On Strong Tree-Breadth

Arne Leitert®™) and Feodor F. Dragan

Department of Computer Science, Kent State University, Kent, OH, USA
{aleitert,dragan}@cs.kent.edu

Abstract. In this paper, we introduce and investigate a new notion of
strong tree-breadth. We say that a graph G has strong tree-breadth p if
there is a tree-decomposition 7" for G such that each bag B of T is equal
to the complete p-neighbourhood of some vertex v in G, i.e., B = N&[v].
We show that

— it is NP-complete to determine if a given graph has strong tree-
breadth p, even for p = 1;

— if a graph G has strong tree-breadth p, then we can find a tree-
decomposition for G with tree-breadth p in O(n*m) time;

— with some additional restrictions, a tree-decomposition with strong
breadth p can be found in polynomial time;

— some graph classes including distance-hereditary graphs have strong
tree-breadth 1.

1 Introduction

Decomposing a graph into a tree is an old concept. It was introduced already
by Halin [14]. However, a more popular introduction was given by Robertson
and Seymour [15,16]. The idea is to decompose a graph into multiple induced
subgraphs, usually called bags, where each vertex can be in multiple bags. These
bags are combined to a tree in such a way that the following requirements are
fulfilled: Each vertex is in at least one bag, each edge is in at least one bag, and,
for each vertex, the bags containing it induces a subtree. We will give formal
definitions in the next section.

For a given graph, there can be up to exponentially many different tree-
decompositions. The easiest is to have only one bag containing the whole graph.
To make the concept more interesting, it is necessary to add additional restric-
tions. The most known is called tree-width. A decomposition has width w if each
bag contains at most w + 1 vertices. Then, a graph G has tree-width w if there
is a tree-decomposition for G which has width w.

In the last years, a new perspective on tree-decompositions was invested.
Instead of limiting the number of vertices in each bag, the distance between
vertices inside a bag is limited [8,9]. In this paper, we are interested in a variant
called tree-breadth. It was introduced by Dragan and Kéhler in [9]. The breadth
of a tree-decomposition is p, if, for each bag B, there is a vertex v such that
each vertex in B has distance at most p to v. Accordingly, we say the tree-
breadth of a graph G is p (written as tb(G) = p) if there is a tree-decomposition

© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 62-76, 2016.
DOI: 10.1007/978-3-319-48749-6_5

On Strong Tree-Breadth 63

for G with breadth p and there is no tree-decomposition with smaller breadth.
This new concept of tree-breadth played a crucial role in designing an efficient
and best to the date approximation algorithm for the well-known tree ¢t-spanner
problem (see [9] for details). Recently, Ducoffe et al. [13] have shown that it is
NP-complete to determine if a graph has tree-breadth p for all p > 1. On the
other hand, for a given graph G, a tree-decomposition of breadth at most 3 tb(G)
can be computed in linear time [1].

By definition, a tree-decomposition has breadth p if each bag B is the subset
of the p-neighbourhood of some vertex v, i. e., the set of bags is the set of subsets
of the p-neighbourhoods of some vertices. Tree-breadth 1 graphs contain the
class of dually chordal graphs which can be defines as follows: A graph G is
dually chordal if it admits a tree-decomposition T such that, for each vertex v
in G, T contains a bag B = N¢[v] [4]. That is, the set of bags in T is the set of
complete neighbourhoods of all vertices.

In this paper, we investigate the case which lays between dually chordal
graphs and general tree-breadth p graphs. In particular, tree-decompositions are
considered where the set of bags are the complete p-neighbourhoods of some ver-
tices. We call this strong tree-breadth. The strong breadth of a tree-decomposition
is p, if, for each bag B, there is a vertex v such that B = Ng[v]. Accord-
ingly, a graph G has strong tree-breadth smaller than or equal to p (written as
stb(G) < p) if there is a tree-decomposition for G with strong breadth at most p.

Dually chordal graphs and their powers are exactly the graphs admitting a
tree-decomposition where the set of bags is equal to the set of complete neigh-
bourhoods (complete p-neighbourhoods) of all vertices. It is a known fact that
the dually chordal graphs (the powers of dually chordal graphs) can be recog-
nised in linear time (respectively, polynomial time) [4]. General tree-breadth p
graphs cannot be recognised in polynomial time unless P = NP [13]. It remained
an interesting open question if the graphs with strong tree-breadth p can be
recognised in polynomial time.

In this paper we show that it is NP-complete to determine if a given graph
has strong tree-breadth p, even for p = 1. Furthermore, we demonstrate that:
if a graph G has strong tree-breadth p, then we can find a tree-decomposition
for G with tree-breadth p in O(n?m) time; with some additional restrictions, a
tree-decomposition with strong breadth p can be found in polynomial time; some
graph classes including distance-hereditary graphs have strong tree-breadth 1.
Our future research plans are to investigate algorithmic implications of the
existence for a graph of a tree-decomposition with small strong tree-breadth.
Can some algorithmic problems that remain NP-complete on general tree-
breadth p graphs be solved/approximated efficiently on the graphs with strong
tree-breadth p? Recall that, for example, greedy routing with aid of a spanning
tree [12], (connected) r-domination [3], Steiner tree [3], and (weighted) efficient
domination [5,6] can be efficiently solved on dually chordal graphs and their
powers.

