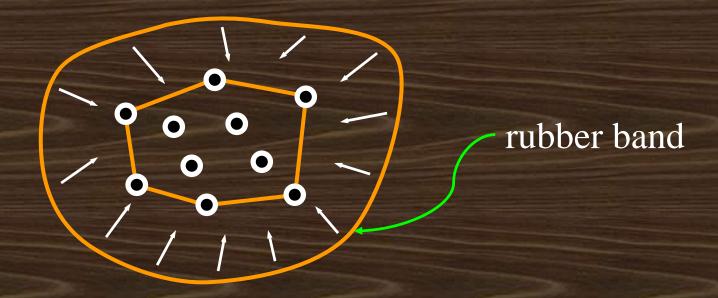
COMPUTING COMPUTING CONVEX HULLS

Presentation Outline

- 2D Convex Hulls
 - -Definitions and Properties
 - -Approaches:
 - Brute Force
 - Gift Wrapping
 - QuickHull
 - Graham Scan
 - · Incremental
 - Divide and Conquer
 - By Delaunay Triangulation & Voronoi Diagram (later)

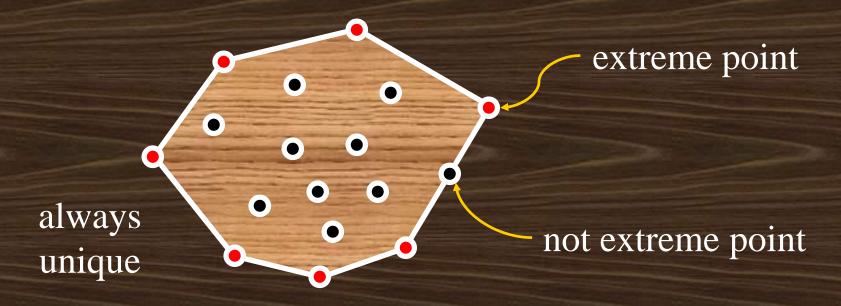
Definitions and Properties



- -Intersection of all convex sets containing P
- -Smallest convex set containing P
- -Intersection of all half-planes containing P
- —Union of all triangles formed by points of P

Definitions and Properties

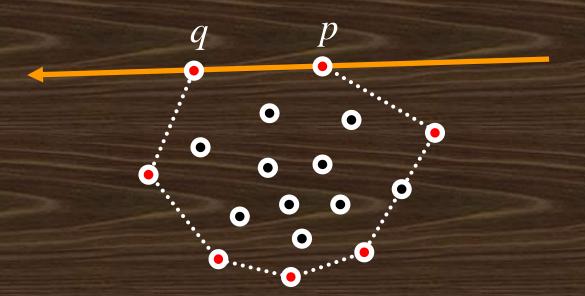
- -Smallest *convex polygon* containing *P*
- -All vertices of hull are some points of P



-NOTE: convex hull is the closed solid region, not just the boundary

Brute-Force Approach

• Determine extreme edges for each pair of points $p,q \in P$ do if all other points lie on one side of line passing thru p and q then keep edge (p, q)



Brute-Force Approach

- Next, sort edges in counterclockwise order
 - -we want output in counterclockwise

- Running time: $O(n^3)$
 - -bad but not the worst yet

Gift Wrapping

```
p \leftarrow \text{the lowest point } p_0
repeat
  for each q \in P and q \neq p do
     compute counterclockwise angle \theta from previous
     hull edge
  let r be the point with smallest \theta
  output (p, r) as a hull edge
  p \leftarrow r
until p = p_0
                                              .....
```

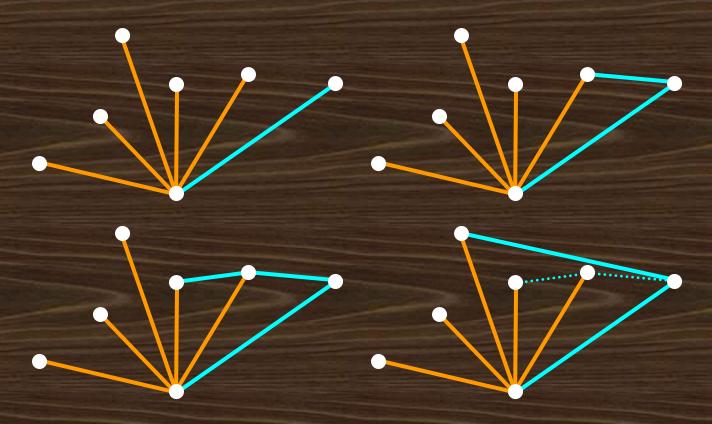
Gift Wrapping

- First suggested by Chand and Kapur (1970)
- Worst-case time: $O(n^2)$
- Output-sensitive time: O(nk)
 - —where k is the # of vertices of hull
- Can be extended to higher dimension
 - was the primary algorithm for higher dimensions for quite some time

