(u, v) ≤
dT (u, v) ≤ td(G)dG(u, v), for all u, v ∈ V , is known as the problem of minimum distortion
noncontractive embedding of graphs into trees. In a noncontractive embedding, the distance
in the tree must always be larger that or equal to the distance in the graph, that is, the tree
distances dominate the graph distances.

It is known that this problem is NP-hard, and even more, the hardness result of [230]
implies that it is NP-hard to approximate td(G) better than γ, for some small constant γ.
The best known 6-approximation algorithm using layering partition technique was recently
given in [208]. It improves the previously known 100-approximation algorithm from [232] and
27-approximation algorithm from [231].

The following interesting result was presented in [208].

Proposition 29.23 [208] For any (unweighted) connected graph G = (V, E) with n vertices
there is an unweighted tree H = (V, F) (on the same vertex set but not necessarily a spanning
tree of G) for which the following is true:

∀u, v ∈ V, dH(u, v) − 2 ≤ dG(u, v) ≤ dH(u, v) + 3 td(G).

Such a tree H can be constructed in O(|E|) time.

Surprisingly, a multiplicative distortion is turned into an additive one. Moreover, while a
tree T = (V ∪ S, F) satisfying dG(u, v) ≤ dT (u, v) ≤ td(G)dG(u, v), for all u, v ∈ V , is NP-
hard to find, tree H of Proposition 29.23 is constructible in O(|E|) time. Furthermore, H is
unweighted and has no Steiner points.

By adding at most n = |V | new Steiner points to tree H and assigning proper weights to
edges of H, the authors of [208] achieve a good noncontractive embedding of a graph G into
a tree.

Proposition 29.24 [208] For any (unweighted) connected graph G = (V, E) there is a
weighted tree H ′

ℓ = (V ∪ S, F) for which the following is true:

∀u, v ∈ V, dG(x, y) ≤ dH′
ℓ
(x, y) ≤ 3td(G)(dG(x, y) + 1).

Such a tree H ′
ℓ can be constructed in O(|V ||E|) time.

As pointed out in [208], tree H ′
ℓ provides a 6-approximate solution to the problem of minimum

distortion noncontractive embedding of an unweighted graph into a tree.
We conclude this section with one more chain of inequalities establishing relations between

the tree-stretch, the tree-length, and the tree-distortion of a graph.

Proposition 29.25 [229] For every n-vertex graph G, tl(G) ≤ td(G) ≤ ts(G) ≤
2td(G) log2 n.

Proposition 29.25 says that if a graph G is noncontractively embeddable into a tree with
distortion td(G) then it is embeddable into a spanning tree with stretch at most 2td(G) log2 n.
Furthermore, a spanning tree with stretch at most 2td(G) log2 n can be constructed for G in
polynomial time.

References

[1] A. Hajnal and J. Surányi, Über die Auflösung von Graphen in vollständige Teilgraphen,
Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 1 (1958), 113–121.

C5955–C0029.tex 812 2015/10/22 9:14pm

Tree-Structured Graphs � 813

[2] J.R.S. Blair and B. Peyton, An introduction to chordal graphs and clique trees, In
Graph Theory and Sparse Matrix Computation, A. George, J.R. Gilbert, and J.W.H.
Liu (Eds.), Springer, New York, 1993, 1–29.

[3] A. Brandstädt, V.B. Le, and J.P. Spinrad, Graph classes: A survey, SIAM Monographs
on Discrete Math. Appl., Vol. 3, SIAM, Philadelphia, PA, 1999.

[4] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New
York 1980; 2nd edition: Ann. Discrete Math. 57, Elsevier Science B.V., Amsterdam,
the Netherlands, 2004.

[5] T.A. McKee and F.R. McMorris, Topics in intersection graph theory, SIAM Mono-
graphs on Discrete Math. and Appl. Vol. 2, Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, 1999.

[6] R. Fagin, Degrees of Acyclicity for hypergraphs and relational database schemes,
Journal ACM 30 (1983), 514–550.

[7] R. Fagin, Acyclic database schemes (of various degrees): A painless introduction,
Proc. CAAP83 8th Colloquium on Trees in Algebra and Programming, G. Ausiello
and M. Protasi (Eds.), Springer LNCS 159 (1983), pp. 65–89.

[8] N. Robertson and P.D. Seymour, Graph minors. I. Excluding a forest, J. Comb. Theory
(B) 35 (1983), 39–61.

[9] S. Arnborg, D.G. Corneil, and A. Proskurowski, Complexity of finding embeddings in
a k-tree, SIAM J. Alg. Discr. Meth. 8 (1987), 277–284.

[10] S. Arnborg and A. Proskurowski, Linear time algorithms for NP-hard problems
restricted to partial k-trees, Discrete Applied Math. 23 (1989), 11–24.

[11] H.L. Bodlaender, A tourist guide through treewidth, Acta Cybernetica 11 (1993), 1–23.

[12] C. Berge, Graphs and Hypergraphs, American Elsevier Publishing Co., North-Holland,
1973.

[13] C. Berge, Hypergraphs, Elsevier Publishing Co., North-Holland, 1989.

[14] G. Dirac, On rigid circuit graphs, Abhandl. Math. Seminar Univ. Hamburg 25 (1961),
71–76.

[15] D.R. Fulkerson and O.A. Gross, Incidence matrices and interval graphs, Pacific
J. Math. 15 (1965), 835–855.

[16] A. Buneman, A characterization of rigid circuit graphs, Discrete Math. 9 (1974),
205–212.

[17] F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs,
J. Comb. Theory (B) 16 (1974), 47–56.

[18] J.R. Walter, Representations of Rigid Cycle Graphs, PhD dissertation, Wayne State
University, Detroit, MI, 1972.

[19] J.P. Spinrad, Efficient Graph Representations, Fields Institute Monographs, American
Mathematical Society, Providence, RI, 2003.