64 A. Leitert and F.F. Dragan

2 Preliminaries

All graphs occurring in this paper are (if not stated or constructed otherwise)
connected, finite, unweighted, undirected, without loops, and without multiple
edges. For a graph G = (V, E), we use n = |V| and m = |E| to denote the
cardinality of the vertex set and the edge set of G. The length of a path from a
vertex v to a vertex u is the number of edges in the path. The distance dg(u,v)
of two vertices v and v is the length of a shortest path connecting v and v.
The distance between a vertex v and a set S C V is defined as dg(v,S) =
ming,es da(u, v).

For a vertex v of G, Ng(v) = {u € V | uv € E} is called the open neighbor-
hood of v. Similarly, for a set S C V, we define Ng(S) = {u eV | dg(u,S) = 1}.
The r-neighbourhood of a vertex v in G is N&[v] = {u | dg(u,v) < r};if r is not
specified, then r = 1. Two vertices u and v are true twins if Nglu] = Nglv] and
are false twins if they are non-adjacent and Ng(u) = Ng(v).

For a vertex set S, let G[S] denote the subgraph of G induced by S. With
G — S, we denote the graph G[V\S]. A vertex set S is a separator for two
vertices v and v in G if each path from u to v contains a vertex s € S; in this
case we say S separates u from v. If a separator S contains only one vertex s,
i.e., S = {s}, then s is an articulation point. A block is a maximal subgraph
without articulation points.

A chord in a cycle is an edge connecting two non-consecutive vertices of the
cycle. A cycle is called induced if it has no chords. For each k > 3, an induced
cycle of length k is called as Ci. A subgraph is called clique if all its vertices
are pairwise adjacent. A mazimal clique is a clique that cannot be extended by
including any additional vertex.

A tree-decomposition of a graph G = (V,E) is a tree T with the vertex
set B where each vertex of T, called bag, is a subset of V such that: (i) V =
Uper B, (ii) for each edge uv € E, there is a bag B € B with u,v € B, and
(iii) for each vertex v € V, the bags containing v induce a subtree of T. A
tree-decomposition 1" of G has breadth p if, for each bag B of T, there is a
vertex v in G with B C NZ[v]. The tree-breadth of a graph G is p, written as
tb(G) = p, if p is the minimal breadth of all tree-decomposition for G. Similarly,
a tree-decomposition T of G has strong breadth p if, for each bag B of T', there
is a vertex v in G with B = N4 [v]. The strong tree-breadth of a graph G is the
minimal p for which G admits a tree-decomposition with strong breadth p. This
is written as stb(G) = p.

3 NP-Completeness

In this section, we will show that it is NP-complete to determine if a given graph
has strong tree-breadth p even if p = 1. To do so, we will first show that, for
some small graphs, the choice of possible centers is restricted. Then, we will use
these small graphs to construct a reduction.

On Strong Tree-Breadth 65

Lemma 1. Let C = {vy,v2,v3,v4} be an induced Cy in a graph G with the
edge set {vivg, vaUs, V3V, v4v1 }. If there is no vertexr w ¢ C with Nglw] 2 C,
then Ng[v1] and Nglva] cannot both be bags in the same tree-decomposition with
strong breadth 1.

Proof. Assume that there is a decomposition T with strong breadth 1 containing
the bags By = Ng[v1] and By = Ng[va]. Because vy and vy are adjacent, there is
a bag Bs O {v3,v4}. Consider the subtrees T7, Ty, T3, and Ty of T induced by vy,
va, v3, and vy, respectively. These subtrees pairwise intersect in the bags By, B,
and Bj3. Because pairwise intersecting subtrees of a tree have a common vertex,
T contains a bag Ng[w] 2 C. Note that there is no v; € C with Ng[v;] 2 C.
Thus, w ¢ C. This contradicts with the condition that there is no vertex w ¢ C
with Ng[’w] o C. O

Let C = {v1,...,v5} be a C5 with the edges E5 = {viva, vavs, ..., v5v1 }. We
call the graph H = (C' U {u}, E5 U {uv1, uvs,uvs}), with u ¢ C, an extended Cj
of degree 1 and refer to the vertices u, vy, vo, and vy as middle, top, right, and
left vertex of H, respectively. Based on H = (Vi, Ey), we construct an extended
Cs of degree p (with p > 1) as follows. First, replace each edge xy € Ey by a
path of length p. Second, for each vertex w on the shortest path from vs to vy,
connect u with w using a path of length p. Figure 1 gives an illustration.

U1

U1

Vs V2

V4 U3 V4 U3

(a) Degree 1 (b) Degree 3

Fig. 1. Two extended C5 of degree 1 and degree 3. We refer to the vertices u, v1, va,
and vs as middle, top, right, and left vertex, respectively.

Lemma 2. Let B be a bag of a tree-decomposition T for a graph G and let C' be
a connected component in G— B. Then, T contains a bag Bc with Bo 2 Ng(C)
and Bc N C # 0.

