
On Strong Tree-Breadth

Arne Leitert(B) and Feodor F. Dragan

Department of Computer Science, Kent State University, Kent, OH, USA
{aleitert,dragan}@cs.kent.edu

Abstract. In this paper, we introduce and investigate a new notion of
strong tree-breadth. We say that a graph G has strong tree-breadth ρ if
there is a tree-decomposition T for G such that each bag B of T is equal
to the complete ρ-neighbourhood of some vertex v in G, i. e., B = Nρ

G[v].
We show that

– it is NP-complete to determine if a given graph has strong tree-
breadth ρ, even for ρ = 1;

– if a graph G has strong tree-breadth ρ, then we can find a tree-
decomposition for G with tree-breadth ρ in O(n2m) time;

– with some additional restrictions, a tree-decomposition with strong
breadth ρ can be found in polynomial time;

– some graph classes including distance-hereditary graphs have strong
tree-breadth 1.

1 Introduction

Decomposing a graph into a tree is an old concept. It was introduced already
by Halin [14]. However, a more popular introduction was given by Robertson
and Seymour [15,16]. The idea is to decompose a graph into multiple induced
subgraphs, usually called bags, where each vertex can be in multiple bags. These
bags are combined to a tree in such a way that the following requirements are
fulfilled: Each vertex is in at least one bag, each edge is in at least one bag, and,
for each vertex, the bags containing it induces a subtree. We will give formal
definitions in the next section.

For a given graph, there can be up to exponentially many different tree-
decompositions. The easiest is to have only one bag containing the whole graph.
To make the concept more interesting, it is necessary to add additional restric-
tions. The most known is called tree-width. A decomposition has width ω if each
bag contains at most ω + 1 vertices. Then, a graph G has tree-width ω if there
is a tree-decomposition for G which has width ω.

In the last years, a new perspective on tree-decompositions was invested.
Instead of limiting the number of vertices in each bag, the distance between
vertices inside a bag is limited [8,9]. In this paper, we are interested in a variant
called tree-breadth. It was introduced by Dragan and Köhler in [9]. The breadth
of a tree-decomposition is ρ, if, for each bag B, there is a vertex v such that
each vertex in B has distance at most ρ to v. Accordingly, we say the tree-
breadth of a graph G is ρ (written as tb(G) = ρ) if there is a tree-decomposition
c© Springer International Publishing AG 2016
T-H.H. Chan et al. (Eds.): COCOA 2016, LNCS 10043, pp. 62–76, 2016.
DOI: 10.1007/978-3-319-48749-6 5

On Strong Tree-Breadth 63

for G with breadth ρ and there is no tree-decomposition with smaller breadth.
This new concept of tree-breadth played a crucial role in designing an efficient
and best to the date approximation algorithm for the well-known tree t-spanner
problem (see [9] for details). Recently, Ducoffe et al. [13] have shown that it is
NP-complete to determine if a graph has tree-breadth ρ for all ρ ≥ 1. On the
other hand, for a given graph G, a tree-decomposition of breadth at most 3 tb(G)
can be computed in linear time [1].

By definition, a tree-decomposition has breadth ρ if each bag B is the subset
of the ρ-neighbourhood of some vertex v, i. e., the set of bags is the set of subsets
of the ρ-neighbourhoods of some vertices. Tree-breadth 1 graphs contain the
class of dually chordal graphs which can be defines as follows: A graph G is
dually chordal if it admits a tree-decomposition T such that, for each vertex v
in G, T contains a bag B = NG[v] [4]. That is, the set of bags in T is the set of
complete neighbourhoods of all vertices.

In this paper, we investigate the case which lays between dually chordal
graphs and general tree-breadth ρ graphs. In particular, tree-decompositions are
considered where the set of bags are the complete ρ-neighbourhoods of some ver-
tices. We call this strong tree-breadth. The strong breadth of a tree-decomposition
is ρ, if, for each bag B, there is a vertex v such that B = Nρ

G[v]. Accord-
ingly, a graph G has strong tree-breadth smaller than or equal to ρ (written as
stb(G) ≤ ρ) if there is a tree-decomposition for G with strong breadth at most ρ.

Dually chordal graphs and their powers are exactly the graphs admitting a
tree-decomposition where the set of bags is equal to the set of complete neigh-
bourhoods (complete ρ-neighbourhoods) of all vertices. It is a known fact that
the dually chordal graphs (the powers of dually chordal graphs) can be recog-
nised in linear time (respectively, polynomial time) [4]. General tree-breadth ρ
graphs cannot be recognised in polynomial time unless P = NP [13]. It remained
an interesting open question if the graphs with strong tree-breadth ρ can be
recognised in polynomial time.