• By Graham (1972)

• First algorithm to achieve optimal running time

Uses angular sweep



- Animated demo
 - http://www.gris.uni-tuebingen.de/gris/grdev/ java/algo/solutions/lesson12/ConvexHull.html

```
Find rightmost lowest point p_0
Sort all other points angularly about p_0,
    break ties in favor of closeness to p_0;
    label them p_1, p_2, ..., p_{n-1}
Stack S = (p_{n-1}, p_0) = (p_{t-1}, p_t); t indexes top
i \leftarrow 1
while i < n do
    if p_i is strictly left of (p_{t-1}, p_t) then
        Push(S, i); i++
    else Pop(S)
```

- Running time: $O(n \lg n)$
 - -the whole sweep takes O(n) only because each point can be pushed or popped at most once
 - $-O(n \lg n)$ due to sorting of angles

No obvious extension to higher dimensions

Lower Bound

• Is $\Theta(n \lg n)$ the lower bound running time of any 2D convex hull algorithm?

- Yes
 - -Proven by Yao (1981) using decision tree
- Can be proven by reducing sorting to finding convex hull
 - -Sorting has lower bound $\Theta(n \lg n)$

Lower Bound

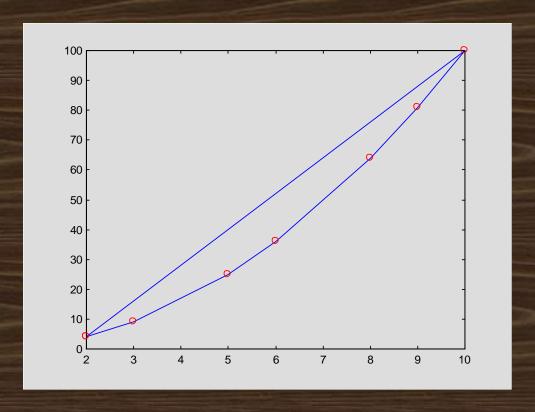
• We can use a convex hull algorithm to sort (Shamos, 1978)

for each input number x do create a 2D point (x, x^2)

Construct a hull for these points

Find the lowest point on the hull and follow the vertices of the hull

Lower Bound

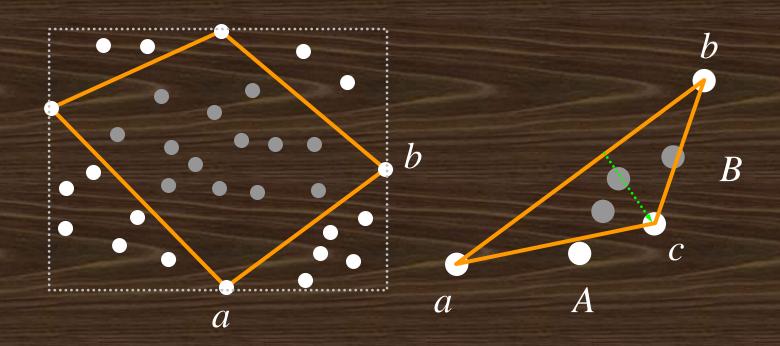


• If we can compute hull faster than $\Theta(n | \lg n)$ then we can sort faster than $\Theta(n | \lg n)$. Impossible!

QuickHull

- Suggested by researchers in late 1970s
- Dubbed the "QuickHull" algorithm by Preparata and Shamos (1985) because of similarity to QuickSort
- Works by recursively discarding points
- Very commonly implemented, just like QuickSort
 - -Qhull
 - http://www.geom.umn.edu/software/qhull

QuickHull



Animated demo

-http://www.piler.com/convexhull/

QuickHull

```
function QuickHull(a, b, S)

if S = \{a, b\} then return \{a, b\}

else

c \leftarrow \text{point furthest from edge } (a, b)

A \leftarrow \text{points right of } (a, c)

B \leftarrow \text{points right of } (c, b)

return QuickHull(a, c, A) concatenate with QuickHull(c, b, B)
```

- Worst-case time: $\overline{O(n^2)}$ —when "partitions" are very unbalanced
- Best- and average-case time: $O(n \lg n)$

