On Strong Tree-Breadth

Arne Leitert $^{(\boxtimes)}$ and Feodor F. Dragan

Department of Computer Science, Kent State University, Kent, OH, USA {aleitert,dragan}@cs.kent.edu

Abstract. In this paper, we introduce and investigate a new notion of strong tree-breadth. We say that a graph G has strong tree-breadth ρ if there is a tree-decomposition T for G such that each bag B of T is equal to the complete ρ -neighbourhood of some vertex v in G, i. e., $B = N_G^{\rho}[v]$. We show that

- it is NP-complete to determine if a given graph has strong tree-breadth ρ , even for $\rho = 1$;
- if a graph G has strong tree-breadth ρ , then we can find a tree-decomposition for G with tree-breadth ρ in $\mathcal{O}(n^2m)$ time;
- with some additional restrictions, a tree-decomposition with strong breadth ρ can be found in polynomial time;
- some graph classes including distance-hereditary graphs have strong tree-breadth 1.

1 Introduction

Decomposing a graph into a tree is an old concept. It was introduced already by Halin [14]. However, a more popular introduction was given by Robertson and Seymour [15,16]. The idea is to decompose a graph into multiple induced subgraphs, usually called *bags*, where each vertex can be in multiple bags. These bags are combined to a tree in such a way that the following requirements are fulfilled: Each vertex is in at least one bag, each edge is in at least one bag, and, for each vertex, the bags containing it induces a subtree. We will give formal definitions in the next section.

For a given graph, there can be up to exponentially many different tree-decompositions. The easiest is to have only one bag containing the whole graph. To make the concept more interesting, it is necessary to add additional restrictions. The most known is called *tree-width*. A decomposition has *width* ω if each bag contains at most $\omega+1$ vertices. Then, a graph G has tree-width ω if there is a tree-decomposition for G which has width ω .

In the last years, a new perspective on tree-decompositions was invested. Instead of limiting the number of vertices in each bag, the distance between vertices inside a bag is limited [8,9]. In this paper, we are interested in a variant called *tree-breadth*. It was introduced by Dragan and Köhler in [9]. The *breadth* of a tree-decomposition is ρ , if, for each bag B, there is a vertex v such that each vertex in B has distance at most ρ to v. Accordingly, we say the *tree-breadth* of a graph G is ρ (written as $\mathrm{tb}(G) = \rho$) if there is a tree-decomposition

© Springer International Publishing AG 2016

T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 62-76, 2016.

DOI: 10.1007/978-3-319-48749-6_5

for G with breadth ρ and there is no tree-decomposition with smaller breadth. This new concept of tree-breadth played a crucial role in designing an efficient and best to the date approximation algorithm for the well-known tree t-spanner problem (see [9] for details). Recently, Ducoffe et al. [13] have shown that it is NP-complete to determine if a graph has tree-breadth ρ for all $\rho \geq 1$. On the other hand, for a given graph G, a tree-decomposition of breadth at most $3 \operatorname{tb}(G)$ can be computed in linear time [1].

By definition, a tree-decomposition has breadth ρ if each bag B is the subset of the ρ -neighbourhood of some vertex v, i. e., the set of bags is the set of subsets of the ρ -neighbourhoods of some vertices. Tree-breadth 1 graphs contain the class of dually chordal graphs which can be defines as follows: A graph G is dually chordal if it admits a tree-decomposition T such that, for each vertex v in G, T contains a bag $B = N_G[v]$ [4]. That is, the set of bags in T is the set of complete neighbourhoods of all vertices.

In this paper, we investigate the case which lays between dually chordal graphs and general tree-breadth ρ graphs. In particular, tree-decompositions are considered where the set of bags are the *complete* ρ -neighbourhoods of *some* vertices. We call this *strong tree-breadth*. The *strong breadth* of a tree-decomposition is ρ , if, for each bag B, there is a vertex v such that $B = N_G^{\rho}[v]$. Accordingly, a graph G has strong tree-breadth smaller than or equal to ρ (written as $stb(G) < \rho$) if there is a tree-decomposition for G with strong breadth at most ρ .

Dually chordal graphs and their powers are exactly the graphs admitting a tree-decomposition where the set of bags is equal to the set of complete neighbourhoods (complete ρ -neighbourhoods) of all vertices. It is a known fact that the dually chordal graphs (the powers of dually chordal graphs) can be recognised in linear time (respectively, polynomial time) [4]. General tree-breadth ρ graphs cannot be recognised in polynomial time unless P = NP [13]. It remained an interesting open question if the graphs with strong tree-breadth ρ can be recognised in polynomial time.

In this paper we show that it is NP-complete to determine if a given graph has strong tree-breadth ρ , even for $\rho=1$. Furthermore, we demonstrate that: if a graph G has strong tree-breadth ρ , then we can find a tree-decomposition for G with tree-breadth ρ in $\mathcal{O}(n^2m)$ time; with some additional restrictions, a tree-decomposition with strong breadth ρ can be found in polynomial time; some graph classes including distance-hereditary graphs have strong tree-breadth 1. Our future research plans are to investigate algorithmic implications of the existence for a graph of a tree-decomposition with small strong tree-breadth. Can some algorithmic problems that remain NP-complete on general tree-breadth ρ graphs be solved/approximated efficiently on the graphs with strong tree-breadth ρ ? Recall that, for example, greedy routing with aid of a spanning tree [12], (connected) r-domination [3], Steiner tree [3], and (weighted) efficient domination [5,6] can be efficiently solved on dually chordal graphs and their powers.

2 Preliminaries

All graphs occurring in this paper are (if not stated or constructed otherwise) connected, finite, unweighted, undirected, without loops, and without multiple edges. For a graph G = (V, E), we use n = |V| and m = |E| to denote the cardinality of the vertex set and the edge set of G. The length of a path from a vertex v to a vertex u is the number of edges in the path. The distance $d_G(u, v)$ of two vertices u and v is the length of a shortest path connecting u and v. The distance between a vertex v and a set $S \subseteq V$ is defined as $d_G(v, S) = \min_{u \in S} d_G(u, v)$.