In this paper we show that it is NP-complete to determine if a given graph
has strong tree-breadth ρ, even for ρ = 1. Furthermore, we demonstrate that:
if a graph G has strong tree-breadth ρ, then we can find a tree-decomposition
for G with tree-breadth ρ in O(n2m) time; with some additional restrictions, a
tree-decomposition with strong breadth ρ can be found in polynomial time; some
graph classes including distance-hereditary graphs have strong tree-breadth 1.
Our future research plans are to investigate algorithmic implications of the
existence for a graph of a tree-decomposition with small strong tree-breadth.
Can some algorithmic problems that remain NP-complete on general tree-
breadth ρ graphs be solved/approximated efficiently on the graphs with strong
tree-breadth ρ? Recall that, for example, greedy routing with aid of a spanning
tree [12], (connected) r-domination [3], Steiner tree [3], and (weighted) efficient
domination [5,6] can be efficiently solved on dually chordal graphs and their
powers.

64 A. Leitert and F.F. Dragan

2 Preliminaries

All graphs occurring in this paper are (if not stated or constructed otherwise)
connected, finite, unweighted, undirected, without loops, and without multiple
edges. For a graph G = (V,E), we use n = |V | and m = |E| to denote the
cardinality of the vertex set and the edge set of G. The length of a path from a
vertex v to a vertex u is the number of edges in the path. The distance dG(u, v)
of two vertices u and v is the length of a shortest path connecting u and v.
The distance between a vertex v and a set S ⊆ V is defined as dG(v, S) =
minu∈S dG(u, v).

For a vertex v of G, NG(v) = {u ∈ V | uv ∈ E} is called the open neighbor-
hood of v. Similarly, for a set S ⊆ V , we define NG(S) = {u ∈ V | dG(u, S) = 1}.
The r-neighbourhood of a vertex v in G is Nr

G[v] = {u | dG(u, v) ≤ r}; if r is not
specified, then r = 1. Two vertices u and v are true twins if NG[u] = NG[v] and
are false twins if they are non-adjacent and NG(u) = NG(v).

For a vertex set S, let G[S] denote the subgraph of G induced by S. With
G − S, we denote the graph G[V \S]. A vertex set S is a separator for two
vertices u and v in G if each path from u to v contains a vertex s ∈ S; in this
case we say S separates u from v. If a separator S contains only one vertex s,
i. e., S = {s}, then s is an articulation point. A block is a maximal subgraph
without articulation points.

A chord in a cycle is an edge connecting two non-consecutive vertices of the
cycle. A cycle is called induced if it has no chords. For each k ≥ 3, an induced
cycle of length k is called as Ck. A subgraph is called clique if all its vertices
are pairwise adjacent. A maximal clique is a clique that cannot be extended by
including any additional vertex.

A tree-decomposition of a graph G = (V,E) is a tree T with the vertex
set B where each vertex of T , called bag, is a subset of V such that: (i) V =⋃

B∈B B, (ii) for each edge uv ∈ E, there is a bag B ∈ B with u, v ∈ B, and
(iii) for each vertex v ∈ V , the bags containing v induce a subtree of T . A
tree-decomposition T of G has breadth ρ if, for each bag B of T , there is a
vertex v in G with B ⊆ Nρ

G[v]. The tree-breadth of a graph G is ρ, written as
tb(G) = ρ, if ρ is the minimal breadth of all tree-decomposition for G. Similarly,
a tree-decomposition T of G has strong breadth ρ if, for each bag B of T , there
is a vertex v in G with B = Nρ

G[v]. The strong tree-breadth of a graph G is the
minimal ρ for which G admits a tree-decomposition with strong breadth ρ. This
is written as stb(G) = ρ.

3 NP-Completeness

In this section, we will show that it is NP-complete to determine if a given graph
has strong tree-breadth ρ even if ρ = 1. To do so, we will first show that, for
some small graphs, the choice of possible centers is restricted. Then, we will use
these small graphs to construct a reduction.

On Strong Tree-Breadth 65

Lemma 1. Let C = {v1, v2, v3, v4} be an induced C4 in a graph G with the
edge set {v1v2, v2v3, v3v4, v4v1}. If there is no vertex w /∈ C with NG[w] ⊇ C,
then NG[v1] and NG[v2] cannot both be bags in the same tree-decomposition with
strong breadth 1.

Proof. Assume that there is a decomposition T with strong breadth 1 containing
the bags B1 = NG[v1] and B2 = NG[v2]. Because v3 and v4 are adjacent, there is
a bag B3 ⊇ {v3, v4}. Consider the subtrees T1, T2, T3, and T4 of T induced by v1,
v2, v3, and v4, respectively. These subtrees pairwise intersect in the bags B1, B2,
and B3. Because pairwise intersecting subtrees of a tree have a common vertex,
T contains a bag NG[w] ⊇ C. Note that there is no vi ∈ C with NG[vi] ⊇ C.
Thus, w /∈ C. This contradicts with the condition that there is no vertex w /∈ C
with NG[w] ⊇ C. ��

Let C = {v1, . . . , v5} be a C5 with the edges E5 = {v1v2, v2v3, . . . , v5v1}. We
call the graph H = (C ∪ {u}, E5 ∪ {uv1, uv3, uv4}), with u /∈ C, an extended C5

of degree 1 and refer to the vertices u, v1, v2, and v5 as middle, top, right, and
left vertex of H, respectively. Based on H = (VH , EH), we construct an extended
C5 of degree ρ (with ρ > 1) as follows. First, replace each edge xy ∈ EH by a
path of length ρ. Second, for each vertex w on the shortest path from v3 to v4,
connect u with w using a path of length ρ. Figure 1 gives an illustration.