Proof. Let B¢ be the bag in T for which Bo N C # () and the distance between
B and B¢ in T is minimal. Additionally, let B’ be the bag in T adjacent to B¢o
which is closest to B and let S = BN B’. Note that SNC =) and, by properties
of tree-decompositions, S separates C from all vertices in B\S. Assume that
there is a vertex u € Ng(C)\S. Because u € Ng(C), there is a vertex v € C
which is adjacent to u. This contradicts with S being a separator for v and v.
Therefore, Ng(C) C S C Be. O

66 A. Leitert and F.F. Dragan

Lemma 3. Let H be an extended Cs of degree p in a graph G as defined above.
Additionally, let H be a block of G and its top vertex vy be the only articulation
point of G in H. Then, there is no vertex w in G with dg(w,v1) < p which is
the center of a bag in a tree-decomposition for G with strong breadth p.

Proof. Let T be a tree-decomposition for G with strong breadth p. Assume that
T contains a bag B,, = N&[w] with dg(w,v1) < p. Note that the distance from
v1 to any vertex on the shortest path from vz to vs is 2p. Hence, G — By, has a
connected component C' containing the vertices vs and v4. Then, by Lemma 2,
there has to be a vertex w’ # w in G and a bag B], = N4[w'] in T such that
(i) Bl, 2 Ng(C) and (ii) B., N C # (). Thus, if we can show, for a given w, that
there is no such w’, then w cannot be center of a bag.

First, consider the case that w is in H. We will construct a set X = {x,y} C
N¢(C) such that there is a unique shortest path from x to y in G passing w. If
w = vy, let x = vg9 and y = vs. If w is on the shortest path from vy to u, let x
and y be on the shortest path from vy to vy and from v4 to u, respectively. If w
is on the shortest path from v; to va, let and y be on the shortest path from
v1 to vy and from vy to vs, respectively. In each case, there is a unique shortest
path from x to y passing w. Note that, for all three cases, dg(v1,y) > p. Thus,
each w’ with dg(w’,y) < p is in H. Therefore, w is the only vertex in G with
X C N4 [w], i.e., there is no vertex w’ # w satisfying condition (i). This implies
that w cannot be center of a bag in T'.

Next, consider the case that w is not in H. Without loss of generality, let w
be a center for which dg (vy,w) is minimal. As shown above, there is no vertex w’
in H with dg(v1,w’) < p which is center of a bag. Hence, w’ is not in H either.
However, because v; is an articulation point, w’ has to be closer to v; than w to
satisfy condition (ii). This contradicts with dg(v1,w) being minimal. Therefore,
there is no vertex w’ satisfying condition (ii) and w cannot be center of a bag
inT. a

Theorem 1. It is NP-complete to decide, for a given graph G, if stb(G) = 1.

Proof. Clearly, the problem is in NP: Select non-deterministically a set S of
vertices such that their neighbourhoods cover each vertex and each edge. Then,
check deterministically if the neighbourhoods of the vertices in S give a valid
tree-decomposition. This can be done in linear time [18]. The algorithm in [18]
also creates the corresponding tree.

To show that the problem is NP-hard, we will make a reduction from 1-in-3-
SAT [17]. That is, you are given a boolean formula in CNF with at most three
literals per clause; find a satisfying assignment such that, in each clause, only
one literal becomes true.

Let Z be an instance of 1-in-3-SAT with the literals £ = {p1,...,p,}, the
clauses C = {c1,...,¢m}, and, for each ¢ € C, ¢ C L. We create a graph G =
(V, E) as follows. Create a vertex for each literal p € £ and, for all literals p;
and p; with p; = —p;, create an induced Cy = {p;, p;, ¢;, ¢; } with the edges p;p;,
4i4;, Pigi, and p;q;. For each clause ¢ € C with ¢ = {p;, pj, pr }, create an extended
C5 with ¢ as top vertex, connect ¢ with an edge to all literals it contains, and

On Strong Tree-Breadth 67

make all literals in ¢ pairwise adjacent, i.e., the vertex set {c,p;, pj, px} induces
a maximal clique in G. Additionally, create a vertex v and make v adjacent to
all literals. Figure 2a gives an illustration for the construction so far.

T (kilj) S(jkli)

S(kilj) T'(jkli)

pi Pj
T'(ijlk) S(ij|k)

(b)

Fig. 2. Illustration to the proof of Theorem 1. The graphs shown are subgraphs of G
as created by a clause ¢ = {p;,p;,pr} and a literal p; with p; = —p;.

Next, for each clause {p;, p;, px} and for each (zy|z) € {(ij|k), (jk|9), (kilj)},
create the vertices r(;y.) and $(;y|.), make r(,y.) adjacent to s(4y.) and py,
and make 5.,y adjacent to p, and p.. See Fig. 2b for an illustration. Note that
7(ij|k) and sk are specific for the clause {p;,p;, px}. Thus, if p; and p; are
additionally in a clause with p;, then we also create the vertices r(;;;) and 5.
For the case that a clause only contains two literals p; and p;, create the vertices
(i) and s(;;), make r(;;) adjacent to p; and s(;;), and make s(;;) adjacent to p;,
i.e., {pi,pj, 7)), 5} induces a Cy in G.

