Computational Geometry

Proximity

Nearest Neighbor Problem

- Given: n points in the plane.
- Find: closest pair.

• Trivial algorithm

 $O(n^2)$

- Can it be improved?
- Yes, in 1 dimension.

- Sort. Closest pair is next to each other.
- Sorting $O(n \log n)$. Scanning O(n) time.

All Nearest Neighbor Problem

• Given: n points in the plane.

• Find: nearest neighbor for each.

Nearest Neighbor Problem - Search

- Given: n points in the plane and a query point q.
- Find: nearest neighbor to q.

k-Nearest Neighbor Problem - Search

• Given: n points in the plane and a query point q.

• Find: k-th nearest neighbor to q.

Minimum Spanning Tree Problem

- Given: n points in the plane.
- Find: minimum spanning tree

- Can be solved by well-known methods for minimum spanning trees in weighted graphs (in the complete graph K_n with distances as edge weights).
- Is it possible to prune K_n ?
- Only pairs relatively close to each other need to be considered.

A Steiner Tree (b) may have smaller total length than the MST (a).

Delaunay Triangulation

- Given: n points in the plane.
- Add: non-crossing edges so that all faces are triangular. The exterior face is the convex hull of the point set.

- Every triangulation has 3n 6 edges.
- There are many different triangulations:
 - minimum weight triangulation,
 - maximized smallest angle.

Lower Bounds

- Nearest neighbor problem is a generalization of the element uniqueness problem.
 - Given: n real numbers.
 - Decide: if two are identical.
- Transformation: $x \to (x, 0)$. Find two closest neighbors. If their distance is 0, then the set contains to identical numbers.
- Element uniqueness requires $\Omega(n \log n)$.
- All nearest neighbor problem is also $\Omega(n \log n)$ time. Its solution provides the solution to the nearest neighbor problem in additional O(n) time.

Relationship among computational prototypes and proximity problems.

Lower Bounds

- Minimum spanning tree problem is $\Omega(n \log n)$; it is a generalization of sorting of n numbers.
 - Transformation $x \to (x, 0)$. Minimum spanning tree for this point-set is a path (defining the ordering).
- Triangulation is a generalization of sorting.

• edges incident with $(x_0, -1)$ give the ordering.

Lower Bounds

- Nearest neighbor search is a generalization of binary search. Transformation: $x \to (x,0)$. Search for the nearest neighbor to $(x_0,0)$. Binary search is $\Omega(\log n)$.
- k-nearest neighbor search is obviously a generalization of nearest neighbor search. Hence $\Omega(\log n)$

Nearest Neighbor Problem

- Sorting provides an optimal $\Theta(n \log n)$ algorithm in 1-dimensional space.
- Can this be generalized to higher dimensions?
- Project onto one of the axes and then sort.

• Does not work. p_1 and p_5 are nearest neighbors but their projections are farthest away on the y-axis.

Nearest Neighbor Problem - Divide and Conquer

- Nearest neighbors in S_1 .
- Nearest neighbors in S_2 .
- Nearest neighbors, one in S_1 other in S_2 .
- Time complexity:

$$T(n) = 2T(n/2) + O(n^2/4)$$

is $O(n^2)$

Nearest Neighbor Problem - Divide and Conquer

- Is it necessary to check all $n^2/4$ pairs with one point in S_1 and the other point in S_2 ?
- In 1-dimensional space.

- \bullet Let $\sigma = \min\{|p_i p_j|, |q_k q_l|\}$
- Only points at distance σ need to be checked.
- There is at most one point in S_1 at distance σ from m. Similarly for S_2 .
- In 2-dimensional space.

Nearest Neighbor Problem - Divide and Conquer

- \bullet Preprocessing: Sort S by y-coordinates.
- Divide S into two equal size subsets S_1 and S_2 by a vertical median.
- Solve (recursively) for S_1 and S_2 . Let $\delta = \min\{\delta_1, \delta_2\}$ where δ_i is the smallest distance in S_i , i = 1, 2.
- Determine the upward chain P_i through points of S_i at distance δ from the median. Can be done in O(n) time.

- In total $\Theta(n \log n)$.
- This method cannot be generalized to solve other problems.

Computational Geometry

Proximity

Minimum Spanning Tree

- \bullet e is shortest crossing edge,
- \bullet e is not in DT

- ullet p is either in X or in V-X
- |up| < |uv| and |vp| < |uv|
- \bullet uv cannot be a crossing edge.