Fig. 1. Two extended C5 of degree 1 and degree 3. We refer to the vertices u, v1, v2,
and v5 as middle, top, right, and left vertex, respectively.

Lemma 2. Let B be a bag of a tree-decomposition T for a graph G and let C be
a connected component in G−B. Then, T contains a bag BC with BC ⊇ NG(C)
and BC ∩ C �= ∅.
Proof. Let BC be the bag in T for which BC ∩ C �= ∅ and the distance between
B and BC in T is minimal. Additionally, let B′ be the bag in T adjacent to BC

which is closest to B and let S = BC ∩B′. Note that S∩C = ∅ and, by properties
of tree-decompositions, S separates C from all vertices in B\S. Assume that
there is a vertex u ∈ NG(C)\S. Because u ∈ NG(C), there is a vertex v ∈ C
which is adjacent to u. This contradicts with S being a separator for u and v.
Therefore, NG(C) ⊆ S ⊆ BC . ��

66 A. Leitert and F.F. Dragan

Lemma 3. Let H be an extended C5 of degree ρ in a graph G as defined above.
Additionally, let H be a block of G and its top vertex v1 be the only articulation
point of G in H. Then, there is no vertex w in G with dG(w, v1) < ρ which is
the center of a bag in a tree-decomposition for G with strong breadth ρ.

Proof. Let T be a tree-decomposition for G with strong breadth ρ. Assume that
T contains a bag Bw = Nρ

G[w] with dG(w, v1) < ρ. Note that the distance from
v1 to any vertex on the shortest path from v3 to v4 is 2ρ. Hence, G − Bw has a
connected component C containing the vertices v3 and v4. Then, by Lemma 2,
there has to be a vertex w′ �= w in G and a bag B′

w = Nρ
G[w′] in T such that

(i) B′
w ⊇ NG(C) and (ii) B′

w ∩ C �= ∅. Thus, if we can show, for a given w, that
there is no such w′, then w cannot be center of a bag.

First, consider the case that w is in H. We will construct a set X = {x, y} ⊆
NG(C) such that there is a unique shortest path from x to y in G passing w. If
w = v1, let x = v2 and y = v5. If w is on the shortest path from v1 to u, let x
and y be on the shortest path from v1 to v2 and from v4 to u, respectively. If w
is on the shortest path from v1 to v2, let x and y be on the shortest path from
v1 to v5 and from v2 to v3, respectively. In each case, there is a unique shortest
path from x to y passing w. Note that, for all three cases, dG(v1, y) ≥ ρ. Thus,
each w′ with dG(w′, y) ≤ ρ is in H. Therefore, w is the only vertex in G with
X ⊆ Nρ

G[w], i. e., there is no vertex w′ �= w satisfying condition (i). This implies
that w cannot be center of a bag in T .

Next, consider the case that w is not in H. Without loss of generality, let w
be a center for which dG(v1, w) is minimal. As shown above, there is no vertex w′

in H with dG(v1, w′) < ρ which is center of a bag. Hence, w′ is not in H either.
However, because v1 is an articulation point, w′ has to be closer to v1 than w to
satisfy condition (ii). This contradicts with dG(v1, w) being minimal. Therefore,
there is no vertex w′ satisfying condition (ii) and w cannot be center of a bag
in T . ��
Theorem 1. It is NP-complete to decide, for a given graph G, if stb(G) = 1.

Proof. Clearly, the problem is in NP: Select non-deterministically a set S of
vertices such that their neighbourhoods cover each vertex and each edge. Then,
check deterministically if the neighbourhoods of the vertices in S give a valid
tree-decomposition. This can be done in linear time [18]. The algorithm in [18]
also creates the corresponding tree.

To show that the problem is NP-hard, we will make a reduction from 1-in-3-
SAT [17]. That is, you are given a boolean formula in CNF with at most three
literals per clause; find a satisfying assignment such that, in each clause, only
one literal becomes true.