For the reduction, first, consider the case that 7 is a yes-instance for
1-in-3-SAT. Let f: P — {T, F'} be a satisfying assignment such that each clause
contains only one literal p; with f(p;) = T. Select the following vertices as centers
of bags: v, the middle, left and right vertex of each extended Cs, p; if f(p;) =T,
and ¢; if f(p;) = F. Additionally, for each clause {p;,p;,pr} with f(p;) = T,
select the vertices s(ijik), T(jk}i), and r(;;). The neighbourhoods of the selected
vertices give a valid tree-decomposition for G. Therefore, stb(G) = 1.

Next, assume that stb(G) = 1. Recall that, for a clause ¢ = {p;,pj, px}, the
vertex set {c, p;,pj, px} induces a maximal clique in G. By Lemma 3, ¢ cannot
be center of a bag because it is top of an extended C5. Therefore, at least one
vertex in {p;, p;, pr} must be center of a bag. Without loss of generality, let p;
be a center of a bag. By construction, p; is adjacent to all p € {p;, pr, 1}, where
p; = —p;. Additionally, p and p; are vertices in an induced Cjy, say C, and there
is no vertex w in G with Ng[w] 2 C. Thus, by Lemmal, at most one vertex
in {p;,pj,px} can be center of a bag. Therefore, the function f: L — {T,F}
defined as

T if p; is center of a bag,
f(pi) =
F else

is a satisfying assignment for Z. O

68 A. Leitert and F.F. Dragan

In [13], Ducoffe et al. have shown how to construct a graph G, based on a
given graph G such that tb(G) = 1 if and only if tb(G) < p. We will slightly
extend their construction to achieve a similar result for strong tree-breadth.

Consider a given graph G' = (V, E) with stb(G) = p. We will construct G/,
as follows. Let V = {v1,va,...,v,}. Add the vertices U = {uj,us,...,u,} and
make them pairwise adjacent. Additionally, make each vertex u;, with 1 < i < n,
adjacent to all vertices in N&[v;]. Last, for each v; € V, add an extended Cs of
degree 1 with v; as top vertex.

Lemma 4. stb(G) < p if and only if sth(G],) = 1.

Proof. First, consider a tree-decomposition T for G with strong breadth p. Let
T, be a tree-decomposition for G, created from 7' by adding all vertices in U
into each bag of T and by making the center, left, and right vertices of each
extended Cjy centers of bags. Because the set U induces a clique in G; and
N¢[vi] = Nt [u;] NV, each bag of T}, is the complete neighbourhood of some
vertex.

Next, consider a tree-decomposition 7} for G/, with strong breadth 1. Note
that each vertex v; is top vertex of some extended C5. Thus, v; cannot be center
of a bag. Therefore, each edge v;v; is in a bag By = NG% [ug]. By construction
of G, BNV = N&Jvg]. Thus, we can construct a tree-decomposition T' for G
with strong breadth p by creating a bag B; = N.[v;] for each bag Ne;, [us]
of T}, O

Next, consider a given graph G = (V,E) with V = {v1,vs,...,v,} and
sth(G) = 1. For a given p > 1, we obtain the graph G} by doing the following
for each v; € V:

— Add the vertices u; 1, ..., u; 5, z;, and y;.
— Add an extended Cs of degree p with the top vertex z;.
— Connect

e u; 1 and x; with a path of length |p/2] — 1,
u;2 and y; with a path of length |p/2],
u; 3 and v; with a path of length [p/2] — 1,
u;,4 and v; with a path of length |p/2|, and
e u; 4 and z; with a path of length [p/2] — 1.
— Add the edges U, 1U;,2, Ui, 1U 3, Wi 2U5.3, Ui 2U4 4, and Us,3Uj 4-

Note that, for small p, it can happen that v; = w;4, ©; = w; 1, ¥i = u; 2, Or
z; = u; 5. Figure 3 gives an illustration.

Lemma 5. stb(G) = 1 if and only if stb(G}) = p.

Proof. First, assume that stb(G) = 1. Then, there is a tree-decomposition T'
for G with strong breadth 1. We will construct for G;r a tree-decomposition Tp+
with strong breadth p. Make the middle, left, and right vertex of each extended
C’5 center of a bag. For each v; € V| if v; is center of a bag of T, make x; a center
of a bag of T,f. Otherwise, make y; center of a bag of T,f. The distance in G}

On Strong Tree-Breadth 69

Fig. 3. llustration for the graph Gj. The graph shown is a subgraph of G; as con-
structed for each v; in G.

from v; to x; is p— 1. The distances from v; to y;, from x; to z;, and from y; to z;
are p. Thus, N/, [2;] NV = Ng[vi], N, [y:]NV = {v;}, and there is no conflict
P p

with Lemma 3. Therefore, the constructed Tp+ is a valid tree-decomposition with
strong breadth p for G} .