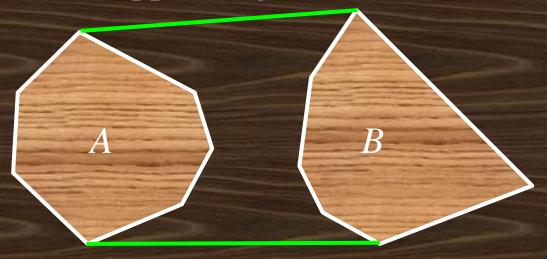
• First applied to convex hull problem by Preparata and Hong (1977)

• The only technique known to extend to 3D and still achieve $O(n \lg n)$ time complexity

Sort the points from left to right
Let A be the leftmost $\lceil n/2 \rceil$ points
Let B be the rightmost $\lfloor n/2 \rfloor$ points
Compute convex hulls H(A) and H(B)Compute $H(A \cup B)$ by merging H(A) and H(B)

• Merging is tricky, but can be done in linear time

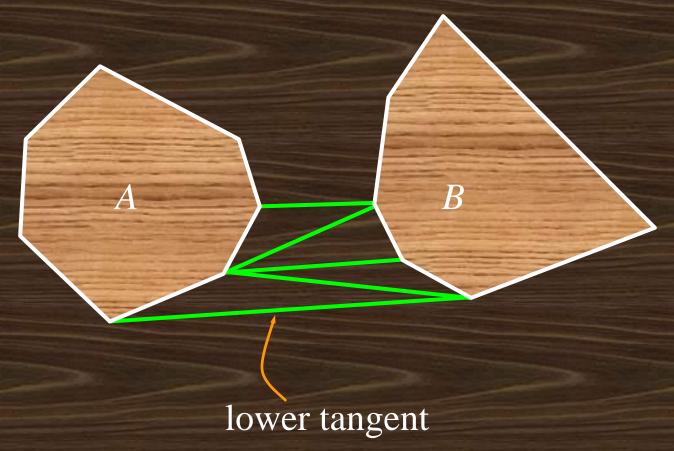
upper tangent



lower tangent

- Need to find the upper and lower tangents
- They can be found in linear time

• Find lower tangent



 Find lower tangent Let a be the rightmost point of A Let b be the leftmost point of B while ab not lower tangent of both A and B do while ab not lower tangent to A do $a \leftarrow$ next clockwise point on H(A)while ab not lower tangent to B do $b \leftarrow$ next counterclockwise point on H(B)

• Basic idea

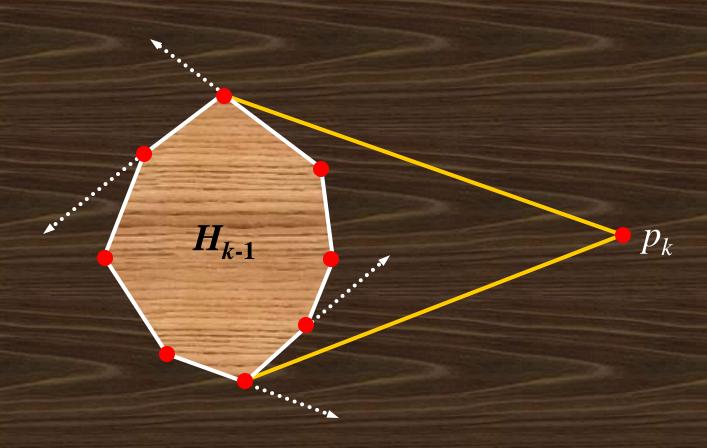
$$H_2 \leftarrow \operatorname{conv} \{ p_0, p_1, p_2 \}$$

$$\operatorname{for} k \leftarrow 3 \text{ to } n - 1 \text{ do}$$

$$H_k \leftarrow \operatorname{conv} \{ H_{k-1} \cup p_k \}$$

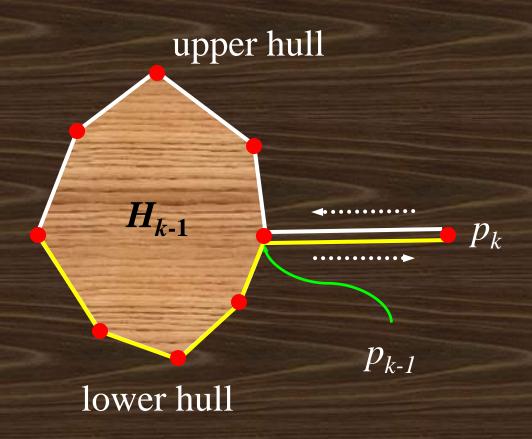
- Two cases to consider
 - -case 1: $p_k \in H_{k-1}$
 - need not update hull
 - -case 2: $p_k \notin H_{k-1}$
 - need to update hull