Let I be an instance of 1-in-3-SAT with the literals L = {p1, . . . , pn}, the
clauses C = {c1, . . . , cm}, and, for each c ∈ C, c ⊆ L. We create a graph G =
(V,E) as follows. Create a vertex for each literal p ∈ L and, for all literals pi

and pj with pi ≡ ¬pj , create an induced C4 = {pi, pj , qi, qj} with the edges pipj ,
qiqj , piqi, and pjqj . For each clause c ∈ C with c = {pi, pj , pk}, create an extended
C5 with c as top vertex, connect c with an edge to all literals it contains, and

On Strong Tree-Breadth 67

make all literals in c pairwise adjacent, i. e., the vertex set {c, pi, pj , pk} induces
a maximal clique in G. Additionally, create a vertex v and make v adjacent to
all literals. Figure 2a gives an illustration for the construction so far.

Fig. 2. Illustration to the proof of Theorem 1. The graphs shown are subgraphs of G
as created by a clause c = {pi, pj , pk} and a literal pl with pi ≡ ¬pl.

Next, for each clause {pi, pj , pk} and for each (xy|z) ∈ {(ij|k), (jk|i), (ki|j)},
create the vertices r(xy|z) and s(xy|z), make r(xy|z) adjacent to s(xy|z) and px,
and make s(xy|z) adjacent to py and pz. See Fig. 2b for an illustration. Note that
r(ij|k) and s(ij|k) are specific for the clause {pi, pj , pk}. Thus, if pi and pj are
additionally in a clause with pl, then we also create the vertices r(ij|l) and s(ij|l).
For the case that a clause only contains two literals pi and pj , create the vertices
r(ij) and s(ij), make r(ij) adjacent to pi and s(ij), and make s(ij) adjacent to pj ,
i. e., {pi, pj , r(ij), s(ij)} induces a C4 in G.

For the reduction, first, consider the case that I is a yes-instance for
1-in-3-SAT. Let f : P → {T, F} be a satisfying assignment such that each clause
contains only one literal pi with f(pi) = T . Select the following vertices as centers
of bags: v, the middle, left and right vertex of each extended C5, pi if f(pi) = T ,
and qj if f(pj) = F . Additionally, for each clause {pi, pj , pk} with f(pi) = T ,
select the vertices s(ij|k), r(jk|i), and r(ki|j). The neighbourhoods of the selected
vertices give a valid tree-decomposition for G. Therefore, stb(G) = 1.

Next, assume that stb(G) = 1. Recall that, for a clause c = {pi, pj , pk}, the
vertex set {c, pi, pj , pk} induces a maximal clique in G. By Lemma 3, c cannot
be center of a bag because it is top of an extended C5. Therefore, at least one
vertex in {pi, pj , pk} must be center of a bag. Without loss of generality, let pi

be a center of a bag. By construction, pi is adjacent to all p ∈ {pj , pk, pl}, where
pl ≡ ¬pi. Additionally, p and pi are vertices in an induced C4, say C, and there
is no vertex w in G with NG[w] ⊇ C. Thus, by Lemma 1, at most one vertex
in {pi, pj , pk} can be center of a bag. Therefore, the function f : L → {T, F}
defined as

f(pi) =

{
T if pi is center of a bag,
F else

is a satisfying assignment for I. ��

68 A. Leitert and F.F. Dragan

In [13], Ducoffe et al. have shown how to construct a graph G′
ρ based on a

given graph G such that tb(G′
ρ) = 1 if and only if tb(G) ≤ ρ. We will slightly

extend their construction to achieve a similar result for strong tree-breadth.
Consider a given graph G = (V,E) with stb(G) = ρ. We will construct G′

ρ

as follows. Let V = {v1, v2, . . . , vn}. Add the vertices U = {u1, u2, . . . , un} and
make them pairwise adjacent. Additionally, make each vertex ui, with 1 ≤ i ≤ n,
adjacent to all vertices in Nρ

G[vi]. Last, for each vi ∈ V , add an extended C5 of
degree 1 with vi as top vertex.

Lemma 4. stb(G) ≤ ρ if and only if stb(G′
ρ) = 1.

Proof. First, consider a tree-decomposition T for G with strong breadth ρ. Let
T ′

ρ be a tree-decomposition for G′
ρ created from T by adding all vertices in U

into each bag of T and by making the center, left, and right vertices of each
extended C5 centers of bags. Because the set U induces a clique in G′

ρ and
Nρ

G[vi] = NG′
ρ
[ui] ∩ V , each bag of T ′

ρ is the complete neighbourhood of some
vertex.

Next, consider a tree-decomposition T ′
ρ for G′

ρ with strong breadth 1. Note
that each vertex vi is top vertex of some extended C5. Thus, vi cannot be center
of a bag. Therefore, each edge vivj is in a bag Bk = NG′

ρ
[uk]. By construction

of G′
ρ, Bk ∩ V = Nρ

G[vk]. Thus, we can construct a tree-decomposition T for G
with strong breadth ρ by creating a bag Bi = Nρ

G[vi] for each bag NG′
ρ
[ui]

of T ′
ρ. ��
Next, consider a given graph G = (V,E) with V = {v1, v2, . . . , vn} and

stb(G) = 1. For a given ρ > 1, we obtain the graph G+
ρ by doing the following

for each vi ∈ V :

– Add the vertices ui,1, . . . , ui,5, xi, and yi.
– Add an extended C5 of degree ρ with the top vertex zi.
– Connect

• ui,1 and xi with a path of length �ρ/2� − 1,
• ui,2 and yi with a path of length �ρ/2�,
• ui,3 and vi with a path of length �ρ/2� − 1,
• ui,4 and vi with a path of length �ρ/2�, and
• ui,4 and zi with a path of length �ρ/2� − 1.