Next, assume that stb(Gj) = p and there is a tree-decomposition Tp“‘ with
strong breadth p for G,‘)“. By Lemma 3, no vertex in distance less than p to any
z; can be a center of a bag in T;r . Therefore, because the distance from v; to z;
in Gj is p— 1, no v; € V can be a center of a bag in T;. The only vertices with
a large enough distance to z; to be a center of a bag are x; and y;. Therefore,
either z; or y; is selected as center. To construct a tree-decomposition T" with
strong breadth 1 for G, select v; as center if and only if z; is a center of a bag
in T, . Because Ng;r [#;] NV = Ng[v;] and NéI [yi] NV = {v;}, the constructed
T is a valid tree-decomposition with strong breadth 1 for G. a

Constructing G, can be done in O(n?) time and constructing G can be done
in O(p - n + m) time. Thus, combining Lemmas4 and 5 allows us, for a given
graph G, some given p, and some given p’, to construct a graph H in O(p - n?)
time such that stb(G) < p if and only if stb(H) < p’. Additionally, by combining
Theorem 1 and Lemma 3, we get:

Theorem 2. [t is NP-complete to decide, for a graph G and a given p, if
stb(G) = p.

4 Polynomial Time Cases

In the previous section, we have shown that, in general, it is NP-complete to
determine the strong tree-breadth of a graph. In this section, we will investigate
cases for which a decomposition can be found in polynomial time.

70 A. Leitert and F.F. Dragan

4.1 General Graphs

Let G be a graph with strong tree-breadth p and let T" be a corresponding
tree-decomposition. For a given vertex u in G, we denote the set of connected
components in G — N£[u] as Ci[u]. We say that a vertex v is a potential partner
of u for some C € Cqu] if N&[v] D Ng(C) and NE[v]NC # 0.

Lemma 6. Let C be a connected component in G — B,, for some B, C Né [u].
Also, let C € Cglu] and v be a potential partner of uw for C. Then, for all
connected components C,, in G[C] — N&[v], C, € Calv].

Proof. Consider a connected component C, in G[C] — Nf[v]. Clearly, C, C C
and there is a connected component C’ € C[v] such that C' D C,,.

Let x be an arbitrary vertex in C’. Then, there is a path P C C’ from x
to Cy. Because Ng(C) C B, and v is a potential partner of u for C', Ng(C) C
B, N NE[v]. Also, N (C) separates all vertices in C' from all other vertices in G.
Therefore, z € C and ¢’ C C; otherwise, P would intersect N/ [v]. It follows
that each vertex in P is in the same connected component of G[C] — N4 [v] and,
thus, C, = C". O

From Lemma 2, it directly follows:

Corollary 1. If N.[u] is a bag in T, then T contains a bag NE[v] for each
C € Cglu] such that v is a potential partner of u for C.

Because of Corollary 1, there is a vertex set U such that each v € U has a
potential partner v € U for each connected component C' € Cg[u]. With such a
set, we can construct a tree-decomposition for G with the following approach:
Pick a vertex u € U and make it center of a bag B,,. For each connected compo-
nent C' € Cglu], u has a potential partner v. NZ[v] splits C' in more connected
components and, because v € U, v has a potential partner w € U for each of
these components. Hence, create a bag B, = N£&[v]N (B, UC) and continue this
until the whole graph is covered. Algorithm 1 will determine such a set of vertices
with their potential partners (represented as a graph H) and then construct a
decomposition as described above.

Theorem 3. Algorithm 1 constructs, for a given graph G with strong tree-
breadth p, a tree-decomposition T with breadth p in O(n?m) time.

Proof (Correctness). The Algorithm 1 works in two parts. First, it creates a
graph H with potential centers (line 1 to line 6). Second, it uses H to create
a tree-decomposition for G (line 9 to line 15). To show the correctness of the
algorithm, we will, first, show that centers of a tree-decomposition for G are
vertices in H and, then, show that a tree-decomposition created based on H is
a valid tree-decomposition for G.

A vertex u is added to H (line 4) if, for at least one connected component C' €
Cqu], u has a potential partner v. Later, u is kept in H (line 5 and 6) if it has a
potential partner v for all connected components in C' € Cg[u]. By Corollary 1,

On Strong Tree-Breadth 71

Algorithm 1. Constructs, for a given graph G = (V, E) with strong
tree-breadth p, a tree-decomposition 7" with breadth p.

1 Create an empty directed graph H = (Vi, Er). Let ¢ be a function that maps
each edge (u,v) € Eg to a connected component C' € Cgu].
2 foreach u,v €V and all C € Cglu] do
3 if v is a potential parter of u for C then
Add the directed edge (u,v) to H and set ¢(u,v) := C. (Add u and v to
L H if necessary.)

5 while there is a vertex u € Vg and some C € Calu| such that there is no
(u,v) € Eg with ¢(u,v) =C do
L Remove v from H.

if H is empty then
L Stop. stb(G) > p.

Create an empty tree-decomposition 7'

10 Let G — T be the subgraph of G that is not covered by T and let ¥ be a
function that maps each connected component in G — T to a bag By C N&[u].