• When $p_k \notin H_{k-1}$

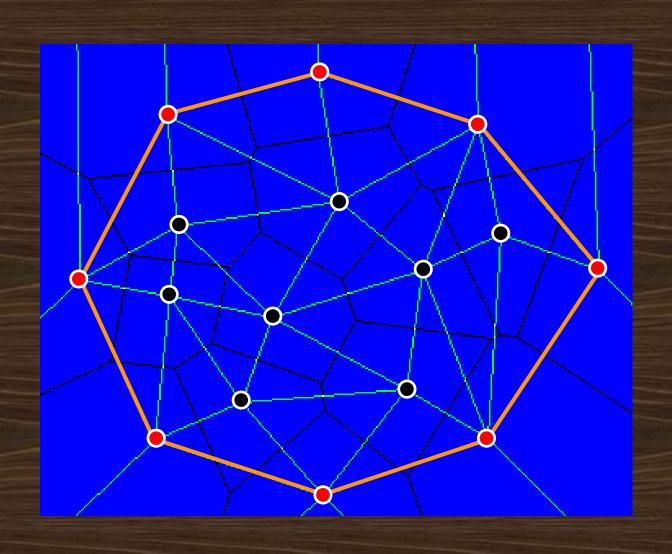


- Requires $O(n^2)$ time but points can be dynamically added to P
- Can be done in randomized expected time
 O(n lg n)
- Can be improved to worst-case $O(n \lg n)$ (Edelsbrunner, 1987) Sort points from left to right $H_2 \leftarrow \text{conv2}\{p_0, p_1, p_2\}$ for $k \leftarrow 3$ to n - 1 do $H_k \leftarrow \text{conv2}\{H_{k-1} \cup p_k\}$

• Always $p_k \notin H_{k-1}$



By Delaunay Triangulation & Voronoi Diagram



By Delaunay Triangulation

```
Compute Delaunay triangulation of P
p \leftarrow the rightmost lowest point p_0 in P
repeat
   for each point adjacent to p do
     compute counterclockwise angle θ from
        previous hull edge
   let q be the point with smallest \theta
   output (p, q) as a hull edge
   p \leftarrow q
until p = p_0
```

By Delaunay Triangulation

- Delaunay triangulation can be computed in O(n lg n) time
- The rest takes O(n) time
- Therefore, total time is $O(n \lg n)$

• Can use Voronoi diagram similarly since it is the dual of Delaunay triangulation

3D CONVEX HULLS

3D Convex Hulls

• 3D convex hull is the smallest convex polyhedron or 3-polytope enclosing *P*

- Complexity of 3D convex hull
 - -Euler's formula: V E + F = 2
 - -F and E are O(n) where n = V

3D Gift Wrapping

• Basic idea

Let partial hull $H \leftarrow$ a triangle on the hull for each edge e on the boundary of H do let $F \in H$ be the face bounded by elet π be the plane containing F"bent" π over e toward the other points until the first point p is encountered $H \leftarrow H \cup \{\text{triangle formed by } e \text{ and } p\}$