– Add the edges ui,1ui,2, ui,1ui,3, ui,2ui,3, ui,2ui,4, and ui,3ui,4.

Note that, for small ρ, it can happen that vi = ui,4, xi = ui,1, yi = ui,2, or
zi = ui,5. Figure 3 gives an illustration.

Lemma 5. stb(G) = 1 if and only if stb(G+
ρ) = ρ.

Proof. First, assume that stb(G) = 1. Then, there is a tree-decomposition T
for G with strong breadth 1. We will construct for G+

ρ a tree-decomposition T+
ρ

with strong breadth ρ. Make the middle, left, and right vertex of each extended
C5 center of a bag. For each vi ∈ V , if vi is center of a bag of T , make xi a center
of a bag of T+

ρ . Otherwise, make yi center of a bag of T+
ρ . The distance in G+

ρ

On Strong Tree-Breadth 69

Fig. 3. Illustration for the graph G+
ρ . The graph shown is a subgraph of G+

ρ as con-
structed for each vi in G.

from vi to xi is ρ−1. The distances from vi to yi, from xi to zi, and from yi to zi

are ρ. Thus, Nρ

G+
ρ
[xi] ∩ V = NG[vi], Nρ

G+
ρ
[yi] ∩ V = {vi}, and there is no conflict

with Lemma 3. Therefore, the constructed T+
ρ is a valid tree-decomposition with

strong breadth ρ for G+
ρ .

Next, assume that stb(G+
ρ) = ρ and there is a tree-decomposition T+

ρ with
strong breadth ρ for G+

ρ . By Lemma 3, no vertex in distance less than ρ to any
zi can be a center of a bag in T+

ρ . Therefore, because the distance from vi to zi

in G+
ρ is ρ − 1, no vi ∈ V can be a center of a bag in T+

ρ . The only vertices with
a large enough distance to zi to be a center of a bag are xi and yi. Therefore,
either xi or yi is selected as center. To construct a tree-decomposition T with
strong breadth 1 for G, select vi as center if and only if xi is a center of a bag
in T+

ρ . Because Nρ

G+
ρ
[xi] ∩ V = NG[vi] and Nρ

G+
ρ
[yi] ∩ V = {vi}, the constructed

T is a valid tree-decomposition with strong breadth 1 for G. ��
Constructing G′

ρ can be done in O(n2) time and constructing G+
ρ can be done

in O(ρ · n + m) time. Thus, combining Lemmas 4 and 5 allows us, for a given
graph G, some given ρ, and some given ρ′, to construct a graph H in O(ρ · n2)
time such that stb(G) ≤ ρ if and only if stb(H) ≤ ρ′. Additionally, by combining
Theorem 1 and Lemma 3, we get:

Theorem 2. It is NP-complete to decide, for a graph G and a given ρ, if
stb(G) = ρ.

4 Polynomial Time Cases

In the previous section, we have shown that, in general, it is NP-complete to
determine the strong tree-breadth of a graph. In this section, we will investigate
cases for which a decomposition can be found in polynomial time.

70 A. Leitert and F.F. Dragan

4.1 General Graphs

Let G be a graph with strong tree-breadth ρ and let T be a corresponding
tree-decomposition. For a given vertex u in G, we denote the set of connected
components in G−Nρ

G[u] as CG[u]. We say that a vertex v is a potential partner
of u for some C ∈ CG[u] if Nρ

G[v] ⊇ NG(C) and Nρ
G[v] ∩ C �= ∅.

Lemma 6. Let C be a connected component in G − Bu for some Bu ⊆ Nρ
G[u].

Also, let C ∈ CG[u] and v be a potential partner of u for C. Then, for all
connected components Cv in G[C] − Nρ

G[v], Cv ∈ CG[v].

Proof. Consider a connected component Cv in G[C] − Nρ
G[v]. Clearly, Cv ⊆ C

and there is a connected component C ′ ∈ C[v] such that C ′ ⊇ Cv.
Let x be an arbitrary vertex in C ′. Then, there is a path P ⊆ C ′ from x

to Cv. Because NG(C) ⊆ Bu and v is a potential partner of u for C, NG(C) ⊆
Bu ∩Nρ

G[v]. Also, NG(C) separates all vertices in C from all other vertices in G.
Therefore, x ∈ C and C ′ ⊆ C; otherwise, P would intersect Nρ

G[v]. It follows
that each vertex in P is in the same connected component of G[C] − Nρ

G[v] and,
thus, Cv = C ′. ��

From Lemma 2, it directly follows:

Corollary 1. If Nρ
G[u] is a bag in T , then T contains a bag Nρ

G[v] for each
C ∈ CG[u] such that v is a potential partner of u for C.

