Computational Geometry (intro)

- Is the branch of computer science that studies algorithms for solving geometric problems.
- Has applications in many fields, including
 - computer graphics
 - robotics,
 - VLSI design
 - computer aided design
 - statistics
- Deals with geometric objects such as points, line segments, polygons, etc.
- Some typical problems considered:
 - whether intersections occur in a set of lines.
 - finding vertices of a convex hull for points.
 - whether a line can be drawn separating two sets of points.
 - whether one point is visible from a second point, given some polygons that may block visibility.
 - optimal location of fire towers to view a region.
 - closest or most distant pair of points.
 - whether a point is inside or outside a polygon.

Cross products

• Line segments

• The convex combination of two distinct points $p_1 = (x_1, y_1)$ and $p_2 = (x_2, y_2)$ is any point $p_3 = (x_3, y_3)$ such that for some real number α with $0 \le \alpha \le 1$,

$$(x_3, y_3) = \alpha(x_1, y_1) + (1 - \alpha)(x_2, y_2).$$

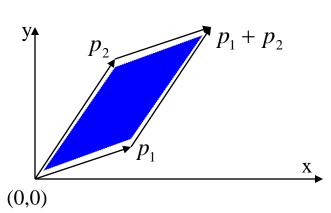
- $\overline{p_1p_2}$, the line segment joining p_1 and p_2 , is the set of all convex combinations of p_1 and p_2 .
- Intuition problem: Show that if (x,y) is a convex combination of (x_1, y_1) and (x_2, y_2) then $\alpha = \frac{y y_2}{x x_2} = \frac{y_1 y_2}{x_1 x_2}$

which is the standard equation of a line with slope α .

• Cross products

- let p_1 and p_2 be points on the plane
- The cross product $p_1 \times p_2$ corresponds to the signed area in the parallelogram.

$$p_1 \times p_2 = \det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} = x_1 y_2 - x_2 y_1 = -p_2 \times p_1.$$

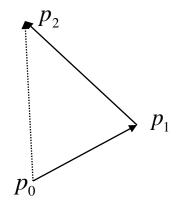


Cross products (cont.)

- If $p_1 \times p_2$ is negative, then op_1 is counterclockwise from op_2 .
- If $p_1 \times p_2$ is positive, then \overrightarrow{op}_1 is clockwise from \overrightarrow{op}_2
- If $p_1 \times p_2 = 0$, then \overrightarrow{op}_1 and \overrightarrow{op}_2 are collinear.
- To determine if $\overrightarrow{p_0p_1}$ is clockwise from $\overrightarrow{p_0p_2}$, we translate p_0 to the origin and consider $p'_1 \times p'_2$ where $p'_1 = p_1 p_0$, $p'_2 = p_2 p_0$.

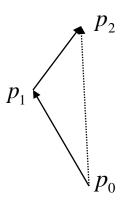
$$p'_1 \times p'_2 = (x_1 - x_0)(y_2 - y_0) - (x_2 - x_0)(y_1 - y_0).$$

- Consider now whether two consecutive line segments $\overrightarrow{p_0p_1}$ and $\overrightarrow{p_1p_2}$ turn *left* or *right* at p_1 .
 - Check whether $\overrightarrow{p_0p_2}$ is clockwise from $\overrightarrow{p_0p_1}$



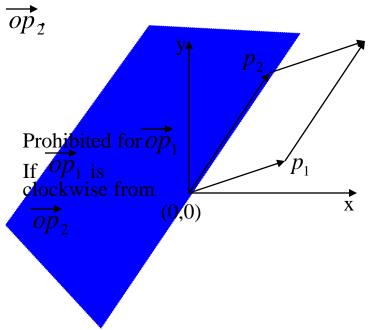
$$(p_2 - p_0) \times (p_1 - p_0) < 0$$

So, counterclockwise
or *left turn*



$$(p_2 - p_0) \times (p_1 - p_0) > 0$$

So, clockwise or **right**
turn



Intersection of two line segments

- A two stage process is used. The first stage is called *quick-rejection*.
- **Bounding Box:** The bounding box of a geometric figure is the smallest rectangle that contains the figure and whose segments are parallel to x and y axis.
- The bounding box (\hat{p}_1, \hat{p}_2) of the line segment $\overline{p_1p_2}$ is the box with lower left-hand point $\hat{p}_1 = (\hat{x}_1, \hat{y}_1)$, where

$$\hat{x}_1 = \min(x_1, x_2)$$

 $\hat{y}_1 = \min(y_1, y_2)$

and with upper right-hand point $\hat{p}_2 = (\hat{x}_2, \hat{y}_2)$, where

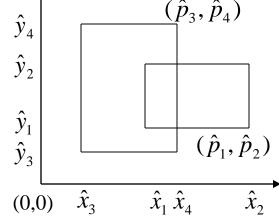
$$\hat{x}_2 = \max(x_1, x_2)$$

 $\hat{y}_2 = \max(y_1, y_2)$

• Intersection of bounding boxes: Rectangles (\hat{p}_1, \hat{p}_2) and (\hat{p}_3, \hat{p}_4) intersect if and only if the following is true:

$$(\hat{x}_2 \ge \hat{x}_3) \Lambda(\hat{x}_4 \ge \hat{x}_1) \Lambda(\hat{y}_2 \ge \hat{y}_3) \Lambda(\hat{y}_4 \ge \hat{y}_1)$$

• this will not pass the quick rejection test



Intersection of two line segments (cont.)

- Second stage: Decide whether each segment meets ("straddles") the line containing the other.
- A segment p_1p_2 straddles a line if p_1 lies on one side of the line and p_2 on the other side. (the segment straddles the line also if p_1 or p_2 lies on the line)
- *Observation:* Two segments intersect iff they pass the quick rejection test and each segment straddles the other.
- Testing straddle with cross products:
 - we show how to check if $\overline{p_3p_4}$ straddles the line L determined by p_1 and p_2

If p_3p_4 does straddle the line containing p_1 and p_2 , then the following have different signs.

$$(p_3 - p_1) \times (p_2 - p_1)$$

 $(p_4 - p_1) \times (p_2 - p_1)$

Boundary cases where $\overline{p_3p_4}$ straddles L

At least one cross product is zero. Both cases pass the quick rejection test.