C5955–C0029.tex 813 2015/10/22 9:14pm

814 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[20] R.E. Tarjan and M. Yannakakis, Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs,
SIAM J. Computing 13 (1984), 566–579; Addendum SIAM J. Computing 14 (1985),
254–255.

[21] W.W. Barrett, C.R. Johnson, and M. Lundquist, Determinantal formulae for matrix
completions associated with chordal graphs, Linear Algebra Appl. 121 (1989), 265–289.

[22] C.-W. Ho and R.C.T. Lee, Counting clique trees and computing perfect elimination
schemes in parallel, Inf. Proc. Letters 31 (1989), 61–68.

[23] A. Frank, Some polynomial algorithms for certain graphs and hypergraphs, In Pro-
ceedings of the 5th British Combinatorial Conference (1975), Congressus Numerantium
XV (1976), 211–226.

[24] S. Főldes and P.L. Hammer, Split graphs, In 8th South–Eastern Conf. on Combina-
torics, Graph Theory and Computing, F. Hoffman, L. Lesniak-Foster, D. McCarthy,
R.C. Mullin, K.B. Reid, and R.G. Stanton (Eds.), Louisiana State University, Baton
Rouge, LA (1977), Congressus Numerantium 19 (1977), 311–315.

[25] P.L. Hammer and B. Simeone, The splittance of a graph, Combinatorica 1 (1981),
275–284.

[26] R.I. Tyshkevich, O.I. Melnikow, and V.M. Kotov, On graphs and degree sequences:
The canonical decomposition (in Russian), Kibernetika 6 (1981), 5–8.

[27] M. Farber, Characterizations of strongly chordal graphs, Discrete Math. 43 (1983),
173–189.

[28] G. Ausiello, A. D’Atri, and M. Moscarini, Chordality properties on graphs and minimal
conceptual connections in semantic data models, J. Comput. Syst. Sci. 33 (1986),
179–202.

[29] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis, On the desirability of acyclic database
schemes, J. ACM 30 (1983), 479–513.

[30] E.F. Codd, A relational model of data for large shared data banks, Communications
of the ACM 13 (1970), 377–387.

[31] P. Honeyman, R. E. Ladner, and M. Yannakakis, Testing the universal instance
assumption, Inf. Proc. Letters 10 (1980), 14–19.

[32] N. Goodman and O. Shmueli, Syntactic characterization of tree database schemas,
J. ACM 30 (1983), 767–786.

[33] G. Gottlob, N. Leone, and F. Scarcello, Hypertree decompositions: A survey, In Proc.
MFCS 2001, J. Sgall, A. Pultr, and P. Kolman, (Eds.), LNCS 2136, Springer, Mariánské
Lázně, Czech Republic, 2001, 37–57.

[34] H. Gaifman, On local and nonlocal properties, In Logic Colloquium’81 (J. Stern ed.,)
Elsevier, North-Holland, Amsterdam, the Netherlands, 1982, 105–135.

[35] D. Maier, The Theory of Relational Databases, Computer Science Press, Rockville, MD,
1983.

[36] H.J. Ryser, Combinatorial configurations, SIAM J. Appl. Math. 17 (1969), 593–602.

C5955–C0029.tex 814 2015/10/22 9:14pm

Tree-Structured Graphs � 815

[37] F.S. Roberts and J. H. Spencer, A characterization of clique graphs, J. Comb.
Theory (B) 10 (1971), 102–108.

[38] J. L. Szwarcfiter, A survey on clique graphs, In Recent Advances in Algorithmic Combi-
natorics, C. Linhares-Sales and B. Reed (Eds.), CMS Books in Mathematics, Springer,
2003, 109–136.

[39] L. Alcón, L. Faria, C.M.H. de Figueiredo, and M. Gutierrez, Clique graph recognition
is NP-complete, F. Fomin (ed.), WG 2006, Lecture Notes in Comp. Sci. 4271 (2006),
269–277; full version in: The complexity of clique graph recognition. Theor. Comp. Sci.
410(21–23) (2009), 2072–2083.

[40] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, Freeman & Co., San Francisco, CA, 1979.

[41] L. Lovász, Coverings and colorings of hypergraphs, In Proc. 4th Southeastern Conf. on
Combinatorics, Graph Theor. Comput., Util. Math. Publ., Congr. Numerantium VIII
(1973), 3–12.

[42] R.M. Karp, Reducibility among combinatorial problems, In Complexity of Computer
Computations, R.E. Miller and J.W. Thatcher (Eds.), Plenum Press, New York, 1972,
85–103.

[43] N. Linial and M. Tarsi, Deciding hypergraph 2-colorability by H-resolution, Theor.
Comp. Sci. 38 (1985), 343–347.

[44] M.R. Garey, D.S. Johnson, and L. Stockmeyer, Some simplified NP-complete graph
problems, Theor. Comp. Sci. 1 (1976), 237–267.

[45] R. Fagin and M.Y. Vardi, The theory of data dependencies—A survey, Mathematics of
Information Processing, In Proc. Symp. Appl. Math., M. Anshel, W. Gewirtz, (Eds.)
Vol. 34 (1986), 19–71, American Mathemaical Society, Providence, RI.

[46] J. Lehel, A characterization of totally balanced hypergraphs, Discrete Math. 57 (1985),
59–65.

[47] M.C. Golumbic, Algorithmic aspects of intersection graphs and representation hyper-
graphs, Graphs and Combinatorics 4 (1988), 307–321.

[48] P. Duchet, Propriété de Helly et problèmes de représentation, Colloqu. Internat. CNRS
260, Problemes Combinatoires et Theorie du Graphs, Orsay, France (1976), 117–118.

[49] C. Flament, Hypergraphes arborés, Discrete Math. 21 (1978), 223–226.

[50] P.J. Slater, A characterization of SOFT hypergraphs, Canad. Math. Bull. 21 (1978),
335–337.