For a vertex v of G, $N_G(v) = \{u \in V \mid uv \in E\}$ is called the open neighborhood of v. Similarly, for a set $S \subseteq V$, we define $N_G(S) = \{u \in V \mid d_G(u, S) = 1\}$. The r-neighbourhood of a vertex v in G is $N_G^r[v] = \{u \mid d_G(u, v) \leq r\}$; if r is not specified, then r = 1. Two vertices u and v are true twins if $N_G[u] = N_G[v]$ and are false twins if they are non-adjacent and $N_G(u) = N_G(v)$.

For a vertex set S, let G[S] denote the subgraph of G induced by S. With G-S, we denote the graph $G[V\backslash S]$. A vertex set S is a separator for two vertices u and v in G if each path from u to v contains a vertex $s\in S$; in this case we say S separates u from v. If a separator S contains only one vertex s, i.e., $S=\{s\}$, then s is an articulation point. A block is a maximal subgraph without articulation points.

A chord in a cycle is an edge connecting two non-consecutive vertices of the cycle. A cycle is called *induced* if it has no chords. For each $k \geq 3$, an induced cycle of length k is called as C_k . A subgraph is called *clique* if all its vertices are pairwise adjacent. A *maximal clique* is a clique that cannot be extended by including any additional vertex.

A tree-decomposition of a graph G=(V,E) is a tree T with the vertex set \mathcal{B} where each vertex of T, called bag, is a subset of V such that: (i) $V=\bigcup_{B\in\mathcal{B}}B$, (ii) for each edge $uv\in E$, there is a bag $B\in\mathcal{B}$ with $u,v\in B$, and (iii) for each vertex $v\in V$, the bags containing v induce a subtree of T. A tree-decomposition T of G has breadth ρ if, for each bag B of T, there is a vertex v in G with $B\subseteq N_G^\rho[v]$. The tree-breadth of a graph G is ρ , written as $\mathrm{tb}(G)=\rho$, if ρ is the minimal breadth of all tree-decomposition for G. Similarly, a tree-decomposition T of G has strong breadth ρ if, for each bag B of T, there is a vertex v in G with $B=N_G^\rho[v]$. The strong tree-breadth of a graph G is the minimal ρ for which G admits a tree-decomposition with strong breadth ρ . This is written as $\mathrm{stb}(G)=\rho$.

3 NP-Completeness

In this section, we will show that it is NP-complete to determine if a given graph has strong tree-breadth ρ even if $\rho = 1$. To do so, we will first show that, for some small graphs, the choice of possible centers is restricted. Then, we will use these small graphs to construct a reduction.

Lemma 1. Let $C = \{v_1, v_2, v_3, v_4\}$ be an induced C_4 in a graph G with the edge set $\{v_1v_2, v_2v_3, v_3v_4, v_4v_1\}$. If there is no vertex $w \notin C$ with $N_G[w] \supseteq C$, then $N_G[v_1]$ and $N_G[v_2]$ cannot both be bags in the same tree-decomposition with strong breadth 1.

Proof. Assume that there is a decomposition T with strong breadth 1 containing the bags $B_1 = N_G[v_1]$ and $B_2 = N_G[v_2]$. Because v_3 and v_4 are adjacent, there is a bag $B_3 \supseteq \{v_3, v_4\}$. Consider the subtrees T_1, T_2, T_3 , and T_4 of T induced by v_1, v_2, v_3 , and v_4 , respectively. These subtrees pairwise intersect in the bags B_1, B_2 , and B_3 . Because pairwise intersecting subtrees of a tree have a common vertex, T contains a bag $N_G[w] \supseteq C$. Note that there is no $v_i \in C$ with $N_G[v_i] \supseteq C$. Thus, $w \notin C$. This contradicts with the condition that there is no vertex $w \notin C$ with $N_G[w] \supseteq C$.

Let $C = \{v_1, \ldots, v_5\}$ be a C_5 with the edges $E_5 = \{v_1v_2, v_2v_3, \ldots, v_5v_1\}$. We call the graph $H = (C \cup \{u\}, E_5 \cup \{uv_1, uv_3, uv_4\})$, with $u \notin C$, an extended C_5 of degree 1 and refer to the vertices u, v_1, v_2 , and v_5 as middle, top, right, and left vertex of H, respectively. Based on $H = (V_H, E_H)$, we construct an extended C_5 of degree ρ (with $\rho > 1$) as follows. First, replace each edge $xy \in E_H$ by a path of length ρ . Second, for each vertex w on the shortest path from v_3 to v_4 , connect u with w using a path of length ρ . Figure 1 gives an illustration.

Fig. 1. Two extended C_5 of degree 1 and degree 3. We refer to the vertices u, v_1 , v_2 , and v_5 as middle, top, right, and left vertex, respectively.

Lemma 2. Let B be a bag of a tree-decomposition T for a graph G and let C be a connected component in G-B. Then, T contains a bag B_C with $B_C \supseteq N_G(C)$ and $B_C \cap C \neq \emptyset$.

Proof. Let B_C be the bag in T for which $B_C \cap C \neq \emptyset$ and the distance between B and B_C in T is minimal. Additionally, let B' be the bag in T adjacent to B_C which is closest to B and let $S = B_C \cap B'$. Note that $S \cap C = \emptyset$ and, by properties of tree-decompositions, S separates C from all vertices in $B \setminus S$. Assume that there is a vertex $u \in N_G(C) \setminus S$. Because $u \in N_G(C)$, there is a vertex $v \in C$ which is adjacent to u. This contradicts with S being a separator for u and v. Therefore, $N_G(C) \subseteq S \subseteq B_C$.

