Euclidean Minimum Spanning Trees
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/ (a Voronoi edge)

A set of points, its Voronoi diagram, and its EMST.

Theorem 6.1. An EMST of a set S of N points in the plane can be computed from
the Delaunay Triangulation of S in optimal time B(N).

Combining this result with the fact that the Delaunay triangulation is
computable in time §(Nlog N) we have

Corollary 6.1. An EMST of a set S of N points in the plane can be computed in
optimal time O(Nlog N).



Euclidean traveling salesman

ProsLEM P.9 (EUCLIDEAN TRAVELING SALESMAN). Find a shortest
closed path through N given points in the plane.
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A traveling salesman tour.

Theorem 6.2 [Rosenkrantz—Stearns—Lewis (1974)]. A minimum spanning tree

can be used to obtain an approximate TSP tour whose length is less than twice the
length of a shortest tour.
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Short-cuts” on the Euler tour ensure that each vertex is visited exact

once.
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ProsLEM P.10 (MINIMUM EUCLIDEAN MATCHING). Given 2N po:mts
in the plane, join them in pairs by line segments whose total length is a

minimum.
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A minimum Euclidean matching.

Theorem 6.3. An approximation to the traveling salesman problem whose length
is within 32 of optimal can be obtained in O(N 3) time if the interpoint distances

obey the triangle inequality. [ chn 91‘:0-F roleg (7 6]
ProoF. The following algorithm achieves the desired result on the given set S:

1. Find a minimum spanning tree 7* of S.

2. Find a minimum Euclidean matching M* on the set X = S of vertices of
odd degree in T*. (X has always even cardinality in any graph.)

3. The graph T* U M* isan Eulerian graph, since all of its vertices have even
degree. Let ®, be an Eulerian circuit of it.

4. Traverse ®, edge by edge and bypass each previously visited vertex. @, is
the resulting tour.
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Computational Geometry Voronoi Diagrams

Smallest Circle

e Given: n points in the plane .
Mmin maoé((%r Xo)+ /ji L

e Find: Smallest circle containing all points. pe ¢

e There is a unique solution. It goes through three points
or has two diameter defining points.

e Trivial algorithm O(n?).

e Determine the diameter of the point set. STOP if the
circle with this diameter contains all points. Requires

O(nlogn).

e Determine V D,_1(S). Find circle with Voronoi point as
origo and through three most remote points. Requires

O(nlogn).
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Computational Geometry Voronoi Diagrams

Voronoi Diagrams of (n-1)-st Order




Computational Geometry Voronoi Diagrams

Smallest Circle

Can be solved in ©(n) time using Megiddo’s prune and
search technique for linear programming with 3 variables

(PS 297-299).




Computational Geometry Voronoi Diagrams
Largest Empty Circle
e Given: n points in the plane

e Find: Largest empty circle with center in the convex
hull of the point-set.
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Computational Geometry Voronoi Diagrams

Largest Empty Circle

e The center is either a Voronoi point or occurs at an
intersection of a Voronoi edge with the boundary of
the convex hull.

e How to find the intersection?

e Voronoi edges intersect at most 2 boundary edges of
the convex hull.

e Each side of the convex hull intersects at least one
Voronoi edge.
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6.4 Gaps and Covers

Corollary 6.2. In the algebraic computation tree model, any algorithm for the
MAXIMUM GAP problem on aset of N real numbers requires (N log N) time.

In a modified computation model, however, Gonzalez (1975) has obtained
the most surprising result that the problem can be actually solved in linear
time. The modification consists of adding the (nonanalytic) floor function
“L |” to the usual repertoire. Here is Gonzalez's remarkable algorithm:

procedure MAX GAP
Input: N real numbers X[1:N] (unsorted)
Output: MAXGAP, the length of the largest gap between consecutive
numbers in sorted order.
begin MIN := min XT[i];
MAX = max X[i];
(xcreate N — 1 buckets by dividing the interval from MIN to MAX
with N — 2 equally-spaced points. In each bucket we will retain
HIGH[] and LOW[{], the largest and smallest values in bucket i*)
for i:= 1 until N — | do
begin COUNT([/] := 0;
LOWT[i]:= HIGH[i]:= A
end; (*the buckets are set up*)
(*hash into buckets*)
for i:= 1 until N — 1 do
begin BUCKET := 1 + [(N — 1) x (X[i] — MIN)/
(MAX — MIN)J;
COUNT[BUCKET] := COUNT[BUCKET] + L;
LOW[BUCKET] := min (X [i], LOW[BUCKET]}) H
HIGH[BUCKET] := max (X [i], HIGH [BUCKET])"!
end;
(*Note that N — 2 points have been placed in N — 1 buckets, so by
the pigeonhole principle some bucket must be empty. This means that
the largest gap cannot occur between two points in the same bucket.
Now we make a single pass through the buckets*)
MAXGAP = 0;
LEFT:= HIGH[I];
for i:= 2 until N — 1 do
if (COUNT(:] # 0) then
begin THISGAP := LOW[i]-LEFT:
MAXGAP := max(THISGAP, MAXGAP);
LEFT:= HIGH[/]
end
end.

This algorithm sheds some light on the computational power of the “floor”

! Here, by convention, min(x, A) = max{x,A) = x.
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