[51] P.A. Bernstein and N. Goodman, Power of natural semijoins, SIAM J. Comput. 10
(1981), 751–771.

[52] T.A. McKee, How chordal graphs work, Bull. ICA 9 (1993), 27–39.

[53] B.D. Acharya and M. las Vergnas, Hypergraphs with cyclomatic number zero, trian-
gulated graphs, and an inequality, J. Comb. Theor. (B) 33 (1982), 52–56.

C5955–C0029.tex 815 2015/10/22 9:14pm

816 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[54] P. Hansen and M. Las Vergnas, On a property of hypergraphs with no cycles of length
greater than two, In Hypergraph Seminar, Lecture Notes in Math. 411 (1974), 99–101.

[55] M. Lewin, On hypergraphs without significant cycles, J. Comb. Theor. (B) 20 (1976),
80–83.

[56] M.H. Graham, On the universal relation, Tech. Report, University of Toronto, Ontario,
Canada, 1979.

[57] C.T. Yu and M.Z. Ozsoyoglu, An algorithm for tree-query membership of a distributed
query, Proc. 1979 IEEE COMPSAC, IEEE, New York, 1979, 306–312.

[58] R. Fagin, A.O. Mendelzon, and J.D. Ullman, A simplified universal relation assumption
and its properties, ACM Trans. Database Syst. 7 (1982), 343–360.

[59] A. Brandstädt, F.F. Dragan, V.D. Chepoi, and V.I. Voloshin, Dually chordal graphs,
Technical report SM-DU-225, University of Duisburg 1993; extended abstract in: Pro-
ceedings of WG 1993, LNCS 790, 237–251, 1993; full version in SIAM J. Discr. Math.
11 (1998), 437–455.

[60] F.F. Dragan, HT-graphs: Centers, connected r-domination and steiner trees, Comp.
Sci. J. Moldova 1 (1993), 64–83.

[61] F.F. Dragan, C.F. Prisacaru, and V.D. Chepoi, Location problems in graphs and the
Helly property (in Russian) (1987) (appeared partially in Diskretnaja Matematika 4
(1992), 67–73).

[62] H. Behrendt and A. Brandstädt, Domination and the use of maximum neighborhoods,
Technical report SM-DU-204, University of Duisburg, Germany, 2002.

[63] A. Brandstädt, V.D. Chepoi, and F.F. Dragan, The algorithmic use of hypertree struc-
ture and maximum neighbourhood orderings, Technical report SM-DU-244, University
of Duisburg 1994; extended abstract in: Proceedings of WG 1994, LNCS 903, 65–80,
1994; full version in Discrete Applied Math. 82 (1998), 43–77.

[64] J.L. Szwarcfiter and C.F. Bornstein, Clique graphs of chordal and path graphs, SIAM
J. Discrete Math. 7 (1994) 331–336.

[65] M. Gutierrez and L. Oubiña, Metric characterizations of proper interval graphs and
tree-clique graphs, J. Graph Theor. 21 (1996), 199–205.

[66] A. Brandstädt, V.D. Chepoi, and F.F. Dragan, Clique r-domination and clique
r-packing problems on dually chordal graphs, SIAM J. Discrete Math. 10 (1997),
109–127.

[67] P. De Caria, A Joint Study of Chordal and Dually Chordal Graphs, PhD thesis, Uni-
versidad Nacional de la Plata, Argentina, 2012.

[68] P. De Caria and M. Gutierrez, On minimal vertex separators of dually chordal graphs:
Properties and characterizations, Discrete Appl. Math. 160 (2012), 2627–2635.

[69] P. De Caria and M. Gutierrez, Comparing trees characteristic to chordal and dually
chordal graphs, Electronic Notes in Discrete Math. 37 (2011), 33–38.

[70] P. De Caria and M. Gutierrez, On the correspondence between tree representations of
chordal and dually chordal graphs, Discrete Appl. Math. 164 (2014), 500–511.

C5955–C0029.tex 816 2015/10/22 9:14pm

Tree-Structured Graphs � 817

[71] A. Leitert, Das Dominating Induced Matching Problem für azyklische Hypergraphen,
Diploma thesis, University of Rostock, Germany, 2012.

[72] M. Moscarini, Doubly chordal graphs: Steiner trees and connected domination, Netw.
23 (1993), 59–69.

[73] A. Brandstädt, F.F. Dragan, and F. Nicolai, Homogeneously orderable graphs, Theor.
Comput. Sci. 172 (1997), 209–232.

[74] A. Lubiw, Doubly lexical orderings of matrices, SIAM J. Comput. 16 (1987), 854–879.

[75] R. Paige and R.E. Tarjan, Three partition refinement algorithms, SIAM J. Comput.
16 (1987), 973–989.

[76] L. Lovász, Combinatorial Problems and Exercises, North-Holland, Amsterdam, the
Netherlands, 1979.

[77] L. Lovász and M.D. Plummer, Matching Theory, North-Holland, Amsterdam, the
Netherlands, Math. Studies Vol. 29, 1986.

[78] C. Berge and M. Las Vergnas, Sur un théorème du type Kőnig pour hypergraphes,
Annals NY Acad. Sci. 175 (1970), 32–40.

[79] A.E. Brouwer and A. Kolen, A super-balanced hypergraph has a nest point, Report
ZW 146/80, Mathematisch Centrum, Amsterdam, the Netherlands, 1980.

[80] A. D’Atri and M. Moscarini, On hypergraph acyclicity and graph chordality, Inf. Proc.
Letters 29 (1988), 271–274.

[81] R.P. Anstee and M. Farber, Characterizations of totally balanced matrices, J. Algo-
rithms 5 (1984), 215–230.

[82] A.J. Hoffman, A.W.J. Kolen, and M. Sakarovitch, Totally balanced and greedy matri-
ces, SIAM J. Alg. Discrete Meth. 6 (1985), 721–730.