Lemma 3. Let H be an extended C_5 of degree ρ in a graph G as defined above. Additionally, let H be a block of G and its top vertex v_1 be the only articulation point of G in H. Then, there is no vertex w in G with $d_G(w,v_1) < \rho$ which is the center of a bag in a tree-decomposition for G with strong breadth ρ .

Proof. Let T be a tree-decomposition for G with strong breadth ρ . Assume that T contains a bag $B_w = N_G^{\rho}[w]$ with $d_G(w, v_1) < \rho$. Note that the distance from v_1 to any vertex on the shortest path from v_3 to v_4 is 2ρ . Hence, $G - B_w$ has a connected component C containing the vertices v_3 and v_4 . Then, by Lemma 2, there has to be a vertex $w' \neq w$ in G and a bag $B'_w = N_G^{\rho}[w']$ in T such that (i) $B'_w \supseteq N_G(C)$ and (ii) $B'_w \cap C \neq \emptyset$. Thus, if we can show, for a given w, that there is no such w', then w cannot be center of a bag.

First, consider the case that w is in H. We will construct a set $X = \{x, y\} \subseteq N_G(C)$ such that there is a unique shortest path from x to y in G passing w. If $w = v_1$, let $x = v_2$ and $y = v_5$. If w is on the shortest path from v_1 to v_2 and from v_4 to v_4 , respectively. If w is on the shortest path from v_1 to v_2 , let x and y be on the shortest path from v_1 to v_2 , let x and y be on the shortest path from v_1 to v_2 , and from v_2 to v_3 , respectively. In each case, there is a unique shortest path from x to y passing w. Note that, for all three cases, $d_G(v_1, y) \ge \rho$. Thus, each w' with $d_G(w', y) \le \rho$ is in H. Therefore, w is the only vertex in G with $X \subseteq N_G^{\rho}[w]$, i. e., there is no vertex $w' \ne w$ satisfying condition (i). This implies that w cannot be center of a bag in T.

Next, consider the case that w is not in H. Without loss of generality, let w be a center for which $d_G(v_1, w)$ is minimal. As shown above, there is no vertex w' in H with $d_G(v_1, w') < \rho$ which is center of a bag. Hence, w' is not in H either. However, because v_1 is an articulation point, w' has to be closer to v_1 than w to satisfy condition (ii). This contradicts with $d_G(v_1, w)$ being minimal. Therefore, there is no vertex w' satisfying condition (ii) and w cannot be center of a bag in T.

Theorem 1. It is NP-complete to decide, for a given graph G, if stb(G) = 1.

Proof. Clearly, the problem is in NP: Select non-deterministically a set S of vertices such that their neighbourhoods cover each vertex and each edge. Then, check deterministically if the neighbourhoods of the vertices in S give a valid tree-decomposition. This can be done in linear time [18]. The algorithm in [18] also creates the corresponding tree.

To show that the problem is NP-hard, we will make a reduction from 1-in-3-SAT [17]. That is, you are given a boolean formula in CNF with at most three literals per clause; find a satisfying assignment such that, in each clause, only one literal becomes true.

Let \mathcal{I} be an instance of 1-in-3-SAT with the literals $\mathcal{L} = \{p_1, \ldots, p_n\}$, the clauses $\mathcal{C} = \{c_1, \ldots, c_m\}$, and, for each $c \in \mathcal{C}$, $c \subseteq \mathcal{L}$. We create a graph G = (V, E) as follows. Create a vertex for each literal $p \in \mathcal{L}$ and, for all literals p_i and p_j with $p_i \equiv \neg p_j$, create an induced $C_4 = \{p_i, p_j, q_i, q_j\}$ with the edges $p_i p_j$, $q_i q_j$, $p_i q_i$, and $p_j q_j$. For each clause $c \in \mathcal{C}$ with $c = \{p_i, p_j, p_k\}$, create an extended c_j with c_j as top vertex, connect c_j with an edge to all literals it contains, and

make all literals in c pairwise adjacent, i.e., the vertex set $\{c, p_i, p_j, p_k\}$ induces a maximal clique in G. Additionally, create a vertex v and make v adjacent to all literals. Figure 2a gives an illustration for the construction so far.

Fig. 2. Illustration to the proof of Theorem 1. The graphs shown are subgraphs of G as created by a clause $c = \{p_i, p_j, p_k\}$ and a literal p_l with $p_i \equiv \neg p_l$.

Next, for each clause $\{p_i, p_j, p_k\}$ and for each $(xy|z) \in \{(ij|k), (jk|i), (ki|j)\}$, create the vertices $r_{(xy|z)}$ and $s_{(xy|z)}$, make $r_{(xy|z)}$ adjacent to $s_{(xy|z)}$ and p_x , and make $s_{(xy|z)}$ adjacent to p_y and p_z . See Fig. 2b for an illustration. Note that $r_{(ij|k)}$ and $s_{(ij|k)}$ are specific for the clause $\{p_i, p_j, p_k\}$. Thus, if p_i and p_j are additionally in a clause with p_l , then we also create the vertices $r_{(ij|l)}$ and $s_{(ij|l)}$. For the case that a clause only contains two literals p_i and p_j , create the vertices $r_{(ij)}$ and $s_{(ij)}$, make $r_{(ij)}$ adjacent to p_i and $s_{(ij)}$, and make $s_{(ij)}$ adjacent to p_j , i. e., $\{p_i, p_j, r_{(ij)}, s_{(ij)}\}$ induces a C_4 in G.