11 Pick an arbitrary vertex u € Vi, add B, = NZ&[u] as bag to T, and set
¥(C) := B, for each connect component C' in G — T.

12 while G — T is non-empty do

13 Pick a connected component C in G — T', determine the bag B, := (C)

and find an edge (v, w) € Ex with ¢(v,w) = C.
14 Add By, = N&w] N (B, UC) to T, and make B, and B, adjacent in T

© ® =]

15 For each new connected component C’ in G — T with ¢’ C C, set
7/}(Czu) = Bw-
16 Output 7.

each center of a bag in a tree-decomposition 7" with strong breadth p satisfies
these conditions. Therefore, after line 6, H contains all centers of bags in 7T, i.e.,
if G has strong tree-breadth p, H is non-empty.

Next, we show that T created in the second part of the algorithm (line 9 to
line 15) is a valid tree-decomposition for G with breadth p. To do so, we will
show the following invariant for the loop starting in line 12: (i) T is a valid tree-
decomposition with breadth p for the subgraph covered by T and (ii) for each
connected component C in G —T, the bag B, = ¢¥(C) isin T, N¢(C) C B,,, and
C € Cg[v]. After line 11, the invariant clearly holds. Assume by induction that
the invariant holds each time line 12 is checked. If T' covers the whole graph, the
check fails and the algorithm outputs 7. If T" does not cover G' completely, there
is a connected component C' in G — T. By condition (ii), the bag B, = (C) is
in T, Ng(C) C B,, and C € Cg[v]. Because of the way H is constructed and
C € Cgv], there is an edge (v,w) € Eg with ¢(v,w) = C, i.e., w is a potential
partner of v for C. Thus, line 13 is successful and the algorithm adds a new
bag B, = Ni[w] N (B, UC) (line 14). Because w is a potential partner of v
for C, i.e., Ng(C) C N4[w], and Ng(C) C B,, By, 2 Ng(C). Therefore, after
adding B,, to T, T still satisfies condition (i). Additionally, B,, splits C in a

72 A. Leitert and F.F. Dragan

set C' of connected components such that, for each C’ € ', Ng(C') C B,, and,
by Lemma6, C" € Cgw]. Thus, condition (ii) is also satisfied. O

Proof (Complexity). First, determine the pairwise distance of all vertices. This
can be done in O(nm) time and allows to check the distance between vertices in
constant time.

For a vertex u, let Mu] = {Ng(C) | C € Cglu]}. Note that, for some
C € Cglu] and each vertex x € Ng(C), there is an edge zy with y € C. There-
fore, INTu]| := > cceyp [Ne(C)] < m. To determine, for some vertex w, all its
potential partners v, first, compute A[u]. This can be done in O(m) time. Then,
check, for each vertex v and each Ng(C) € Nu|, if Ng(C) C N£[v] and add
the edge (u,v) to H if successful. For a single vertex v this requires O(m) time
because [N [u]| < m and distances can be determined in constant time. Therefore,
the total runtime for creating H (line 1 to line 4) is O(n(m + nm)) = O(n?*m).

Assume that, for each ¢(u,v) = C, C is represented buy two values: (i) a
characteristic vertex x € C' (for example the vertex with the lowest index) and
(ii) the index of C' in Cg[u]. While creating H, count and store, for each vertex u
and each connected component C' € Cglu], the number of edges (u,v) € Eg
with ¢(u,v) = C. Note that there is a different counter for each C € Cglu].
With this information, we can implement line 5 and 6 as follows. First check,
for every vertex v in H, if one of its counters is 0. In this case, remove v from H
and update the counters for all vertices u with (u,v) € Eg using value (ii)
of ¢(u,v). If this sets a counter for v to 0, add u to a queue @ of vertices to
process. Continue this until each vertex is checked. Then, for each vertex u in @,
remove u form H and add its neighbours into @ if necessary until) is empty.
This way, a vertex is processed at most twice. A single iteration runs in at most
O(n) time. Therefore, line 5 and 6 can be implemented in O(n?) time.

Assume that 1 uses the characteristic vertex z to represent a connected
component, i.e., value (i) of ¢. Then, finding an edge (v,w) € Ey (line 13) can
be done in O(m) time. Creating B,, (line 14), splitting C' into new connected
components C’; finding their characteristic vertex, and setting (C’) (line 15)
takes O(m) time, too. In each iteration, at least one more vertex of G is covered
by T. Hence, there are at most n iterations and, thus, the loop starting in line
12 runs in O(mn) time.

Therefore, Algorithm 1 runs in total O(n?m) time. O

Algorithm 1 creates for each graph G with stb(G) < p a tree-decomposition T'
with breadth p. Next, we will invest a case where we can construct a tree-
decomposition for G with strong breadth p.

We say that two vertices u and v are perfect partners if (i) w and v are
potential partner of each other for some C,, € Cg[u] and some C,, € Cg[v], (ii) Cy,
is the only connected component in Cg[u] which is intersected by NZ[v], and
(iii) Cy is the only connected component in Cg[v] which is intersected by NZ[u].
Accordingly, we say that a tree-decomposition T" has perfect strong breadth p if
it has strong breadth p and, for each center u of some bag and each connected
component C' € Cglu], there is a center v such that v is a perfect partner of u
for C.