[83] A. Lubiw, G-free matrices, Master’s thesis, Department of Combinatorics and Opti-
mization, University of Waterloo, Canada, 1982.

[84] A.A. Bertossi, Dominating sets for split graphs and bipartite graphs, Inf. Proc. Letters
19 (1984), 37–40.

[85] G.J. Chang, Labeling algorithms for domination problems in sun-free chordal graphs,
Discrete Appl. Math. 22 (1988), 21–34.

[86] G.J. Chang and G.L. Nemhauser, The k-domination and k-stability problem on sun-
free chordal graphs, SIAM J. Alg. Discrete Meth. 5 (1984), 332–345.

[87] G.J. Chang, M. Farber, and Z. Tuza, Algorithmic aspects of neighbourhood numbers,
SIAM J. Discrete Math. 6 (1993), 24–29.

[88] K. Iijima and Y. Shibata, A bipartite representation of a triangulated graph and its
chordality, Deptartment of Computer Science, Gunma University, Maebashi, Japan,
CS 79–1, 1979.

[89] J.P. Spinrad, Doubly lexical ordering of dense 0–1 matrices, Inf. Proc. Letters 45
(1993), 229–235.

C5955–C0029.tex 817 2015/10/22 9:14pm

818 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[90] A.E. Brouwer, P. Duchet, and A. Schrijver, Graphs whose neighborhoods have no
special cycles, Discrete Math. 47 (1983), 177–182.

[91] T.A. McKee, Strong clique trees, neighborhood trees, and strongly chordal graphs,
J. Graph Theor 33 (2000), 125–183.

[92] S. Ma and J. Wu, Characterizing strongly chordal graphs by using minimal relative
separators, Combinatorial Designs and Applications, W.D. Wallis, H. Shen, W. Wei,
and L. Shu (Eds.): Lecture Notes in Pure and Applied Mathematics 126, Marcel Dekker,
New York, 1990, 87–95.

[93] M.C. Golumbic and C.F. Goss, Perfect elimination and chordal bipartite graphs,
J. Graph Theor. 2 (1978), 155–163.

[94] R.B. Hayward, Weakly triangulated graphs, J. Comb. Theory (B) 39 (1985), 200–208.

[95] A. Brandstädt, Classes of bipartite graphs related to chordal graphs, Discrete Appl.
Math. 32 (1991), 51–60.

[96] E. Dahlhaus, Chordale Graphen im besonderen Hinblick auf parallele Algorithmen,
Habilitation Thesis, Universität Bonn, Germany, 1991.

[97] R. Uehara, Recognition of chordal bipartite graphs, Proceedings of ICALP, Lecture
Notes in Comp. Sci. 2380 (2002), 993–1004.

[98] J. Huang, Representation characterizations of chordal bipartite graphs, J. Combinato-
rial Theor. B 96 (2006) 673–683.

[99] A. Berry and A. Sigayret, Dismantlable lattices in the mirror, Proc. ICFCA 2013,
44–59.

[100] D.G. Corneil, H. Lerchs, and L. Stewart-Burlingham, Complement reducible graphs,
Discrete Appl. Math. 3 (1981), 163–174.

[101] D.G. Corneil, Y. Perl, and L.K. Stewart, Cographs: Recognition, applications, and
algorithms, Congressus Numer. 43 (1984), 249–258.

[102] D.G. Corneil, Y. Perl, and L.K. Stewart, A linear recognition algorithm for cographs,
SIAM J. Comput. 14 (1985), 926–934.

[103] D. Kratsch, R.M. McConnell, K. Mehlhorn, and J. Spinrad, Certifying algorithms for
recognizing interval graphs and permutation graphs, SIAM J. Comput. 36(2) (2006),
326–353.

[104] G. Damiand, M. Habib, and Ch. Paul, A simple paradigm for graph recognition:
Application to cographs and distance-hereditary graphs, TCS 263 (2001), 99–111.

[105] A. Bretscher, D.G. Corneil, M. Habib, and C. Paul, A simple linear time LexBFS
cograph recognition algorithm, Conference Proceedings of International Workshop on
Graph-Theoretic Concepts in Computer Science, In Lecture Notes in Comp. Sci. 2880,
Hans L. Bodlaender (Ed.), Elspeet, the Netherlands, 2003, 119–130.

[106] R.M. McConnell and J.P. Spinrad, Modular decomposition and transitive orientation,
Discrete Math. 201 (1999), 189–241.

C5955–C0029.tex 818 2015/10/22 9:14pm

Tree-Structured Graphs � 819

[107] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hung. 18 (1967),
25–66.

[108] A. Cournier and M. Habib, A new linear algorithm for modular decomposition,
LIRMM, University Montpellier (1995), Preliminary version in: Trees in Algebra and
Programming—CAAP, LNCS 787 (1994), 68–84.

[109] E. Dahlhaus, J. Gustedt, and R.M. McConnell, Efficient and practical modular decom-
position, J. Algorithms 41(2) (2001), 360–387.

[110] M. Habib, F. de Montgolfier, and C. Paul, A simple linear time modular decomposi-
tion algorithm for graphs, using order extension, Proc. 9th Scandinav. Workshop on
Algorithm Theory, Lecture Notes in Comp. Sci. 3111 (2004), 187–198.

[111] M. Tedder, D.G. Corneil, M. Habib, and C. Paul, Simpler linear-time modular
decomposition via recursive factorizing permutations, 35th International Colloquium on
Automata, Languages and Programming, Lecture Notes in Comput. Sci. 5125 (2008),
634–645.

[112] R.H. Möhring and F.J. Radermacher, Substitution decomposition for discrete struc-
tures and connections with combinatorial optimization, Annals of Discrete Math. 19
(1984), 257–356.

[113] C.T. Hoàng, A class of perfect graphs, MSc Thesis, School of Computer Science, McGill
University, Montreal, Canada, 1983.