For the reduction, first, consider the case that \mathcal{I} is a yes-instance for 1-in-3-SAT. Let $f: \mathcal{P} \to \{T, F\}$ be a satisfying assignment such that each clause contains only one literal p_i with $f(p_i) = T$. Select the following vertices as centers of bags: v, the middle, left and right vertex of each extended C_5 , p_i if $f(p_i) = T$, and q_j if $f(p_j) = F$. Additionally, for each clause $\{p_i, p_j, p_k\}$ with $f(p_i) = T$, select the vertices $s_{(ij|k)}, r_{(jk|i)}$, and $r_{(ki|j)}$. The neighbourhoods of the selected vertices give a valid tree-decomposition for G. Therefore, stb(G) = 1.

Next, assume that $\operatorname{stb}(G) = 1$. Recall that, for a clause $c = \{p_i, p_j, p_k\}$, the vertex set $\{c, p_i, p_j, p_k\}$ induces a maximal clique in G. By Lemma 3, c cannot be center of a bag because it is top of an extended C_5 . Therefore, at least one vertex in $\{p_i, p_j, p_k\}$ must be center of a bag. Without loss of generality, let p_i be a center of a bag. By construction, p_i is adjacent to all $p \in \{p_j, p_k, p_l\}$, where $p_l \equiv \neg p_i$. Additionally, p and p_i are vertices in an induced C_4 , say C, and there is no vertex w in G with $N_G[w] \supseteq C$. Thus, by Lemma 1, at most one vertex in $\{p_i, p_j, p_k\}$ can be center of a bag. Therefore, the function $f: \mathcal{L} \to \{T, F\}$ defined as

$$f(p_i) = \begin{cases} T & \text{if } p_i \text{ is center of a bag,} \\ F & \text{else} \end{cases}$$

is a satisfying assignment for \mathcal{I} .

In [13], Ducoffe et al. have shown how to construct a graph G'_{ρ} based on a given graph G such that $\operatorname{tb}(G'_{\rho})=1$ if and only if $\operatorname{tb}(G)\leq \rho$. We will slightly extend their construction to achieve a similar result for strong tree-breadth.

Consider a given graph G = (V, E) with $\mathrm{stb}(G) = \rho$. We will construct G'_{ρ} as follows. Let $V = \{v_1, v_2, \ldots, v_n\}$. Add the vertices $U = \{u_1, u_2, \ldots, u_n\}$ and make them pairwise adjacent. Additionally, make each vertex u_i , with $1 \leq i \leq n$, adjacent to all vertices in $N_G^{\rho}[v_i]$. Last, for each $v_i \in V$, add an extended C_5 of degree 1 with v_i as top vertex.

Lemma 4. $stb(G) \leq \rho$ if and only if $stb(G'_{\rho}) = 1$.

Proof. First, consider a tree-decomposition T for G with strong breadth ρ . Let T'_{ρ} be a tree-decomposition for G'_{ρ} created from T by adding all vertices in U into each bag of T and by making the center, left, and right vertices of each extended C_5 centers of bags. Because the set U induces a clique in G'_{ρ} and $N^{\rho}_{G}[v_i] = N_{G'_{\rho}}[u_i] \cap V$, each bag of T'_{ρ} is the complete neighbourhood of some vertex.

Next, consider a tree-decomposition T'_{ρ} for G'_{ρ} with strong breadth 1. Note that each vertex v_i is top vertex of some extended C_5 . Thus, v_i cannot be center of a bag. Therefore, each edge v_iv_j is in a bag $B_k = N_{G'_{\rho}}[u_k]$. By construction of G'_{ρ} , $B_k \cap V = N_G^{\rho}[v_k]$. Thus, we can construct a tree-decomposition T for G with strong breadth ρ by creating a bag $B_i = N_G^{\rho}[v_i]$ for each bag $N_{G'_{\rho}}[u_i]$ of T'_{ρ} .

Next, consider a given graph G=(V,E) with $V=\{v_1,v_2,\ldots,v_n\}$ and $\mathrm{stb}(G)=1$. For a given $\rho>1$, we obtain the graph G_{ρ}^+ by doing the following for each $v_i\in V$:

- Add the vertices $u_{i,1}, \ldots, u_{i,5}, x_i$, and y_i .
- Add an extended C_5 of degree ρ with the top vertex z_i .
- Connect
 - $u_{i,1}$ and x_i with a path of length $\lfloor \rho/2 \rfloor 1$,
 - $u_{i,2}$ and y_i with a path of length $|\rho/2|$,
 - $u_{i,3}$ and v_i with a path of length $\lceil \rho/2 \rceil 1$,
 - $u_{i,4}$ and v_i with a path of length $|\rho/2|$, and
 - $u_{i,4}$ and z_i with a path of length $\lceil \rho/2 \rceil 1$.
- Add the edges $u_{i,1}u_{i,2}$, $u_{i,1}u_{i,3}$, $u_{i,2}u_{i,3}$, $u_{i,2}u_{i,4}$, and $u_{i,3}u_{i,4}$.

Note that, for small ρ , it can happen that $v_i = u_{i,4}$, $x_i = u_{i,1}$, $y_i = u_{i,2}$, or $z_i = u_{i,5}$. Figure 3 gives an illustration.

Lemma 5.
$$stb(G) = 1$$
 if and only if $stb(G_{\rho}^{+}) = \rho$.

Proof. First, assume that $\operatorname{stb}(G) = 1$. Then, there is a tree-decomposition T for G with strong breadth 1. We will construct for G_{ρ}^{+} a tree-decomposition T_{ρ}^{+} with strong breadth ρ . Make the middle, left, and right vertex of each extended C_{5} center of a bag. For each $v_{i} \in V$, if v_{i} is center of a bag of T, make x_{i} a center of a bag of T_{ρ}^{+} . Otherwise, make y_{i} center of a bag of T_{ρ}^{+} . The distance in G_{ρ}^{+}

Fig. 3. Illustration for the graph G_{ρ}^+ . The graph shown is a subgraph of G_{ρ}^+ as constructed for each v_i in G.

from v_i to x_i is $\rho-1$. The distances from v_i to y_i , from x_i to z_i , and from y_i to z_i are ρ . Thus, $N_{G_{\rho}^+}^{\rho}[x_i] \cap V = N_G[v_i]$, $N_{G_{\rho}^+}^{\rho}[y_i] \cap V = \{v_i\}$, and there is no conflict with Lemma 3. Therefore, the constructed T_{ρ}^+ is a valid tree-decomposition with strong breadth ρ for G_{ρ}^+ .

