
c o m p u t i n g

C O N V E X   H U L L S



Presentation Outline

• 2D Convex Hulls

–Definitions and Properties

–Approaches:

• Brute Force

• Gift Wrapping

• QuickHull

• Graham Scan

• Incremental

• Divide and Conquer

• By Delaunay Triangulation & Voronoi Diagram (later)



Definitions and Properties

– Intersection of all convex sets containing P

–Smallest convex set containing P

– Intersection of all half-planes containing P

–Union of all triangles formed by points of P

rubber band



Definitions and Properties

–Smallest convex polygon containing P

–All vertices of hull are some points of P

–NOTE: convex hull is the closed solid region, 

not just the boundary

extreme point

not extreme point
always 

unique



Brute-Force Approach

• Determine extreme edges

for each pair of points p,qP do

if all other points lie on one side of line 

passing thru p and q then keep edge (p, q)

pq



Brute-Force Approach

• Next, sort edges in counterclockwise order

–we want output in counterclockwise

• Running time: O(n3)

–bad but not the worst yet



Gift Wrapping

p  the lowest point p0

repeat

for each qP and q  p do

compute counterclockwise angle  from previous 
hull edge

let r be the point with smallest 

output (p, r) as a hull edge

p  r

until p = p0

p





Gift Wrapping

• First suggested by Chand and Kapur 

(1970)

• Worst-case time: O(n2)

• Output-sensitive time: O(nk)

–where k is the # of vertices of hull

• Can be extended to higher dimension

–was the primary algorithm for higher 

dimensions for quite some time



Graham Scan

• By Graham (1972)

• First algorithm to achieve optimal 

running time

• Uses angular sweep



Graham Scan

• Animated demo

– http://www.gris.uni-tuebingen.de/gris/grdev/ 

java/algo/solutions/lesson12/ConvexHull.html

http://www.gris.uni-tuebingen.de/gris/grdev/java/algo/solutions/lesson12/ConvexHull.html


Graham Scan

Find rightmost lowest point p0

Sort all other points angularly about p0,

break ties in favor of closeness to p0;

label them p1, p2, ..., pn-1

Stack S = (pn-1, p0) = (pt-1, pt); t indexes top

i  1

while i < n do

if pi is strictly left of (pt-1, pt) then

Push(S, i); i++

else Pop(S)



Graham Scan

• Running time: O(n lg n)

– the whole sweep takes O(n) only because 

each point can be pushed or popped at most 

once

–O(n lg n) due to sorting of angles

• No obvious extension to higher 

dimensions



Lower Bound

• Is (n lg n) the lower bound running time 

of any 2D convex hull algorithm?

• Yes

–Proven by Yao (1981) using decision tree

• Can be proven by reducing sorting to 

finding convex hull

–Sorting has lower bound (n lg n)



Lower Bound

• We can use a convex hull algorithm to sort 

(Shamos, 1978)

for each input number x do

create a 2D point (x, x2)

Construct a hull for these points

Find the lowest point on the hull and follow 

the vertices of the hull



Lower Bound

• If we can compute hull faster than (n lg 

n) then we can sort faster than (n lg n). 

Impossible!

2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100



QuickHull

• Suggested by researchers in late 1970s

• Dubbed the “QuickHull” algorithm by 

Preparata and Shamos (1985) because of 

similarity to QuickSort

• Works by recursively discarding points

• Very commonly implemented, just like 

QuickSort

–Qhull

• http://www.geom.umn.edu/software/qhull

http://www.geom.umn.edu/software/qhull


QuickHull

• Animated demo

–http://www.piler.com/convexhull/

a

b

a

b

c

A

B

http://www.piler.com/convexhull/


QuickHull

function QuickHull(a, b, S)

if S = {a, b} then return {a, b}

else

c  point furthest from edge (a, b)

A  points right of (a, c)

B  points right of (c, b)

return QuickHull(a, c, A) concatenate with 
QuickHull(c, b, B)

• Worst-case time: O(n2)
–when “partitions” are very unbalanced

• Best- and average-case time: O(n lg n)



Divide & Conquer

• First applied to convex hull problem by 

Preparata and Hong (1977)

• The only technique known to extend to 3D 

and still achieve O(n lg n) time complexity



Divide & Conquer

Sort the points from left to right

Let A be the leftmost n/2 points

Let B be the rightmost n/2 points

Compute convex hulls H(A) and H(B)

Compute H(AB) by merging H(A) and H(B)

• Merging is tricky, but can be done in 

linear time



Divide & Conquer

• Need to find the upper and lower tangents

• They can be found in linear time

A B

lower tangent

upper tangent



Divide & Conquer

• Find lower tangent

A B

lower tangent



Divide & Conquer

• Find lower tangent

Let a be the rightmost point of A

Let b be the leftmost point of B

while ab not lower tangent of both A and B do

while ab not lower tangent to A do

a  next clockwise point on H(A)

while ab not lower tangent to B do

b  next counterclockwise point on H(B)



