Computational Geometry Proximity

Nearest Neighbor Problem

e Given: n points in the plane.

e Find: closest pair.

[J
[[
i °
° ° ° °
[
[[] [
° \
e Trivial algorithm O(n?)
e Can it be improved?
e Yes, in 1 dimension.
L @ -0 L L L

e Sort. Closest pair is next to each other.

e Sorting O(nlogn). Scanning O(n) time.

Computational Geometry Proximity

All Nearest Neighbor Problem

e Given: n points in the plane.

e Find: nearest neighbor for each.

O

) &7

Computational Geometry Proximity
Nearest Neighbor Problem - Search

e Given: n points in the plane and a query point gq.

e Find: nearest neighbor to q.

Computational Geometry Proximity
k-Nearest Neighbor Problem - Search
e Given: n points in the plane and a query point gq.

e Find: k-th nearest neighbor to q.

Computational Geometry Proximity
Minimum Spanning Tree Problem
e Given: n points in the plane.

¢ Find: minimum spanning tree

e Can be solved by well-known methods for minimum
spanning trees in weighted graphs (in the complete graph
K, with distances as edge weights).

e Is it possible to prune K,,?

e Only pairs relatively close to each other need to be con-
sidered.

(a) (b)

A Steiner Tree (b) may have smaller total length than the MST (a).

Computational Geometry Proximity

Delaunay Triangulation

e Given: n points in the plane.

e Add: non-crossing edges so that all faces are triangu-
lar. The exterior face is the convex hull of the point
set.

e Every triangulation has 3n — 6 edges.
e There are many different triangulations:

— minimum weight triangulation,

— maximized smallest angle.

Computational Geometry Proximity

Lower Bounds

e Nearest neighbor problem is a generalization of the el-
ement uniqueness problem.

— Given: n real numbers.
— Decide: if two are identical.
e Transformation: z — (z,0). Find two closest neigh-

bors. If their distance is 0, then the set contains £3
identical numbers.

e Element uniqueness requires 2(n logn).

e All nearest neighbor problem is also {2(n logn) time. Its
solution provides the solution to the nearest neighbor
problem in additional O(n) time.

ELEMENT UNIQUENESS S~ CLOSEST PAIR (P1)
N
N ALL NEAREST
NEIGHBORS (P 2)
SORTING N > EMST (P 3)

TRIANGULATION (P4)

Relationship among computational prototypes and proximity problems.

Computational Geometry Proximity

Lower Bounds
e Minimum spanning tree problem is Q(nlogn); it is a
generalization of sorting of n numbers.

— Transformation £ — (z,0). Minimum spanning
tree for this point-set is a path (defining the or-
dering).

e Triangulation is a generalization of sorting.

(x0,-1)

e edges incident with (zy, —1) give the ordering.

Computational Geometry Proximity

Lower Bounds

e Nearest neighbor search is a generalization of binary
search. Transformation: z — (z,0). Search for the
nearest neighbor to (z¢,0). Binary search is (logn).

e k-nearest neighbor search is obviously a generalization
of nearest neighbor search. Hence Q(logn)

Computational Geometry Proximity

Nearest Neighbor Problem

e Sorting provides an optimal ©(nlogn) algorithm in 1-
dimensional space.

e Can this be generalized to higher dimensions?

e Project onto one of the axes and then sort.

o Pl

——e P2

o P3

® p4

® p5

e Does not work. p; and p; are nearest neighbors but
their projections are farthest away on the y-axis.

Computational Geometry Proximity

Nearest Neighbor Problem - Divide and Conquer

A
[]

y

e Nearest neighbors in ;.
e Nearest neighbors in Sj.
e Nearest neighbors, one in S; other in Ss.
e Time complexity:
T(n) = 2T (n/2) + O(n*/4)
is O(n?)

Computational Geometry

Proximity

Nearest Neighbor Problem - Divide and Conquer

e Is it necessary to check all n%/4 pairs with one point in

S1 and the other point in Sy7

e In 1-dimensional space.

o Let 0= min{|pz‘Pj|a \qrar|}

e Only points at distance o need to be checked.

e There is at most one point in S; at distance o from m.

Similarly for Ss.

e In 2-dimensional space.

A _—
. [e
i °
° ° o °
° : o °
e
[)

\

Computational Geometry

Proximity

Nearest Neighbor Problem - Divide and Conquer

e Preprocessing: Sort S by y-coordinates.

e Divide S into two equal size subsets S; and Sy by a

vertical median.

e Solve (recursively) for S; and Ss. Let 6 = min{éy, b2}
where §; is the smallest distance in S;, i = 1, 2.

e Determine the upward chain P, through points of S; at
distance 0 from the median. Can be done in O(n) time.

|

\

—
'

e In total ©(nlogn).

y

e This method cannot be generalized to solve other prob-

lems.

Computational Geometry Proximity

Minimum Spanning Tree

e ¢ is shortest crossing edge,

e ¢ is not in DT

e pis either in X orin V — X
o |up| < |uv| and |vp| < |uv]

e uv cannot be a crossing edge.