On Strong Tree-Breadth 73

Theorem 4. A tree-decomposition with perfect strong breadth p can be con-
structed in polynomial time.

Proof. To construct such a tree-decomposition, we can modify Algorithm 1.
Instead of checking if u has a potential partner v (line 3), check if w and v
are perfect partners.

Assume by induction that, for each bag B, in T, B, = N&[v]. By definition
of perfect partners v and w, N/ [w] intersects only one C € Cg[v], i.e., N&w] C
NZw]UC. Thus, when creating the bag B,, (line 14), B,, = Ni[w]N(B,UC) =
NZw] N (NE[v]UC) = N&[w]. Therefore, the created tree-decomposition 7" has
perfect strong tree-breadth p. a

We conjecture that there are weaker cases than perfect strong breadth which
allow to construct a tree-decomposition with strong-breadth p. For example,
if the centers of two adjacent bags are perfect partners, but a center u does
not need to have a perfect partner for each C € Cg[u]. However, when using a
similar approach as in Algorithm 1, this would require a more complex way of
constructing H.

4.2 Special Graph Classes

A graph G is distance-hereditary if, in any connected induced subgraph, the
distances are the same as in G.

Theorem 5. Distance-hereditary graphs have strong tree-breadth 1. An accord-
g decomposition can be computed in linear time.

Proof. Let ¢ = (v1,va,...,v,) be an ordering for the vertices of a graph G,
Vi = {v1,v9,...,v;}, and G; denote the graph G[V;]. An ordering o is called a
pruning sequence for G if, for 1 < ¢ < n, each v; satisfies one of the following
conditions in Gj;:

(i) v; is a pendant vertex,
(ii) v, is a true twin of some vertex v;, or
(ili) v; is a false twin of some vertex v;.

A graph G is distance-hereditary if and only if there is a pruning sequence
for G [2].

Assume that we are given such a pruning sequence. Additionally, assume
by induction over ¢ that G; has a tree-decomposition 7; with strong breadth 1.
Then, there are three cases:

(i) viy1 s a pendant vertex in Giyq. If the neighbour u of v;41 is a center of
a bag B,, add v;11 to By. Thus, T;; is a valid decomposition for G;4;.
Otherwise, if u is not a center, make v; 1 center of a bag. Because u is an
articulation point, T;11 = T; + Ng[v] is a valid decomposition for G;41.

(il) viy1 18 a true twin of a verter u in G;y1. Simply add v;41 into any bag
containing u. The resulting decomposition is a valid decomposition for G; .

74 A. Leitert and F.F. Dragan

(iil) vi41 48 a false twin of a verter u in G;y1. If w is not center of a bag, add
v;4+1 into any bag w is in. Otherwise, make a new bag B; 11 = N¢[v;y1] and
make it adjacent to the bag Ng[u]. Because no vertex in Ng(u) is center of
a bag, the resulting decomposition is a valid decomposition for G, .

Therefore, distance-hereditary graphs have strong tree-breadth 1.

Next, we will show how to compute an according tree-decomposition in lin-
ear time. The argument above already gives an algorithmic approach. First, we
compute a pruning sequence for G. This can be done in linear time with an algo-
rithm by Damiand et al. [7]. Then, we determine which vertex becomes a center
of a bag. Note that we can simplify the three cases above with the following
rule: If v; has no neighbour in G; which is center of a bag, make v; center of
a bag. Otherwise, proceed with v;11. This can be easily implemented in linear
time with a binary flag for each vertex. O

Algorithm 2 formalizes the method described in the proof of Theorem 5.

Algorithm 2. Computes, for a given distance-hereditary graph G, a tree-
decomposition T" with strong breadth 1.

1 Compute a pruning sequence (vi,va,...,Un) (see [7]).

2 Create a set C := 0.

3 for i:=1tondo

4 if Ng[viiNV;NC =0 then

5 L L Add v; to C.

6 Create a tree-decomposition T with the vertices in C' as centers of its bags.

A bipartite graph is chordal bipartite if each cycle of length at least 6 has
a chord. In [11], it was shown that any chordal bipartite graph G = (X,Y, E)
admits a tree-decomposition with the set of bags B = {B1, Ba, ..., B x|}, where
B; = Ng[zi], x; € X. As far as we can tell, there is no linear time algorithm
known to recognise chordal bipartite graphs. However, we can still compute a
tree-decomposition in linear time with three steps. First, compute a 2-colouring.
Second, select a colour and make the neighbourhood of all vertices with this
colour bags. Third, use the algorithm in [18] to check if the selected bags give a
valid tree-decomposition.

Theorem 6 [11]. Fach chordal bipartite graph has strong tree-breadth 1. An
according tree-decomposition can be found in linear time.

Consider two parallel lines (upper and lower) in the plane. Assume that
each line contains n points, labelled 1 to n. Each two points with the same label
define a segment with that label. The intersection graph of such a set of segments
between two parallel lines is called a permutation graph. In [10], an algorithm
was presented that finds, for a given permutation graph, a path-decomposition
with strong breadth 1 in linear time.

