CHAPTER 7
Intersections

A Sample of Applications

I The hidden-line and hidden-surface problems

D=2 ¢

Figure 7.1 Elimination of hidden lines.

e Ifthe projections of two objects are the polygons

P, and P, and P, lies nearer to the viewer than P,, what must be displayed is P,
and P, n P, (obviously P, n P, is the intersection of P, and the complement of

P).

e ProsLEM Tyre 1.1 (CONSTRUCT INTERSECTION). Given two geometric
objects, form their intersection.

2 Pattern recognition

1\ ~ oM
\\\ oM
~ oM
~ oM
Fe
— \\\
_g-. F. \\ . M
D Fe °Q \\\ oM
I Fe \\\ oM
Fe “e—A linear classifier
Fe N
Weight

Figure 7.2 A two-variable classification problem.

iff(xg,y0) > T then Qe M else Qe F.

Separable Non-separable

Figure 7.3 Two sets are separable if and only if their convex hulls are disjoint.

e ProeLEM Type 1.2 (INTERSECTION TEST). Given two geometric objects,
do they intersect?

3 Wire and component layout

o ProsLEM TyrE [.3 (PAIRWISE INTERSECTION). Given N geometric ob
jects, determine whether any two intersect.

Intersection of convex polygons

ProBLEM L.1.1 (INTERSECTION OF CONVEX POLYGONS). Given two

convex polygons, P with L vertices and Q with M vertices, form their
intersection.

Theorem 7.2. The intersection of a convex L-gon and a convex M-gon is a convex
polygon having at most L + M vertices.

PNQ

Figure 7.4 Intersection of convex polygons.

Theorem 7.3. The intersection of a convex L-gon and a convex M-gon can be
found in (L + M) time.

| | | Inside aslabeach
! | polygon forms a
frapezoid

]
]
|
|
1
|
!

|
|
|
|

Figure 7.5 Slabs defined by the vertices of two convex polygons.

¢ Show that the cutersection detection
m SW e doue v U(€og (L1 M) time.

Intersection of line segments

ProsLem 1.2.1 (LINE-SEGMENT INTERSECTION TEST). Given N linc
segments in the plane, determine whether any two intersect.

Applications

ProsLem [.2.2 (POLYGON INTERSECTION TEST). Given two simple
polveons. P and O, with M and N vertices, respectively, do they intersect?

Edge

p p :/ntersection
Q

Q<P No edge intersection

Figure 7.12 Either P < Q, Q < P, or there is an edge intersection.

POLYGON INTERSECTION TEST oc ~n LINE-SEGMENT
INTERSECTION TEST

ProsLeEM 1.2.3 (SIMPLICITY TEST). Given a polygon, is it simple?

I (DD

Simple Nonsimple

Figure 7.13 Simple and nonsimple polygons.

SIMPLICITY TEST oy LINE-SEGMENT INTERSECTION TEST.

Intersection of star-shaped polygons

Theorem 7.4. Finding the intersection of two star-shaped polygons requires
Q(N?) time in the worst case.

Figure 7.11 The intersection of two star-shaped polygons.

Segment intersection algorithms

ELEMENT UNIQUENESS oc y INTERVAL OVERLAP.

Given a collection of N real numbers x;, these can be converted in linear time
to N intervals [x;, x;]. These intervals overlap if and only if the original points
were not distinct and this proves

Theorem 7.6. (N log N) comparisons are necessary and sufficient 1o determinc
whether N intervals are disjoint, if only algebraic functions of the input can be
computed.

| S bl r=—=" r=-=2 e =
1 1 1 1 1 1 1 1

L R L R L RL R

Jf__—_-"l r'___: r ________ =
r— |—'—-'_'J|—_Jl'1 ¢ FTATTTA '——_L-—_l
1 1 1 1

T RLRRLL R LRR

L and R do not alternate

|
!
u \

Figure 7.15 An order relation between line segments.

Sy > uSas Sy > v S2s S > pSas and s; >, Sa-

The oraering can change in only three ways:

l.

3]

The left endpoint of segment s is encountered. In this case s must be added
to the ordering.

The right endpoint of s is encountered. In this case s must be removed from
the ordering because it is no longer comparable with any others.

 An intersection point of two segments s, and s, 1s reached. Here s, and .

exchange places in the ordering.

e Sweap— Cive S’éa:éus; 0\75

INSERT (s, ¢). Insert segment s into the total order maintained by %.
DELETE(s, &). Delete segment s from .&.

c. ABOVE(s, #). Return the name of the segment immediately above s in the
ordering.

d. BELOW(s, #). Return the name of the segment immediately below s in
the ordering.

=> Mﬁioual’a (use BBLCCeA ffee.a)

or

. EV@W!L;'POI\W;LL scheoule : E

a. MIN(&). Determine the smallest element in & and delete it.
b. INSERT(x, &). Insert abscissa x into the total order maintained by &.

In addition to this essential operation, we also require that & supports the
operation

c. MEMBER(x, &). Determine if abscissa x is a member of &.