Next, assume that $\operatorname{stb}(G_{\rho}^+) = \rho$ and there is a tree-decomposition T_{ρ}^+ with strong breadth ρ for G_{ρ}^+ . By Lemma 3, no vertex in distance less than ρ to any z_i can be a center of a bag in T_{ρ}^+ . Therefore, because the distance from v_i to z_i in G_{ρ}^+ is $\rho - 1$, no $v_i \in V$ can be a center of a bag in T_{ρ}^+ . The only vertices with a large enough distance to z_i to be a center of a bag are x_i and y_i . Therefore, either x_i or y_i is selected as center. To construct a tree-decomposition T with strong breadth 1 for G, select v_i as center if and only if x_i is a center of a bag in T_{ρ}^+ . Because $N_{G_{\rho}^+}^{\rho}[x_i] \cap V = N_G[v_i]$ and $N_{G_{\rho}^+}^{\rho}[y_i] \cap V = \{v_i\}$, the constructed T is a valid tree-decomposition with strong breadth 1 for G.

Constructing G'_{ρ} can be done in $\mathcal{O}(n^2)$ time and constructing G^+_{ρ} can be done in $\mathcal{O}(\rho \cdot n + m)$ time. Thus, combining Lemmas 4 and 5 allows us, for a given graph G, some given ρ , and some given ρ' , to construct a graph H in $\mathcal{O}(\rho \cdot n^2)$ time such that $\mathrm{stb}(G) \leq \rho$ if and only if $\mathrm{stb}(H) \leq \rho'$. Additionally, by combining Theorem 1 and Lemma 3, we get:

Theorem 2. It is NP-complete to decide, for a graph G and a given ρ , if $stb(G) = \rho$.

4 Polynomial Time Cases

In the previous section, we have shown that, in general, it is NP-complete to determine the strong tree-breadth of a graph. In this section, we will investigate cases for which a decomposition can be found in polynomial time.

4.1 General Graphs

Let G be a graph with strong tree-breadth ρ and let T be a corresponding tree-decomposition. For a given vertex u in G, we denote the set of connected components in $G - N_G^{\rho}[u]$ as $\mathcal{C}_G[u]$. We say that a vertex v is a potential partner of u for some $C \in \mathcal{C}_G[u]$ if $N_G^{\rho}[v] \supseteq N_G(C)$ and $N_G^{\rho}[v] \cap C \neq \emptyset$.

Lemma 6. Let C be a connected component in $G - B_u$ for some $B_u \subseteq N_G^{\rho}[u]$. Also, let $C \in \mathcal{C}_G[u]$ and v be a potential partner of u for C. Then, for all connected components C_v in $G[C] - N_G^{\rho}[v]$, $C_v \in \mathcal{C}_G[v]$.

Proof. Consider a connected component C_v in $G[C] - N_G^{\rho}[v]$. Clearly, $C_v \subseteq C$ and there is a connected component $C' \in C[v]$ such that $C' \supseteq C_v$.

Let x be an arbitrary vertex in C'. Then, there is a path $P \subseteq C'$ from x to C_v . Because $N_G(C) \subseteq B_u$ and v is a potential partner of u for C, $N_G(C) \subseteq B_u \cap N_G^{\rho}[v]$. Also, $N_G(C)$ separates all vertices in C from all other vertices in G. Therefore, $x \in C$ and $C' \subseteq C$; otherwise, P would intersect $N_G^{\rho}[v]$. It follows that each vertex in P is in the same connected component of $G[C] - N_G^{\rho}[v]$ and, thus, $C_v = C'$.

From Lemma 2, it directly follows:

Corollary 1. If $N_G^{\rho}[u]$ is a bag in T, then T contains a bag $N_G^{\rho}[v]$ for each $C \in \mathcal{C}_G[u]$ such that v is a potential partner of u for C.

Because of Corollary 1, there is a vertex set U such that each $u \in U$ has a potential partner $v \in U$ for each connected component $C \in \mathcal{C}_G[u]$. With such a set, we can construct a tree-decomposition for G with the following approach: Pick a vertex $u \in U$ and make it center of a bag B_u . For each connected component $C \in \mathcal{C}_G[u]$, u has a potential partner v. $N_G^{\rho}[v]$ splits C in more connected components and, because $v \in U$, v has a potential partner $w \in U$ for each of these components. Hence, create a bag $B_v = N_G^{\rho}[v] \cap (B_u \cup C)$ and continue this until the whole graph is covered. Algorithm 1 will determine such a set of vertices with their potential partners (represented as a graph H) and then construct a decomposition as described above.

Theorem 3. Algorithm 1 constructs, for a given graph G with strong tree-breadth ρ , a tree-decomposition T with breadth ρ in $\mathcal{O}(n^2m)$ time.

Proof (Correctness). The Algorithm 1 works in two parts. First, it creates a graph H with potential centers (line 1 to line 6). Second, it uses H to create a tree-decomposition for G (line 9 to line 15). To show the correctness of the algorithm, we will, first, show that centers of a tree-decomposition for G are vertices in H and, then, show that a tree-decomposition created based on H is a valid tree-decomposition for G.