[114] B. Jamison and S. Olariu, A tree representation for P4-sparse graphs, Discrete Appl.
Math. 35(2) (1992), 115–129.

[115] B. Jamison and S. Olariu, Recognizing P4-sparse graphs in linear time, SIAM J. Com-
put. 21(2) (1992), 381–406.

[116] B. Jamison and S. Olariu, Linear time optimization algorithms for P4-sparse graphs,
Discrete Appl. Math. 61(2) (1995), 155–175.

[117] C.T. Hoàng, Perfect graphs, PhD thesis, School of Computer Science, McGill University,
Montreal, Canada, 1985.

[118] W.H. Cunningham, Decomposition of directed graphs, SIAM J. Algebraic and Discrete
Meth. 3 (1982), 214–228.

[119] E. Dahlhaus, Parallel algorithms for hierarchical clustering and applications to split
decomposition and parity graph recognition, J. Algorithms 36 (2000), 205–240.

[120] P. Charbit, F. de Montgolfier, and M. Raffinot, A simple linear time split decomposition
algorithm of undirected graphs, CoRR abs/0902.1700, 2009.

[121] L. Babel and S. Olariu, On the p-connectedness of graphs—A survey, Discrete Appl.
Math. 95 (1999), 11–33.

[122] R.E. Tarjan, Decomposition by clique separators, Discrete Math. 55 (1985), 221–232.

[123] S.H. Whitesides, A method for solving certain graph recognition and optimization
problems, with applications to perfect graphs, In Topics on Perfect Graphs, Berge, C.
and V. Chvátal (Eds.), North-Holland, Amsterdam, the Netherlands, 1984.

C5955–C0029.tex 819 2015/10/22 9:14pm

820 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[124] A. Brandstädt, V. Giakoumakis, and F. Maffray, Clique-separator decomposition of
hole-free and diamond-free graphs, Discrete Appl. Math. 160 (2012), 471–478.

[125] V.E. Alekseev, On easy and hard hereditary classes of graphs with respect to the
independent set problem, Discrete Appl. Math. 132 (2004), 17–26.

[126] D. Lokshtanov, M. Vatshelle, and Y. Villanger, Independent set in P5-free graphs in
polynomial time, Tech. Report 2013, Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms.

[127] E. Howorka, A characterization of distance-hereditary graphs, Quart. J. Math. Oxford
Ser. 2(28) (1977), 417–420.

[128] H.-J. Bandelt and H.M. Mulder, Distance-hereditary graphs, J. Combin. Theor. (B)
41 (1986), 182–208.

[129] P.L. Hammer and F. Maffray, Completely separable graphs, Discrete Appl. Math. 27
(1990), 85–99.

[130] H.-J. Bandelt, A. Henkmann, and F. Nicolai, Powers of distance-hereditary graphs,
Discrete Math. 145 (1995), 37–60.

[131] A. D’Atri and M. Moscarini, Distance-Hereditary Graphs, Steiner Trees, and Connected
Domination, SIAM J. Comput. 17 (1988), 521–538.

[132] H.-J. Bandelt and V.D. Chepoi, Metric graph theory and geometry: A survey, Con-
temporary Mathematics 453, 2006, Surveys on Discrete and Computational Geometry,
Twenty Years Later, AMS-IMS-SIAM Joint Summer Conference, Snowbird, UT, J.E.
Goodman, J. Pach, and R. Pollack (Eds.), American Mathematical Society, June 18–22,
2006, 49–86.

[133] A. Brandstädt and F.F. Dragan, A linear-time algorithm for connected r-domination
and Steiner Tree on distance-hereditary graphs, Netw. 31 (1998), 177–182.

[134] D.C. Kay and G. Chartrand, A characterization of certain ptolemaic graphs, Canad.
J. Math. 17 (1965), 342–346.

[135] E. Howorka, A characterization of ptolemaic graphs, J. Graph Theor. 5 (1981), 323–331.

[136] R. Uehara and T. Uno, Laminar structure of ptolemaic graphs and its applications,
Proc. ISAAC 2005, X. Deng, D. Du (Eds.), Lecture Notes in Comp. Sci. 3827 (2005),
186–195; Discrete Appl. Math. 157 (2009), 1533–1543.

[137] A. Buneman, A note on the metric properties of trees, J. Comb. Theory (B) 1 (1974),
48–50.

[138] E. Howorka, On metric properties of certain clique graphs, J. Comb. Theory (B) 27
(1979), 67–74.

[139] C.W. Bachman, Data structure diagrams, Data Base 1(2) (1969), 4–10.

[140] Y.E. Lien, On the equivalence of database models, J. ACM 29(2) (1982), 333–363.

[141] M. Yannakakis, Algorithms for Acyclic Database Schemes, In Proc. of Int. Conf. on
Very Large Data Bases, C. Zaniolo, C. Delobel (Eds.), Cannes, France, 1981, 82–94.

C5955–C0029.tex 820 2015/10/22 9:14pm

Tree-Structured Graphs � 821

[142] N. Robertson and P.D. Seymour, Graph minors. III. Planar tree-width, J. Comb.
Theor.(B) 36 (1984), 49–64.

[143] N. Robertson and P.D. Seymour, Graph width and well-quasi ordering: A survey,
Progress in Graph Theory, J. Bondy and U. Murty (Eds.), Academic Press, New York,
1984, 399–406.

[144] N. Robertson and P.D. Seymour, Graph minors—A survey, Surveys in Combinatorics,
I. Anderson (Ed.), London Mathematical Society, Lecture Note Series 103, Invited
papers for the 10th British Combinatorial Conference, Cambridge University Press,
1985, 153–171.

[145] N. Robertson and P.D. Seymour, Graph minors. II. Algorithmic aspects of tree width,
J. Algorithms 7 (1986), 309–322.