.=> pn‘(orf‘bd Ruewme

-~ -
- —
_—— e —

Figure 7.16 Intersection point p is detected for x = x, when segments s, and s, are
found adjacent for the first time. However event abscissae x,, X3, and x, must be
processed before point p at xs is handled.

B

ok

._.
[

13.
14.
15.

16.

17.
18.

19.
20.
21.
22,
23.

24.
25.
26.
27.
28.
29.

—o Y XA

procedure LINE SEGMENT INTERSECTION
1. begin sort the 2N endpoints lexicographically by x and y and place them

end.

into priority queue &;
A =
while (§ # &) do
begin p := MIN(&);
if (p is left endpoint) then
begin s := segment of which p is endpoint;
INSERT(s, £);
s, := ABOVE(s, £);
s,:= BELOW(s, &),
if (s, intersects s) then &/ <= (s 1 S);
if (s, intersects s) then o7 <= (s, s53)
end
else if (p is a right endpoint) then
begin s := segment of which p is endpoint;
s, := ABOVE(s, £);
s, := BELOW(s, &);
if (s, intersects s, to the right of p)
then of < (5;,52);
DELETE(s, %)
end
else (xp is an intersection)
begin (s, , 5,) := segments of which p is intersection
(+with s, = ABOVE(s;) to the left of px*)
s4:= ABOVE(s,, &£);
s4:= BELOW(s,, L),
if (s, intersects s,) then & <= (53,52);
if (s, intersects s,) then &/ <=(5,,54);
interchange s, and s, in &
end;
(xthe detected intersections must now be processedx)
while (& #) do
begin (s, s") <=
x:= common abscissa of s and ’;
if (MEMBER(x, &) = FALSE) then
begin output (s, 5');
INSERT(x, &)
end
end
end

Theorem 7.7 [Bentley—Ottmann (1979)). The K intersections of a set of N line
segments can be reported in time O((N + K)logN).

e Iswot o,mLiMa,Q_') _Q(ueodh—t—k) s o Cower Bousdl,

ProsLEM 1.1.2 (LINE SEGMENT INTERSECTION). Given N line seg-
ments, determine all their intersections.

Theorem 7.9. Whether any two of N line segments in the plane intersect can be
determined in (Nlog N) time, and this is optimal.

An immediate consequence of this result is the following.

Corollary 7.1. The following problems can be solved in time O(Nlog N), in the
worst case.

ProsLEM 1.2.2 (POLYGON INTERSECTION TEST). Do two given poly-
gons intersect?

ProeLEM 1.2.3 (SIMPLICITY TEST). Is a given polygon simple?

ProsLeEM 1.2.4 (EMBEDDING TEST). Does a straight-line embedding of a
planar graph contain any crossing edges?

Corollary 7.2. Whether any two of N circles intersect can be determined in
O(NlogN) time.

]« Cam you showr hin?

PrOBLEM P.13 (MAXIMUM GAP). Given a set S of N real numbers x,,
X3, ..., Xy, find the maximum difference between two consecutive members
pf S. (Two numbers x; and x; of § are said to be consecutive if they are such
In any permutation of (x,,..., xy) that achieves natural ordering.)

Corollary 6.2. In the algebraic computation tree model, any algorithm for the
MAXIMUM GAP problem on a set of N real numbers requires Q(N log N) time. \“
In a modified computation model, however, Gonzalez (1975) has obtained
the most surprising result that the problem can be actually solved in linear
time. The modification consists of adding the (nonanalytic) floor function

“l J” to the usual repertoire. Here is Gonzalez’s remarkable algorithm:

procedure MAX GAP
Input: N real numbers X[1:N] (unsorted)
Output: MAXGAP, the length of the largest gap between consecutive
numbers in sorted order.
begin MIN := min XT[i];

MAX := max XT[i];
(create N — 1 buckets by dividing the interval from MIN to MAX
with N — 2 equally-spaced points. In each bucket we will retain
HIGH][i] and LOW[], the largest and smallest values in bucket i*)
for i:= 1 until N — 1 do

begin COUNTYi]:= 0;

LOW/[i]:= HIGH[i]:= A

end; (*the buckets are set up*)
(*hash into bucketsx*)
for i:= 1 until N — | do

begin BUCKET := 1 + [(N — 1) x (X[i] — MIN)/

(MAX — MIN) J;
COUNT[BUCKET] := COUNT[BUCKET] + 1;
LOW[BUCKET] := min (X[i], LOW[BUCKET]); '
HIGH[BUCKET] := max (X[i], HIGH[BUCKET])""*

end;
(*Note that N — 2 points have been placed in N — 1 buckets, so by
the pigeonhole principle some bucket must be empty. This means that
the largest gap cannot occur between two points in the same bucket.
Now we make a single pass through the buckets*)
MAXGAP := 0;
LEFT := HIGH[1};
for i:= 2until N — 1 do

if (COUNT{{] # 0) then

begin THISGAP := LOW/[i]-LEFT;
MAXGAP := max(THISGAP, MAXGAP);
LEFT := HIGH[/]
end
end.

This algorithm sheds some light on the computational power of the “floor™