A vertex u is added to H (line 4) if, for at least one connected component $C \in \mathcal{C}_G[u]$, u has a potential partner v. Later, u is kept in H (line 5 and 6) if it has a potential partner v for all connected components in $C \in \mathcal{C}_G[u]$. By Corollary 1,

Algorithm 1. Constructs, for a given graph G = (V, E) with strong tree-breadth ρ , a tree-decomposition T with breadth ρ .

```
1 Create an empty directed graph H = (V_H, E_H). Let \phi be a function that maps
   each edge (u, v) \in E_H to a connected component C \in \mathcal{C}_G[u].
 2 foreach u, v \in V and all C \in \mathcal{C}_G[u] do
       if v is a potential parter of u for C then
           Add the directed edge (u, v) to H and set \phi(u, v) := C. (Add u and v to
 4
           H if necessary.)
 5 while there is a vertex u \in V_H and some C \in \mathcal{C}_G[u] such that there is no
   (u,v) \in E_H \text{ with } \phi(u,v) = C \text{ do}
    Remove u from H.
 7 if H is empty then
       Stop. stb(G) > \rho.
 9 Create an empty tree-decomposition T.
10 Let G-T be the subgraph of G that is not covered by T and let \psi be a
   function that maps each connected component in G-T to a bag B_u \subseteq N_G^{\rho}[u].
11 Pick an arbitrary vertex u \in V_H, add B_u = N_G^{\rho}[u] as bag to T, and set
   \psi(C) := B_u for each connect component C in G - T.
12 while G-T is non-empty do
       Pick a connected component C in G-T, determine the bag B_v := \psi(C)
       and find an edge (v, w) \in E_H with \phi(v, w) = C.
       Add B_w = N_G^{\rho}[w] \cap (B_v \cup C) to T, and make B_v and B_w adjacent in T.
14
       For each new connected component C' in G-T with C' \subseteq C, set
15
       \psi(C_w) := B_w.
16 Output T.
```

each center of a bag in a tree-decomposition T with strong breadth ρ satisfies these conditions. Therefore, after line 6, H contains all centers of bags in T, i. e., if G has strong tree-breadth ρ , H is non-empty.

Next, we show that T created in the second part of the algorithm (line 9 to line 15) is a valid tree-decomposition for G with breadth ρ . To do so, we will show the following invariant for the loop starting in line 12: (i) T is a valid tree-decomposition with breadth ρ for the subgraph covered by T and (ii) for each connected component C in G-T, the bag $B_v=\psi(C)$ is in $T, N_G(C)\subseteq B_v$, and $C\in\mathcal{C}_G[v]$. After line 11, the invariant clearly holds. Assume by induction that the invariant holds each time line 12 is checked. If T covers the whole graph, the check fails and the algorithm outputs T. If T does not cover G completely, there is a connected component C in G-T. By condition (ii), the bag $B_v=\psi(C)$ is in $T, N_G(C)\subseteq B_v$, and $C\in\mathcal{C}_G[v]$. Because of the way H is constructed and $C\in\mathcal{C}_G[v]$, there is an edge $(v,w)\in E_H$ with $\phi(v,w)=C$, i. e., w is a potential partner of v for C. Thus, line 13 is successful and the algorithm adds a new bag $B_w=N_G^{\rho}[w]\cap(B_v\cup C)$ (line 14). Because w is a potential partner of v for C, i. e., $N_G(C)\subseteq N_G^{\rho}[w]$, and $N_G(C)\subseteq B_v$, $B_w\supseteq N_G(C)$. Therefore, after adding B_w to T, T still satisfies condition (i). Additionally, B_w splits C in a

set \mathcal{C}' of connected components such that, for each $C' \in \mathcal{C}'$, $N_G(C') \subseteq B_w$ and, by Lemma 6, $C' \in \mathcal{C}_G[w]$. Thus, condition (ii) is also satisfied.

Proof (Complexity). First, determine the pairwise distance of all vertices. This can be done in $\mathcal{O}(nm)$ time and allows to check the distance between vertices in constant time.

For a vertex u, let $\mathcal{N}[u] = \{N_G(C) \mid C \in \mathcal{C}_G[u]\}$. Note that, for some $C \in \mathcal{C}_G[u]$ and each vertex $x \in N_G(C)$, there is an edge xy with $y \in C$. Therefore, $|\mathcal{N}[u]| := \sum_{C \in \mathcal{C}_G[u]} |N_G(C)| \le m$. To determine, for some vertex u, all its potential partners v, first, compute $\mathcal{N}[u]$. This can be done in $\mathcal{O}(m)$ time. Then, check, for each vertex v and each $N_G(C) \in \mathcal{N}[u]$, if $N_G(C) \subseteq N_G^{\rho}[v]$ and add the edge (u, v) to H if successful. For a single vertex v this requires $\mathcal{O}(m)$ time because $|\mathcal{N}[u]| \le m$ and distances can be determined in constant time. Therefore, the total runtime for creating H (line 1 to line 4) is $\mathcal{O}(n(m+nm)) = \mathcal{O}(n^2m)$.

Assume that, for each $\phi(u,v)=C$, C is represented buy two values: (i) a characteristic vertex $x\in C$ (for example the vertex with the lowest index) and (ii) the index of C in $C_G[u]$. While creating H, count and store, for each vertex u and each connected component $C\in C_G[u]$, the number of edges $(u,v)\in E_H$ with $\phi(u,v)=C$. Note that there is a different counter for each $C\in C_G[u]$. With this information, we can implement line 5 and 6 as follows. First check, for every vertex v in H, if one of its counters is 0. In this case, remove v from H and update the counters for all vertices u with $(u,v)\in E_H$ using value (ii) of $\phi(u,v)$. If this sets a counter for u to 0, add u to a queue Q of vertices to process. Continue this until each vertex is checked. Then, for each vertex u in Q, remove u form H and add its neighbours into Q if necessary until Q is empty. This way, a vertex is processed at most twice. A single iteration runs in at most $\mathcal{O}(n)$ time. Therefore, line 5 and 6 can be implemented in $\mathcal{O}(n^2)$ time.