Incremental Algorithm

• Basic idea

H2  conv{ p0, p1, p2 }

for k  3 to n - 1 do

Hk  conv{ Hk-1  pk }

• Two cases to consider

– case 1: pkHk-1

• need not update hull

– case 2: pkHk-1

• need to update hull



Incremental Algorithm

• When pkHk-1

pkHk-1



Incremental Algorithm

• Requires O(n2) time but points can be 

dynamically added to P

• Can be done in randomized expected time 

O(n lg n)

• Can be improved to worst-case O(n lg n) 

(Edelsbrunner, 1987)
Sort points from left to right

H2  conv2{ p0, p1, p2 }

for k  3 to n - 1 do

Hk  conv2{ Hk-1  pk }



Incremental Algorithm

• Always pkHk-1

pk
Hk-1

pk-1

upper hull

lower hull



By Delaunay Triangulation & 

Voronoi Diagram



By Delaunay Triangulation

Compute Delaunay triangulation of P

p  the rightmost lowest point p0 in P

repeat

for each point adjacent to p do

compute counterclockwise angle  from 
previous hull edge

let q be the point with smallest 

output (p, q) as a hull edge

p  q

until p = p0



By Delaunay Triangulation

• Delaunay triangulation can be computed 

in O(n lg n) time

• The rest takes O(n) time

• Therefore, total time is O(n lg n)

• Can use Voronoi diagram similarly since 

it is the dual of Delaunay triangulation



3D CONVEX HULLS



3D Convex Hulls

• 3D convex hull is the smallest convex 

polyhedron or 3-polytope enclosing P

• Complexity of 3D convex hull

–Euler’s formula: V − E + F = 2

–F and E are O(n) where n = V



3D Gift Wrapping

• Basic idea

Let partial hull H  a triangle on the hull

for each edge e on the boundary of H do

let FH be the face bounded by e

let p be the plane containing F

“bent” p over e toward the other points 

until the first point p is encountered

H  H  {triangle formed by e and p}



3D Gift Wrapping

• Worst-case time complexity: O(n2)

• Output-sensitive time: O(nF)

–where F is the number of faces on the hull



3D QuickHull

• Similar to the 2D algorithm, but begins 

with a 8-face polytope

leftmosttopmost

bottommost

rightmost

frontmost



3D QuickHull

• Worst-case time: O(n2)
–when “partitions” are very unbalanced

• Best- and average-case time: O(n lg n)



3D Divide & Conquer

before

after



3D Divide & Conquer

• Same paradigm as 2D algorithm

Sort the points from left to right

Let A be the leftmost n/2 points

Let B be the rightmost n/2 points

Compute convex hulls H(A) and H(B)

Compute H(AB) by merging H(A) and H(B)

• Need to merge in O(n) time in order to 

achieve overall O(n lg n) time



3D Divide & Conquer

• Merging (basic idea)

– find faces joining H(A) and H(B)

–discard hidden faces

find 

joining 

faces



3D Incremental Algorithm

horizon

• Animated demo

–http://imagery.mit.edu/imagery3/6.838/S98/ 

students/bglazer/javaHull/hull.html

http://imagery.mit.edu/imagery3/6.838/S98/students/bglazer/javaHull/hull.html


3D Incremental Algorithm

Initialize H4 to tetrahedron (p0, p1, p2, p3)

for i  4 to n-1 do

for each face f of Hi-1 do

compute volume of tetrahedron formed by f and pi

mark f visible iff volume < 0

if no faces are visible then

discard pi (it is inside Hi-1)

else 

for each horizon edge e of Hi-1 do

construct cone face determined by e and p

for each visible face f do delete f

update Hi



3D Incremental Algorithm

• Requires O(n2) time

• Can be improved to randomized expected 

time O(n lg n)



Convex Hulls in 

Higher Dimensions

• Unfortunately, convex hull in d

dimensions can have (nd/2) facets 

(proved by Klee, 1980)

– therefore, 4D hull can have quadratic size

• No O(n lg n) algorithm possible for d > 3

• These approaches can extend to d > 3
– gift wrapping

– QuickHull

– divide & conquer

– incremental



References

• Main reference

– “Computational Geometry in C” by Joseph 

O’Rourke, 1994

• Other references

– our textbook “Computational Geometry - An 

Introduction” by Preparata and Shamos, 1985

– “Computational Geometry: Algorithms and 

Applications” by M. de Berg, M. van Kreveld, M. 

Overmars, and O. Schwarzkopf,  1997. 

– “Introduction to Algorithms” by Cormen, Leiserson 

and Rivest, 1990