Because of Corollary 1, there is a vertex set U such that each u ∈ U has a
potential partner v ∈ U for each connected component C ∈ CG[u]. With such a
set, we can construct a tree-decomposition for G with the following approach:
Pick a vertex u ∈ U and make it center of a bag Bu. For each connected compo-
nent C ∈ CG[u], u has a potential partner v. Nρ

G[v] splits C in more connected
components and, because v ∈ U , v has a potential partner w ∈ U for each of
these components. Hence, create a bag Bv = Nρ

G[v]∩ (Bu ∪C) and continue this
until the whole graph is covered. Algorithm1 will determine such a set of vertices
with their potential partners (represented as a graph H) and then construct a
decomposition as described above.

Theorem 3. Algorithm1 constructs, for a given graph G with strong tree-
breadth ρ, a tree-decomposition T with breadth ρ in O(n2m) time.

Proof (Correctness). The Algorithm 1 works in two parts. First, it creates a
graph H with potential centers (line 1 to line 6). Second, it uses H to create
a tree-decomposition for G (line 9 to line 15). To show the correctness of the
algorithm, we will, first, show that centers of a tree-decomposition for G are
vertices in H and, then, show that a tree-decomposition created based on H is
a valid tree-decomposition for G.

A vertex u is added to H (line 4) if, for at least one connected component C ∈
CG[u], u has a potential partner v. Later, u is kept in H (line 5 and 6) if it has a
potential partner v for all connected components in C ∈ CG[u]. By Corollary 1,

On Strong Tree-Breadth 71

Algorithm 1. Constructs, for a given graph G = (V,E) with strong
tree-breadth ρ, a tree-decomposition T with breadth ρ.
1 Create an empty directed graph H = (VH , EH). Let φ be a function that maps

each edge (u, v) ∈ EH to a connected component C ∈ CG[u].
2 foreach u, v ∈ V and all C ∈ CG[u] do
3 if v is a potential parter of u for C then
4 Add the directed edge (u, v) to H and set φ(u, v) := C. (Add u and v to

H if necessary.)

5 while there is a vertex u ∈ VH and some C ∈ CG[u] such that there is no
(u, v) ∈ EH with φ(u, v) = C do

6 Remove u from H.

7 if H is empty then
8 Stop. stb(G) > ρ.

9 Create an empty tree-decomposition T .
10 Let G − T be the subgraph of G that is not covered by T and let ψ be a

function that maps each connected component in G − T to a bag Bu ⊆ Nρ
G[u].

11 Pick an arbitrary vertex u ∈ VH , add Bu = Nρ
G[u] as bag to T , and set

ψ(C) := Bu for each connect component C in G − T .
12 while G − T is non-empty do
13 Pick a connected component C in G − T , determine the bag Bv := ψ(C)

and find an edge (v, w) ∈ EH with φ(v, w) = C.
14 Add Bw = Nρ

G[w] ∩ (Bv ∪ C) to T , and make Bv and Bw adjacent in T .
15 For each new connected component C′ in G − T with C′ ⊆ C, set

ψ(Cw) := Bw.

16 Output T .

each center of a bag in a tree-decomposition T with strong breadth ρ satisfies
these conditions. Therefore, after line 6, H contains all centers of bags in T , i. e.,
if G has strong tree-breadth ρ, H is non-empty.

Next, we show that T created in the second part of the algorithm (line 9 to
line 15) is a valid tree-decomposition for G with breadth ρ. To do so, we will
show the following invariant for the loop starting in line 12: (i) T is a valid tree-
decomposition with breadth ρ for the subgraph covered by T and (ii) for each
connected component C in G−T , the bag Bv = ψ(C) is in T , NG(C) ⊆ Bv, and
C ∈ CG[v]. After line 11, the invariant clearly holds. Assume by induction that
the invariant holds each time line 12 is checked. If T covers the whole graph, the
check fails and the algorithm outputs T . If T does not cover G completely, there
is a connected component C in G − T . By condition (ii), the bag Bv = ψ(C) is
in T , NG(C) ⊆ Bv, and C ∈ CG[v]. Because of the way H is constructed and
C ∈ CG[v], there is an edge (v, w) ∈ EH with φ(v, w) = C, i. e., w is a potential
partner of v for C. Thus, line 13 is successful and the algorithm adds a new
bag Bw = Nρ

G[w] ∩ (Bv ∪ C) (line 14). Because w is a potential partner of v
for C, i. e., NG(C) ⊆ Nρ

G[w], and NG(C) ⊆ Bv, Bw ⊇ NG(C). Therefore, after
adding Bw to T , T still satisfies condition (i). Additionally, Bw splits C in a

72 A. Leitert and F.F. Dragan

set C′ of connected components such that, for each C ′ ∈ C′, NG(C ′) ⊆ Bw and,
by Lemma 6, C ′ ∈ CG[w]. Thus, condition (ii) is also satisfied. ��
Proof (Complexity). First, determine the pairwise distance of all vertices. This
can be done in O(nm) time and allows to check the distance between vertices in
constant time.