Assume that ψ uses the characteristic vertex x to represent a connected component, i. e., value (i) of ϕ . Then, finding an edge $(v, w) \in E_H$ (line 13) can be done in $\mathcal{O}(m)$ time. Creating B_w (line 14), splitting C into new connected components C', finding their characteristic vertex, and setting $\psi(C')$ (line 15) takes $\mathcal{O}(m)$ time, too. In each iteration, at least one more vertex of G is covered by T. Hence, there are at most n iterations and, thus, the loop starting in line 12 runs in $\mathcal{O}(mn)$ time.

Therefore, Algorithm 1 runs in total $\mathcal{O}(n^2m)$ time.

Algorithm 1 creates for each graph G with $\mathrm{stb}(G) \leq \rho$ a tree-decomposition T with breadth ρ . Next, we will invest a case where we can construct a tree-decomposition for G with strong breadth ρ .

We say that two vertices u and v are perfect partners if (i) u and v are potential partner of each other for some $C_u \in \mathcal{C}_G[u]$ and some $C_v \in \mathcal{C}_G[v]$, (ii) C_u is the only connected component in $\mathcal{C}_G[u]$ which is intersected by $N_G^{\rho}[v]$, and (iii) C_v is the only connected component in $\mathcal{C}_G[v]$ which is intersected by $N_G^{\rho}[u]$. Accordingly, we say that a tree-decomposition T has perfect strong breadth ρ if it has strong breadth ρ and, for each center u of some bag and each connected component $C \in \mathcal{C}_G[u]$, there is a center v such that v is a perfect partner of u for C.

Theorem 4. A tree-decomposition with perfect strong breadth ρ can be constructed in polynomial time.

Proof. To construct such a tree-decomposition, we can modify Algorithm 1. Instead of checking if u has a potential partner v (line 3), check if u and v are perfect partners.

Assume by induction that, for each bag B_v in T, $B_v = N_G^{\rho}[v]$. By definition of perfect partners v and w, $N_G^{\rho}[w]$ intersects only one $C \in \mathcal{C}_G[v]$, i. e., $N_G^{\rho}[w] \subseteq N_G^{\rho}[v] \cup C$. Thus, when creating the bag B_w (line 14), $B_w = N_G^{\rho}[w] \cap (B_v \cup C) = N_G^{\rho}[w] \cap (N_G^{\rho}[v] \cup C) = N_G^{\rho}[w]$. Therefore, the created tree-decomposition T has perfect strong tree-breadth ρ .

We conjecture that there are weaker cases than perfect strong breadth which allow to construct a tree-decomposition with strong-breadth ρ . For example, if the centers of two adjacent bags are perfect partners, but a center u does not need to have a perfect partner for each $C \in \mathcal{C}_G[u]$. However, when using a similar approach as in Algorithm 1, this would require a more complex way of constructing H.

4.2 Special Graph Classes

A graph G is distance-hereditary if, in any connected induced subgraph, the distances are the same as in G.

Theorem 5. Distance-hereditary graphs have strong tree-breadth 1. An according decomposition can be computed in linear time.

Proof. Let $\sigma = \langle v_1, v_2, \dots, v_n \rangle$ be an ordering for the vertices of a graph G, $V_i = \{v_1, v_2, \dots, v_i\}$, and G_i denote the graph $G[V_i]$. An ordering σ is called a *pruning sequence* for G if, for $1 < i \le n$, each v_i satisfies one of the following conditions in G_i :

- (i) v_i is a pendant vertex,
- (ii) v_i is a true twin of some vertex v_j , or
- (iii) v_i is a false twin of some vertex v_j .

A graph G is distance-hereditary if and only if there is a pruning sequence for G [2].

Assume that we are given such a pruning sequence. Additionally, assume by induction over i that G_i has a tree-decomposition T_i with strong breadth 1. Then, there are three cases:

- (i) v_{i+1} is a pendant vertex in G_{i+1} . If the neighbour u of v_{i+1} is a center of a bag B_u , add v_{i+1} to B_u . Thus, T_{i+1} is a valid decomposition for G_{i+1} . Otherwise, if u is not a center, make v_{i+1} center of a bag. Because u is an articulation point, $T_{i+1} = T_i + N_G[v]$ is a valid decomposition for G_{i+1} .
- (ii) v_{i+1} is a true twin of a vertex u in G_{i+1} . Simply add v_{i+1} into any bag containing u. The resulting decomposition is a valid decomposition for G_{i+1} .

(iii) v_{i+1} is a false twin of a vertex u in G_{i+1} . If u is not center of a bag, add v_{i+1} into any bag u is in. Otherwise, make a new bag $B_{i+1} = N_G[v_{i+1}]$ and make it adjacent to the bag $N_G[u]$. Because no vertex in $N_G(u)$ is center of a bag, the resulting decomposition is a valid decomposition for G_{i+1} .

Therefore, distance-hereditary graphs have strong tree-breadth 1.

Next, we will show how to compute an according tree-decomposition in linear time. The argument above already gives an algorithmic approach. First, we compute a pruning sequence for G. This can be done in linear time with an algorithm by Damiand et al. [7]. Then, we determine which vertex becomes a center of a bag. Note that we can simplify the three cases above with the following rule: If v_i has no neighbour in G_i which is center of a bag, make v_i center of a bag. Otherwise, proceed with v_{i+1} . This can be easily implemented in linear time with a binary flag for each vertex.

Algorithm 2 formalizes the method described in the proof of Theorem 5.