[146] T. Kloks, Treewidth—Computations and approximations, Lecture Notes in Comput.
Sci. 842 (1994), 1–209.

[147] D.J. Rose, On simple characterizations of k-trees, Discrete Math. 7 (1974), 317–322.

[148] S. Arnborg, J. Lagergren, and D. Seese, Easy problems for tree-decomposable graphs,
J. Algorithms 12 (1991), 308–340.

[149] B. Courcelle, The monadic second-order logic of graphs III: Tree-decompositions, minor
and complexity issues, Informatique Theorique et Applications 26 (1992), 257–286.

[150] H.L. Bodlaender, A linear time algorithm for finding tree-decompositions of small
treewidth, SIAM J. Comput. 25 (1996), 1305–1317.

[151] M. Thorup, All structured programs have small tree width and good register allocation,
Information and Computation 142(2) (1988), 159–181.

[152] Y. Dourisboure and C. Gavoille, Tree-decompositions with bags of small diameter,
Discrete Math. 307 (2007), 2008–2029.

[153] B. Courcelle, J. Engelfriet, and G. Rozenberg, Handle-rewriting hypergraph grammars,
J. Comput. Syst. Sci. 46 (1993), 218–270.

[154] B. Courcelle and S. Olariu, Upper bounds to the clique width of graphs, Discrete Appl.
Math. 101 (2000), 77–114.

[155] D.G. Corneil and U. Rotics, On the relationship between clique-width and treewidth,
Internat. Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes
in Comput. Sci. 2204 (2001), 78–90; SIAM J. Computing 34 (2005), 825–847.

[156] B. Courcelle, J.A. Makowsky, and U. Rotics, Linear time solvable optimization prob-
lems on graphs of bounded clique width, Theor. Comput. Syst. 33 (2000), 125–150.

[157] W. Espelage, F. Gurski, and E. Wanke, How to solve NP-hard graph problems on clique-
width bounded graphs in polynomial time, Internat. Workshop on Graph-Theoretic
Concepts in Computer Science, Lecture Notes in Comput. Sci. 2204 (2001), 117–128.

[158] D. Kobler and U. Rotics, Edge dominating set and colorings on graphs with fixed
clique-width, Discrete Appl. Math. 126 (2002), 197–221.

C5955–C0029.tex 821 2015/10/22 9:14pm

822 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[159] M.U. Gerber and D. Kobler, Algorithms for vertex partitioning problems on graphs
with fixed clique-width, Theor. Comput. Sci. 1–3 (2003), 719–734.

[160] M.C. Golumbic and U. Rotics, On the clique-width of perfect graph classes, Int.
J. Foundations Comput. Sci. 11 (2000), 423–443.

[161] A. Brandstädt and V.V. Lozin, On the linear structure and clique width of bipartite
permutation graphs, RUTCOR Research Report, Rutgers University, New Brunswick,
NJ, 29–2001 (2001); Ars Combinatoria (2003) 273–281.

[162] A. Brandstädt, F.F. Dragan, H.-O. Le, and R. Mosca, New graph classes of bounded
clique width, Theor. Comput. Syst. 38 (2005), 623–645.

[163] A. Brandstädt, J. Engelfriet, H.-O. Le, and V.V. Lozin, Clique-width for four-vertex
forbidden subgraphs, Theor. Comput. Syst. 39 (2006), 561–590.

[164] A. Brandstädt, Hoàng-Oanh Le, and R. Mosca, Gem- and co-gem-free graphs have
bounded clique width, Internat. J. Foundat. Computer Science 15 (2004), 163–185.

[165] A. Brandstädt, Hoàng-Oanh Le, and R. Mosca, Chordal co-gem-free graphs and
(P5,gem)-free graphs have bounded clique width, Discrete Appl. Math. 145 (2005),
232–241.

[166] H.-O. Le, Contributions to clique-width of graphs, Dissertation, University of Rostock,
Germany, 2003.

[167] J.A. Makowsky and U. Rotics, On the clique-width of graphs with few P4’s, Int.
J. Foundat. Comput. Sci. 10 (1999), 329–348.

[168] M. Kamiński, V.V. Lozin, and M. Milanič, Recent developments on graphs of bounded
clique-width, Discrete Appl. Math. 157 (2009), 2747–2761.

[169] M.R. Fellows, F.A. Rosamond, U. Rotics, and S. Szeider, Clique-width is NP-complete,
SIAM J. Alg. Discr. Math. 23(2) (2009), 909–939.

[170] D.G. Corneil, M. Habib, J.M. Lanlignel, B. Reed, and U. Rotics, Polynomial time recog-
nition of clique-width ≤ 3 graphs, Proceedings of LATIN, Lecture Notes in Comput.
Sci. 1776 (2000), 126–134.

[171] E. Wanke, k-NLC graphs and polynomial algorithms, Discrete Appl. Math. 54 (1994),
251–266.

[172] Ö. Johansson, Clique decomposition, NLC decomposition, and modular
decomposition—Relationships and results for random graphs, Congressus Nu-
merantium 132 (1998), 39–60.

[173] F. Gurski and E. Wanke, Line graphs of bounded clique-width, Discrete Math. 307
(2007), 2734–2754.

[174] V. Limouzy, F. de Montgolfier, and M. Rao, NLC2 recognition and isomorphism, Pro-
ceedings of WG 2007, Lecture Notes in Comput. Sci. 4769 (2007), 86–98.

[175] S.-I. Oum, Approximating rank-width and clique-width quickly, ACM Transactions on
Algorithms 5 (2008), 1–20.

C5955–C0029.tex 822 2015/10/22 9:14pm

Tree-Structured Graphs � 823

[176] S.-I. Oum and P.D. Seymour, Approximating clique-width and branch-width, J. Comb.
Theory (B) 96 (2006), 514–528.