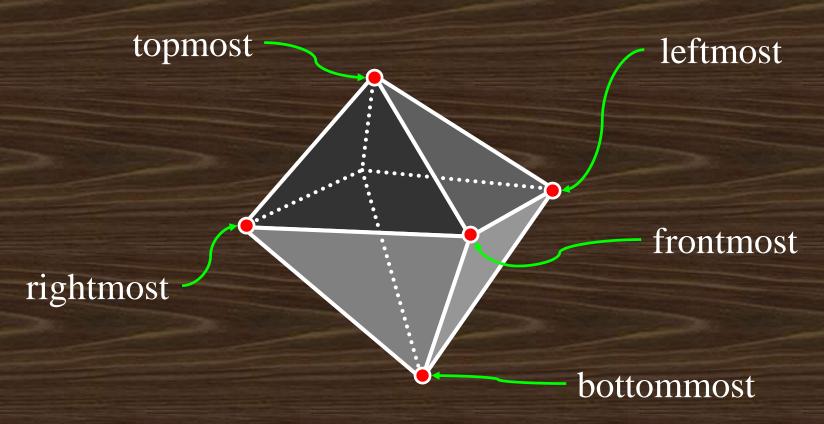
3D Gift Wrapping

• Worst-case time complexity: $O(n^2)$

- Output-sensitive time: O(nF)
 - -where F is the number of faces on the hull

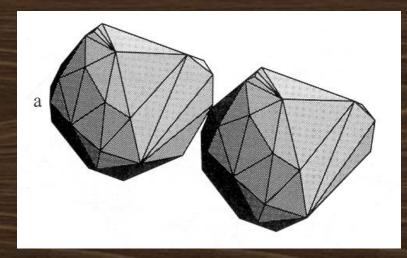
3D QuickHull

• Similar to the 2D algorithm, but begins with a 8-face polytope

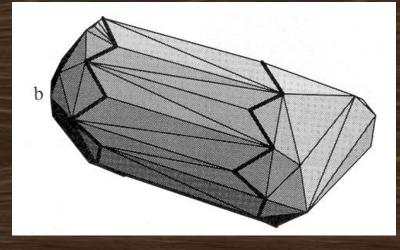


3D QuickHull

- Worst-case time: $O(n^2)$ —when "partitions" are very unbalanced
- Best- and average-case time: $O(n \lg n)$



before

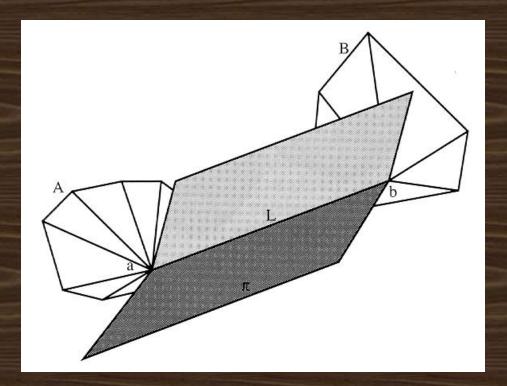


after

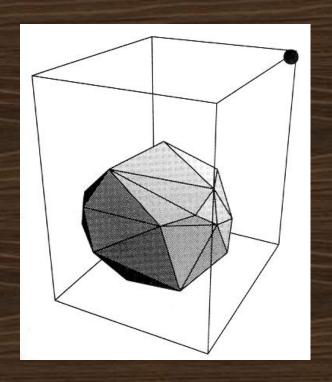
Same paradigm as 2D algorithm
Sort the points from left to right
Let A be the leftmost \[\lfoar/\frac{1}{n/2} \] points
Let B be the rightmost \[\lfoar/\frac{1}{n/2} \] points
Compute convex hulls \(H(A) \) and \(H(B) \)
Compute \(H(A \cup B) \) by merging \(H(A) \) and \(H(B) \)

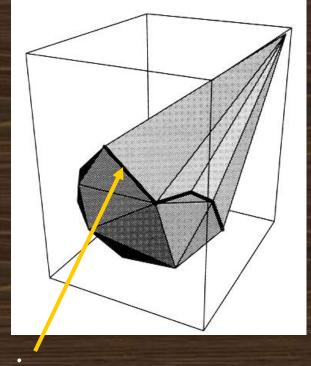
• Need to merge in O(n) time in order to achieve overall $O(n \lg n)$ time

- Merging (basic idea)
 - -find faces joining H(A) and H(B)
 - -discard hidden faces



find joining faces





horizon

- Animated demo
 - -<u>http://imagery.mit.edu/imagery3/6.838/S98/students/bglazer/javaHull/hull.html</u>

```
Initialize H_4 to tetrahedron (p_0, p_1, p_2, p_3)
for i \leftarrow 4 to n-1 do
    for each face f of H_{i-1} do
        compute volume of tetrahedron formed by f and p_i
        mark f visible iff volume < 0
    if no faces are visible then
        discard p_i (it is inside H_{i-1})
    else
        for each horizon edge e of H_{i-1} do
             construct cone face determined by e and p
        for each visible face f do delete f
        update H_i
```

• Requires $O(n^2)$ time

 Can be improved to randomized expected time O(n lg n)

Convex Hulls in Higher Dimensions

- Unfortunately, convex hull in d dimensions can have $\Omega(n^{\lfloor d/2 \rfloor})$ facets (proved by Klee, 1980)
 - -therefore, 4D hull can have quadratic size
- No $O(n \lg n)$ algorithm possible for d > 3
- These approaches can extend to d > 3
 - gift wrapping
 - QuickHull
 - divide & conquer
 - incremental

References

- Main reference
 - "Computational Geometry in C" by Joseph O'Rourke, 1994
- Other references
 - our textbook "Computational Geometry An Introduction" by Preparata and Shamos, 1985
 - "Computational Geometry: Algorithms and Applications" by M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, 1997.
 - "Introduction to Algorithms" by Cormen, Leiserson and Rivest, 1990