For a vertex u, let N [u] = {NG(C) | C ∈ CG[u]}. Note that, for some
C ∈ CG[u] and each vertex x ∈ NG(C), there is an edge xy with y ∈ C. There-
fore, |N [u]| :=

∑
C∈CG[u] |NG(C)| ≤ m. To determine, for some vertex u, all its

potential partners v, first, compute N [u]. This can be done in O(m) time. Then,
check, for each vertex v and each NG(C) ∈ N [u], if NG(C) ⊆ Nρ

G[v] and add
the edge (u, v) to H if successful. For a single vertex v this requires O(m) time
because |N [u]| ≤ m and distances can be determined in constant time. Therefore,
the total runtime for creating H (line 1 to line 4) is O(n(m + nm)) = O(n2m).

Assume that, for each φ(u, v) = C, C is represented buy two values: (i) a
characteristic vertex x ∈ C (for example the vertex with the lowest index) and
(ii) the index of C in CG[u]. While creating H, count and store, for each vertex u
and each connected component C ∈ CG[u], the number of edges (u, v) ∈ EH

with φ(u, v) = C. Note that there is a different counter for each C ∈ CG[u].
With this information, we can implement line 5 and 6 as follows. First check,
for every vertex v in H, if one of its counters is 0. In this case, remove v from H
and update the counters for all vertices u with (u, v) ∈ EH using value (ii)
of φ(u, v). If this sets a counter for u to 0, add u to a queue Q of vertices to
process. Continue this until each vertex is checked. Then, for each vertex u in Q,
remove u form H and add its neighbours into Q if necessary until Q is empty.
This way, a vertex is processed at most twice. A single iteration runs in at most
O(n) time. Therefore, line 5 and 6 can be implemented in O(n2) time.

Assume that ψ uses the characteristic vertex x to represent a connected
component, i. e., value (i) of φ. Then, finding an edge (v, w) ∈ EH (line 13) can
be done in O(m) time. Creating Bw (line 14), splitting C into new connected
components C ′, finding their characteristic vertex, and setting ψ(C ′) (line 15)
takes O(m) time, too. In each iteration, at least one more vertex of G is covered
by T . Hence, there are at most n iterations and, thus, the loop starting in line
12 runs in O(mn) time.

Therefore, Algorithm 1 runs in total O(n2m) time. ��
Algorithm 1 creates for each graph G with stb(G) ≤ ρ a tree-decomposition T

with breadth ρ. Next, we will invest a case where we can construct a tree-
decomposition for G with strong breadth ρ.

We say that two vertices u and v are perfect partners if (i) u and v are
potential partner of each other for some Cu ∈ CG[u] and some Cv ∈ CG[v], (ii) Cu

is the only connected component in CG[u] which is intersected by Nρ
G[v], and

(iii) Cv is the only connected component in CG[v] which is intersected by Nρ
G[u].

Accordingly, we say that a tree-decomposition T has perfect strong breadth ρ if
it has strong breadth ρ and, for each center u of some bag and each connected
component C ∈ CG[u], there is a center v such that v is a perfect partner of u
for C.

On Strong Tree-Breadth 73

Theorem 4. A tree-decomposition with perfect strong breadth ρ can be con-
structed in polynomial time.

Proof. To construct such a tree-decomposition, we can modify Algorithm1.
Instead of checking if u has a potential partner v (line 3), check if u and v
are perfect partners.

Assume by induction that, for each bag Bv in T , Bv = Nρ
G[v]. By definition

of perfect partners v and w, Nρ
G[w] intersects only one C ∈ CG[v], i. e., Nρ

G[w] ⊆
Nρ

G[v]∪C. Thus, when creating the bag Bw (line 14), Bw = Nρ
G[w]∩ (Bv ∪C) =

Nρ
G[w] ∩ (Nρ

G[v] ∪ C) = Nρ
G[w]. Therefore, the created tree-decomposition T has

perfect strong tree-breadth ρ. ��
We conjecture that there are weaker cases than perfect strong breadth which

allow to construct a tree-decomposition with strong-breadth ρ. For example,
if the centers of two adjacent bags are perfect partners, but a center u does
not need to have a perfect partner for each C ∈ CG[u]. However, when using a
similar approach as in Algorithm1, this would require a more complex way of
constructing H.

4.2 Special Graph Classes

A graph G is distance-hereditary if, in any connected induced subgraph, the
distances are the same as in G.