[177] R. Uehara, S. Toda, and T. Nagoya, Graph isomorphism completeness for chordal
bipartite graphs and strongly chordal graphs, Discr. Appl. Math. 145 (2005), 479–482.

[178] A. D’Atri, M. Moscarini, and H.M. Mulder, On the isomorphism problem for distance-
hereditary graphs, Econometric Institute Tech. Report EI9241, A Rotterdam School of
Economics, 1992.

[179] S.-I. Nakano, R. Uehara, and T. Uno, A new approach to graph recognition and appli-
cations to distance-hereditary graphs, J. Comput. Sci. Technol. 24(3) (2009), 517–533.

[180] M. Grötschel, L. Lovász, and A. Schrijver, Polynomial algorithms for perfect graphs,
Ann. Discr. Math. 21 (1984), 325–356.

[181] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial
Optimization, Springer, 1988.

[182] H. Müller, Hamilton circuits in chordal bipartite graphs, Discr. Math. 156 (1996),
291–298.

[183] P. Damaschke, H. Müller, and D. Kratsch, Domination in convex and chordal bipartite
graphs, Inf. Proc. Letters 36 (1990), 231–236.

[184] K. Cameron, Induced matchings, Discr. Appl. Math. 24 (1989), 97–102.

[185] L.J. Stockmeyer and V.V. Vazirani, NP-completeness of some generalizations of the
maximum matching problem, Inform. Process. Lett. 15 (1982), 14–19.

[186] K. Cameron, R. Sritharan, and Y. Tang, Finding a maximum induced matching in
weakly chordal graphs, Discrete Math. 266 (2003), 133–142.

[187] A. Brandstädt and C.T. Hòang, Maximum induced matching for chordal graphs in
linear time, Algorithmica 52(4) (2008), 440–447.

[188] A. Brandstädt, A. Leitert, and D. Rautenbach, Efficient dominating and edge domi-
nating sets for graphs and hypergraphs, extended abstract in: Proceedings of ISAAC,
Taiwan, 2012; LNCS 7676, 267–277.

[189] N. Biggs, Perfect codes in graphs, J. Combinatorial Theor. (B) 15 (1973), 289–296.

[190] C.-C. Yen and R.C.T. Lee, The weighted perfect domination problem and its variants,
Discrete Appl. Math. 66 (1996), 147–160.

[191] C.L. Lu and C.Y. Tang, Weighted efficient domination problem on some perfect graphs,
Discr. Appl. Math. 117 (2002), 163–182.

[192] D.M. Cardoso, N. Korpelainen, and V.V. Lozin, On the complexity of the dominating
induced matching problem in hereditary classes of graphs, Discr. Appl. Math. 159
(2011), 521–531.

[193] C.L. Lu, M.-T. Ko, and C.Y. Tang, Perfect edge domination and efficient edge domi-
nation in graphs, Discr. Appl. Math. 119 (2002), 227–250.

C5955–C0029.tex 823 2015/10/22 9:14pm

824 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[194] A. Brandstädt, C. Hundt, and R. Nevries, Efficient edge domination on hole-free graphs
in polynomial time, Extended abstract in: Conference Proceedings LATIN, LNCS 6034
(2010), 650–661.

[195] F. Nicolai, Strukturelle und algorithmische Aspekte distanz-erblicher Graphen und
verwandter Klassen, Dissertation, Gerhard-Mercator-Universität Duisburg, Germany,
1994.

[196] F. Nicolai, Hamiltonian problems on distance-hereditary graphs, Schriftenreihe des
Fachbereichs Mathematik der Universität Duisburg SM-DU-255 (1994); corrected ver-
sion 1996.

[197] R.-W. Hung, S.-C. Wu, and M.-S. Chang, Hamiltonian cycle problem on distance-
hereditary graphs, J. Inform. Sci. Engg. 19 (2003), 827–838.

[198] S.-Y. Hsieh, C.-W. Ho, T.-S. Hsu, and M.-T. Ko, The Hamiltonian problem on distance-
hereditary graphs, Discr. Appl. Math. 154 (2006), 508–524.

[199] R.-W. Hung and M.-S. Chang, Linear-time algorithms for the Hamiltonian problems
on distance-hereditary graphs, Theor. Comput. Sci. 341 (2005) 411–440.

[200] H. Müller and F. Nicolai, Polynomial time algorithms for the Hamiltonian problems
on bipartite distance-hereditary graphs, Inf. Proc. Lett. 46 (1993), 225–230.

[201] M.S. Chang, S.C. Wu, G.J. Chang, and H.G. Yeh, Domination in distance-hereditary
graphs, Discrete Appl. Math. 116 (2002), 103–113.

[202] F. Nicolai and T. Szymczak, Homogeneous sets and domination: A linear time algo-
rithm for distance-hereditary graphs, Schriftenreihe des Fachbereichs Mathematik der
Universität Duisburg SM-DU-336 (1996); Netw. 37 (2001), 117–128.

[203] F. de Montgolfier, M. Soto, and L. Viennot, Treewidth and hyperbolicity of the Inter-
net, Proceedings of the 10th IEEE International Symposium on Networking Computing
and Applications, NCA 2011, August 25–27, 2011, Cambridge, MA. IEEE Computer
Society, 2011, 25–32.

[204] M. Abu-Ata and F.F. Dragan, Metric tree-like structures in real-life networks: An
empirical study, Manuscript 2013.

[205] F.F. Dragan and E. Köhler, An approximation algorithm for the tree t-spanner problem
on unweighted graphs via generalized chordal graphs, approximation, randomization,
and combinatorial optimization. algorithms and techniques. Proceedings of the 14th
International Workshop, APPROX 2011, and 15th International Workshop, RANDOM,
Princeton, NJ, August 17–19, 2011, Lecture Notes in Computer Science 6845, Springer,
171–183; Algorithmica (in print 2014).