On Strong Tree-Breadth 75

Theorem 7 [10]. Permutation graphs have strong tree-breadth 1. An according
tree-decomposition can be found in linear time.

5 Conclusion

We have shown that, in general, it is NP-complete to determine if a given graph G
admits a tree-decomposition with strong breadth p for all p > 1. Consider the
case that a vertex v is center of a bag. Part of the hardness of finding a decompo-
sition, even for p = 1, lays in determining which connected component C' € Cg[v]
will be covered by which neighbouring bag Ng[u]. If, for two vertices v and w,
N¢(u] and Ng[w] intersect C' and are bags in the same decompositions T', both
cannot be separated in T' by N¢[v]. Additionally, if u is adjacent to v, it might
happen that Ng[u| intersects multiple connected components. This leads to a
potentially exponential number of combinations.

A path-decomposition of graph is a tree-decomposition with the restriction
that the bags form a path instead of a tree with multiple branches. Accordingly, a
graph has (strong) path-breadth p if it admits a path-decomposition with (strong)
breadth p. In [10], it was shown that, for graphs with bounded path-breadth, a
constant factor approximation for the bandwidth problem and the line-distortion
problem can be found in polynomial time.

Now, consider the case that we want to compute if a given graph admits a
path-decomposition P with strong breadth 1. In this case, there can be at most
two bags adjacent to a bag Ng[v] in P. Hence, for each v, there is at most a
quadratic number of combinations. This leads to the following conjecture.

Conjecture. The strong path-breadth of a graph can be computed in polynomial
time.

Another question is if a bounded strong tree-breadth leads to a lower bound
for the tree-breadth of a graph. That is, is there a constant ¢ such that, for any
graph G, stb(G) < ¢ - tb(G@). Using Algorithm 1, a small constant might lead to
a new approach for approximating the tree-breadth of a graph.

References

1. Abu-Ata, M., Dragan, F.F.: Metric tree-like structures in real-life networks: an
empirical study. Networks 67(1), 49-68 (2016)

2. Bandelt, H.-J., Mulder, H.M.: Distance-hereditary graphs. J. Comb. Theory Ser.
B 41, 182-208 (1986)

3. Brandstadt, A., Chepoi, V.D., Dragan, F.F.: The algorithmic use of hypertree
structure and maximum neighborhood orderings. Discret. Appl. Math. 82, 43-77
(1998)

4. Brandstadt, A., Dragan, F.F., Chepoi, V.D., Voloshin, V.: Dually chordal graphs.
SIAM J. Discret. Math. 11(3), 437-455 (1998)

5. Brandstadt, A., Ficur, P., Leitert, A., Milani¢, M.: Polynomial-time algorithms
for weighted efficient domination problems in AT-free graphs and dually chordal
graphs. Inf. Process. Lett. 115(2), 256-262 (2015)

76

10.

11.

12.

13.

14.
15.

16.

17.

18.

A. Leitert and F.F. Dragan

Brandstadt, A., Leitert, A., Rautenbach, D.: Efficient dominating and edge domi-
nating sets for graphs and hypergraphs. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.)
ISAAC 2012. LNCS, vol. 7676, pp. 267-277. Springer, Heidelberg (2012)
Damiand, G., Habib, M., Paul, C.: A simple paradigm for graph recognition: appli-
cation to cographs and distance hereditary graphs. Theoret. Comput. Sci. 263(1—
2), 99-111 (2001)

Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter.
Discret. Math. 307(16), 2008-2029 (2007)

Dragan, F.F., Kohler, E.: An approximation algorithm for the tree t-spanner prob-
lem on unweighted graphs via generalized chordal graphs. Algorithmica 69, 884—
905 (2014)

Dragan, F.F., Kohler, E., Leitert, A.: Line-distortion, bandwidth and path-length
of a graph. Algorithmica (in print)

Dragan, F.F., Lomonosov, I.: On compact and efficient routing in certain graph
classes. Discret. Appl. Math. 155, 1458-1470 (2007)

Dragan, F.F., Matamala, M.: Navigating in a graph by aid of its spanning tree.
SIAM J. Discret. Math. 25(1), 306-332 (2011)

Ducoffe, G., Legay, S., Nisse, N.: On computing tree and path decompositions with
metric constraints on the bags. CoRR abs/1601.01958 (2016)

Halin, R.: S-functions for graphs. J. Geom. 8(1-2), 171-186 (1976)

Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Comb.
Theory Ser. B 35(1), 39-61 (1983)

Robertson, N.; Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb.
Theory Ser. B 36(1), 49-64 (1984)

Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the
Tenth Annual ACM Symposium on Theory of Computing (STOC 1978), pp. 216—
226 (1978)

Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM J. Comput. 13(3), 566-579 (1984)

	On Strong Tree-Breadth
	1 Introduction
	2 Preliminaries
	3 NP-Completeness
	4 Polynomial Time Cases
	4.1 General Graphs
	4.2 Special Graph Classes

	5 Conclusion
	References