Algorithm 2. Computes, for a given distance-hereditary graph G, a tree-decomposition T with strong breadth 1.

```
1 Compute a pruning sequence \langle v_1, v_2, \dots, v_n \rangle (see [7]).

2 Create a set C := \emptyset.

3 for i := 1 to n do

4 \qquad if N_G[v_i] \cap V_i \cap C = \emptyset then

5 \qquad Add v_i to C.

6 Create a tree-decomposition T with the vertices in C as centers of its bags.
```

A bipartite graph is chordal bipartite if each cycle of length at least 6 has a chord. In [11], it was shown that any chordal bipartite graph G = (X, Y, E) admits a tree-decomposition with the set of bags $\mathcal{B} = \{B_1, B_2, \ldots, B_{|X|}\}$, where $B_i = N_G[x_i], x_i \in X$. As far as we can tell, there is no linear time algorithm known to recognise chordal bipartite graphs. However, we can still compute a tree-decomposition in linear time with three steps. First, compute a 2-colouring. Second, select a colour and make the neighbourhood of all vertices with this colour bags. Third, use the algorithm in [18] to check if the selected bags give a valid tree-decomposition.

Theorem 6 [11]. Each chordal bipartite graph has strong tree-breadth 1. An according tree-decomposition can be found in linear time.

Consider two parallel lines (upper and lower) in the plane. Assume that each line contains n points, labelled 1 to n. Each two points with the same label define a segment with that label. The intersection graph of such a set of segments between two parallel lines is called a *permutation graph*. In [10], an algorithm was presented that finds, for a given permutation graph, a path-decomposition with strong breadth 1 in linear time.

Theorem 7 [10]. Permutation graphs have strong tree-breadth 1. An according tree-decomposition can be found in linear time.

5 Conclusion

We have shown that, in general, it is NP-complete to determine if a given graph G admits a tree-decomposition with strong breadth ρ for all $\rho \geq 1$. Consider the case that a vertex v is center of a bag. Part of the hardness of finding a decomposition, even for $\rho = 1$, lays in determining which connected component $C \in \mathcal{C}_G[v]$ will be covered by which neighbouring bag $N_G[u]$. If, for two vertices u and w, $N_G[u]$ and $N_G[w]$ intersect C and are bags in the same decompositions T, both cannot be separated in T by $N_G[v]$. Additionally, if u is adjacent to v, it might happen that $N_G[u]$ intersects multiple connected components. This leads to a potentially exponential number of combinations.

A path-decomposition of graph is a tree-decomposition with the restriction that the bags form a path instead of a tree with multiple branches. Accordingly, a graph has (strong) path-breadth ρ if it admits a path-decomposition with (strong) breadth ρ . In [10], it was shown that, for graphs with bounded path-breadth, a constant factor approximation for the bandwidth problem and the line-distortion problem can be found in polynomial time.

Now, consider the case that we want to compute if a given graph admits a path-decomposition P with strong breadth 1. In this case, there can be at most two bags adjacent to a bag $N_G[v]$ in P. Hence, for each v, there is at most a quadratic number of combinations. This leads to the following conjecture.

Conjecture. The strong path-breadth of a graph can be computed in polynomial time.

Another question is if a bounded strong tree-breadth leads to a lower bound for the tree-breadth of a graph. That is, is there a constant c such that, for any graph G, $stb(G) \leq c \cdot tb(G)$. Using Algorithm 1, a small constant might lead to a new approach for approximating the tree-breadth of a graph.

References

- Abu-Ata, M., Dragan, F.F.: Metric tree-like structures in real-life networks: an empirical study. Networks 67(1), 49–68 (2016)
- Bandelt, H.-J., Mulder, H.M.: Distance-hereditary graphs. J. Comb. Theory Ser. B 41, 182–208 (1986)
- Brandstädt, A., Chepoi, V.D., Dragan, F.F.: The algorithmic use of hypertree structure and maximum neighborhood orderings. Discret. Appl. Math. 82, 43–77 (1998)
- Brandstädt, A., Dragan, F.F., Chepoi, V.D., Voloshin, V.: Dually chordal graphs. SIAM J. Discret. Math. 11(3), 437–455 (1998)
- Brandstädt, A., Fičur, P., Leitert, A., Milanič, M.: Polynomial-time algorithms for weighted efficient domination problems in AT-free graphs and dually chordal graphs. Inf. Process. Lett. 115(2), 256–262 (2015)

- Brandstädt, A., Leitert, A., Rautenbach, D.: Efficient dominating and edge dominating sets for graphs and hypergraphs. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 267–277. Springer, Heidelberg (2012)
- Damiand, G., Habib, M., Paul, C.: A simple paradigm for graph recognition: application to cographs and distance hereditary graphs. Theoret. Comput. Sci. 263(1–2), 99–111 (2001)
- 8. Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter. Discret. Math. **307**(16), 2008–2029 (2007)
- Dragan, F.F., Köhler, E.: An approximation algorithm for the tree t-spanner problem on unweighted graphs via generalized chordal graphs. Algorithmica 69, 884– 905 (2014)
- 10. Dragan, F.F., Köhler, E., Leitert, A.: Line-distortion, bandwidth and path-length of a graph. Algorithmica (in print)
- Dragan, F.F., Lomonosov, I.: On compact and efficient routing in certain graph classes. Discret. Appl. Math. 155, 1458–1470 (2007)
- Dragan, F.F., Matamala, M.: Navigating in a graph by aid of its spanning tree. SIAM J. Discret. Math. 25(1), 306–332 (2011)
- Ducoffe, G., Legay, S., Nisse, N.: On computing tree and path decompositions with metric constraints on the bags. CoRR abs/1601.01958 (2016)
- 14. Halin, R.: S-functions for graphs. J. Geom. 8(1-2), 171-186 (1976)
- 15. Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Comb. Theory Ser. B **35**(1), 39–61 (1983)
- Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb. Theory Ser. B 36(1), 49-64 (1984)
- 17. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing (STOC 1978), pp. 216–226 (1978)
- Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13(3), 566–579 (1984)