[206] F.F. Dragan and I. Lomonosov, On compact and efficient routing in certain graph
classes, Discrete Appl. Math. 155 (2007), 1458–1470.

[207] D. Lokshtanov, On the complexity of computing tree-length, Discrete Appl. Math. 158
(2010), 820–827.

[208] V.D. Chepoi, F.F. Dragan, I. Newman, Y. Rabinovich, and Y. Vaxes, Constant approx-
imation algorithms for embedding graph metrics into trees and outerplanar graphs,
Discrete & Computational Geometry 47 (2012), 187–214.

C5955–C0029.tex 824 2015/10/22 9:14pm

Tree-Structured Graphs � 825

[209] A. Brandstädt, V.D. Chepoi, and F.F. Dragan, Distance approximating trees for
chordal and dually chordal graphs, J. Algorithms 30 (1999), 166–184.

[210] V.D. Chepoi and F.F. Dragan, A note on distance approximating trees in graphs,
European J. Combin. 21 (2000), 761–766.

[211] V.D. Chepoi, F.F. Dragan, B. Estellon, M. Habib, and Y. Vaxes, Diameters, centers,
and approximating trees of δ-hyperbolic geodesic spaces and graphs, Proceedings of the
24th Annual ACM Symposium on Computational Geometry, June 9–11, 2008, College
Park, MD, pp. 59–68.

[212] Y. Dourisboure, F.F. Dragan, C. Gavoille, and C. Yan, Spanners for bounded tree-
length graphs, Theor. Comput. Sci. 383 (2007) 34–44.

[213] F.F. Dragan and M. Abu-Ata, Collective additive tree spanners of bounded tree-
breadth graphs with generalizations and consequences, SOFSEM: Theory and Practice
of Computer Science, Lecture Notes in Comput. Sci. 7741 (2013), 194–206.

[214] Y. Dourisboure, Compact routing schemes for generalised chordal graphs, J. Graph
Algorithms Appl. 9 (2005), 277–297.

[215] F.F. Dragan, C. Yan, and I. Lomonosov, Collective tree spanners of graphs, SIAM J.
Discrete Math. 20 (2006), 241–260.

[216] L. Cai and D.G. Corneil, Tree spanners, SIAM J. Discrete Math. 8 (1995), 359–387.

[217] Y. Emek and D. Peleg, Approximating minimum max-stretch spanning trees on un-
weighted graphs, SIAM J. Comput. 38 (2008), 1761–1781.

[218] M. Gromov, Hyperbolic groups, In Essays in Group Theory, S.M. Gersten (Ed.), MSRI
Series 8 (1987), 75–263.

[219] Y. Shavitt and T. Tankel, On internet embedding in hyperbolic spaces for overlay
construction and distance estimation, In INFOCOM, 2004.

[220] I. Abraham, M. Balakrishnan, F. Kuhn, D. Malkhi, V. Ramasubramanian, and K.
Talwar, Reconstructing approximate tree metrics, Proceedings of the 26th Annual ACM
Symposium on Principles of Distributed Computing, Portland, OR, August 12–15, 2007,
ACM, pp. 43–52.

[221] R. Kleinberg, Geographic routing using hyperbolic space, In INFOCOM, 2007, pp.
1902–1909.

[222] G. Brinkmann, J. Koolen, and V. Moulton, On the hyperbolicity of chordal graphs,
Ann. Comb. 5 (2001), 61–69.

[223] Y. Wu and Ch. Zhang, Hyperbolicity and chordality of a graph, Electr. J. Comb. 18
(2011), P43.

[224] H. Fournier, A. Ismail, and A. Vigneron, Computing the Gromov hyperbolicity of a
discrete metric space, CoRR abs/1210.3323 (2012), http://arxiv.org/abs/1210.3323.

[225] C. Gavoille and O. Ly, Distance labeling in hyperbolic graphs, In ISAAC, 2005,
pp. 171–179.

C5955–C0029.tex 825 2015/10/22 9:14pm

826 � Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

[226] R. Krauthgamer and J.R. Lee, Algorithms on negatively curved spaces, In Proceedings
of the 47th FOCS, Berkeley, CA, 2006, pp. 119–132.

[227] V. Chepoi and B. Estellon, Packing and covering δ-hyperbolic spaces by balls, In
APPROX-RANDOM, 2007, pp. 59–73.

[228] V.D. Chepoi, F.F. Dragan, B. Estellon, M. Habib, Y. Vaxès, and Y. Xiang, Additive
spanners and distance and routing labeling schemes for δ-hyperbolic graphs, Algorith-
mica 62 (2012), 713–732.

[229] F.F. Dragan, Tree-like structures in graphs: A metric point of view, In Graph-Theoretic
Concepts in Computer Science—39th International Workshop, Lübeck, Germany, June
19–21, 2013, Springer, Lecture Notes in Comp. Sci. 8165, 1–4.

[230] R. Agarwala, V. Bafna, M. Farach, B. Narayanan, M. Paterson, and M. Thorup, On
the approximability of numerical taxonomy (fitting distances by tree metrics), SIAM
J. Comput. 28 (1999), 1073–1085.

[231] M. Bădoiu, E.D. Demaine, M.T. Hajiaghayi, A. Sidiropoulos, and M. Zadimoghad-
dam, Ordinal embedding: Approximation algorithms and dimensionality reduction, In
Proceedings of the 11th International Workshop on Approximation Algorithms for Com-
binatorial Optimization Problems, Boston, MA, August 25–27, 2008, Springer, Lecture
Notes in Computer Science 5171, 21–34.

[232] M. Bădoiu, P. Indyk, and A. Sidiropoulos, Approximation algorithms for embedding
general metrics into trees, In Proceedings of the 18th Annual ACM-SIAM Symposium
on Discrete Algorithms, New Orleans, LA, January 7–9, 2007, ACM/SIAM, 512–521.

C5955–C0029.tex 826 2015/10/22 9:14pm

