CHAPTER 2 Geometric Searching

- Problems frequently arise in

 geographic applications

 database management
 - Four separate cost measures
 - 1. Query time. How much time is required, in both the average and worst cases, to respond to a single query?
 - 2. Storage. How much memory is required for the data structure?
 - 3. Preprocessing time. How much time is needed to arrange the data for searching?
 - 4. Update time. Given a specific item, how long will it take to add it to or to delete it from the data structure?

· First problem

PROBLEM S.1 (RANGE SEARCHING—COUNT). Given N points in the plane, how many lie in a given rectangle with sides parallel to the coordinate axes?

Search - Counting

- Given: n points in the plane.
- Find: N(a, b, c, d) = number of points within the rectangle defined by corners a, b, c, d.

Related Problem

- Given: n points in the plane.
- Find: Q(p) = number of points with smaller x- and y-coordinates than respectively p.x and p.y.
- N(a, b, c, d) = Q(a) Q(b) Q(d) + Q(c)

Computational Geometry

Search

Search - Counting; Locus Strategy

0		2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	6	7	Θ	0	1	2	3	4	5	6	6	7	8
0	1	2	3	3	4	5	5	6	7	0		2	3	3	4	5	5	•	7
0	1	2	3	3	4	5	5	5	6	0	1	2	3	3	4	5	5	þ	6
0	0	1	2	2	3	4	4	4	5	0	0	1	2	2	3	4	4	4	5
0	0	1	2	2	3	3	3	3	4	0	0	1	2	2	3	3	3	3	4
0	0	1	2	2	2	2	2	2	3	0	0	1	2	2	2	2	2	2	3
0	0	0	1	1	1	1	1	1	2	0	0	0	1	1	1	1	1	1	2
0	0	0	0	0	O	0	0	0	1	0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	o	0	0

 \bullet Subdivision can be determined in $O(n^2)$ time.

• Space required: $O(n^2)$.

• Query time: $O(\log n)$.

Table I

Query	Storage	Preprocessing	Comments
$O(\log N)$ $O(\log^2 N)$	$O(N^2)$ $O(N \log N)$	$O(N^2)$ $O(N \log N)$	Above method
O(N)	O(N)	O(N)	No preprocessing

- 1. Location problems, where the file represents a partition of the geometric space into regions, and the query is a point. Location consists of identifying the region the query point lies in.
- 2. Range-search problems, where the file represents a collection of points in space, and the query is some standard geometric shape arbitrarily translatable in space (typically, the query in 3-space is a ball or a box). Range-search consists either of retrieving (report problems) or of counting (census or count problems) all points contained within the query domain.

2.2 Point-Location Problems

PROBLEM S.3 (CONVEX POLYGON INCLUSION). Given a convex polygon P and a point z, is z internal to P?

PROBLEM S.2 (POLYGON INCLUSION). Given a simple polygon P and a point z, determine whether or not z is internal to P.

Theorem 2.1. Whether a point z is internal to a simple N-gon P can be determined in O(N) time, without preprocessing.

Figure 2.5 Single-shot inclusion in a simple polygon. There is one intersection of l with P to the left of z, so z is inside the polygon.

· degenerate situations

. to avoid them choose p'= (x',y')

Here P=(x,y) is a quary poin

2.2 Point-Location Problems

· wedge method

Figure 2.6 Division into wedges for the convex inclusion problem. 1. By binary search we learn that z lies in wedge $p_1 q p_2$. 2. By comparing z against edge $\overline{p_1 p_2}$ we find that it is external.

Theorem 2.2. The inclusion question for a convex N-gon can be answered in $O(\log N)$ time, given O(N) space and O(N) preprocessing time.

· interval method

In, 52	II, 3,			ė.	
81/5	*	*		> 1 15	
II, TA	12	174	II, The		

· extension to star-shaped polygons (wedge method)

2 Geometric Searching

Figure 2.7 A star-shaped polygon.

The kernel of a simple N-gon can be found in O(N) time (later)

Theorem 2.3. The inclusion question for an N-vertex star-shaped polygon can be answered in $O(\log N)$ time and O(N) storage, after O(N) preprocessing time.

extension to monotone polygons (interval method)

- query in O(logn)
- storage in O(n)
- prepr. in O(n)

CONVEX ⊂ STAR-SHAPED ⊂ GENERAL.

c monotone "