Theorem 5. Distance-hereditary graphs have strong tree-breadth 1. An accord-
ing decomposition can be computed in linear time.

Proof. Let σ = 〈v1, v2, . . . , vn〉 be an ordering for the vertices of a graph G,
Vi = {v1, v2, . . . , vi}, and Gi denote the graph G[Vi]. An ordering σ is called a
pruning sequence for G if, for 1 < i ≤ n, each vi satisfies one of the following
conditions in Gi:

(i) vi is a pendant vertex,
(ii) vi is a true twin of some vertex vj , or
(iii) vi is a false twin of some vertex vj .

A graph G is distance-hereditary if and only if there is a pruning sequence
for G [2].

Assume that we are given such a pruning sequence. Additionally, assume
by induction over i that Gi has a tree-decomposition Ti with strong breadth 1.
Then, there are three cases:

(i) vi+1 is a pendant vertex in Gi+1. If the neighbour u of vi+1 is a center of
a bag Bu, add vi+1 to Bu. Thus, Ti+1 is a valid decomposition for Gi+1.
Otherwise, if u is not a center, make vi+1 center of a bag. Because u is an
articulation point, Ti+1 = Ti + NG[v] is a valid decomposition for Gi+1.

(ii) vi+1 is a true twin of a vertex u in Gi+1. Simply add vi+1 into any bag
containing u. The resulting decomposition is a valid decomposition for Gi+1.

74 A. Leitert and F.F. Dragan

(iii) vi+1 is a false twin of a vertex u in Gi+1. If u is not center of a bag, add
vi+1 into any bag u is in. Otherwise, make a new bag Bi+1 = NG[vi+1] and
make it adjacent to the bag NG[u]. Because no vertex in NG(u) is center of
a bag, the resulting decomposition is a valid decomposition for Gi+1.

Therefore, distance-hereditary graphs have strong tree-breadth 1.
Next, we will show how to compute an according tree-decomposition in lin-

ear time. The argument above already gives an algorithmic approach. First, we
compute a pruning sequence for G. This can be done in linear time with an algo-
rithm by Damiand et al. [7]. Then, we determine which vertex becomes a center
of a bag. Note that we can simplify the three cases above with the following
rule: If vi has no neighbour in Gi which is center of a bag, make vi center of
a bag. Otherwise, proceed with vi+1. This can be easily implemented in linear
time with a binary flag for each vertex. ��

Algorithm 2 formalizes the method described in the proof of Theorem5.

Algorithm 2. Computes, for a given distance-hereditary graph G, a tree-
decomposition T with strong breadth 1.
1 Compute a pruning sequence 〈v1, v2, . . . , vn〉 (see [7]).
2 Create a set C := ∅.
3 for i := 1 to n do
4 if NG[vi] ∩ Vi ∩ C = ∅ then
5 Add vi to C.

6 Create a tree-decomposition T with the vertices in C as centers of its bags.

A bipartite graph is chordal bipartite if each cycle of length at least 6 has
a chord. In [11], it was shown that any chordal bipartite graph G = (X,Y,E)
admits a tree-decomposition with the set of bags B = {B1, B2, . . . , B|X|}, where
Bi = NG[xi], xi ∈ X. As far as we can tell, there is no linear time algorithm
known to recognise chordal bipartite graphs. However, we can still compute a
tree-decomposition in linear time with three steps. First, compute a 2-colouring.
Second, select a colour and make the neighbourhood of all vertices with this
colour bags. Third, use the algorithm in [18] to check if the selected bags give a
valid tree-decomposition.

Theorem 6 [11]. Each chordal bipartite graph has strong tree-breadth 1. An
according tree-decomposition can be found in linear time.

Consider two parallel lines (upper and lower) in the plane. Assume that
each line contains n points, labelled 1 to n. Each two points with the same label
define a segment with that label. The intersection graph of such a set of segments
between two parallel lines is called a permutation graph. In [10], an algorithm
was presented that finds, for a given permutation graph, a path-decomposition
with strong breadth 1 in linear time.

On Strong Tree-Breadth 75

Theorem 7 [10]. Permutation graphs have strong tree-breadth 1. An according
tree-decomposition can be found in linear time.

5 Conclusion

We have shown that, in general, it is NP-complete to determine if a given graph G
admits a tree-decomposition with strong breadth ρ for all ρ ≥ 1. Consider the
case that a vertex v is center of a bag. Part of the hardness of finding a decompo-
sition, even for ρ = 1, lays in determining which connected component C ∈ CG[v]
will be covered by which neighbouring bag NG[u]. If, for two vertices u and w,
NG[u] and NG[w] intersect C and are bags in the same decompositions T , both
cannot be separated in T by NG[v]. Additionally, if u is adjacent to v, it might
happen that NG[u] intersects multiple connected components. This leads to a
potentially exponential number of combinations.

A path-decomposition of graph is a tree-decomposition with the restriction
that the bags form a path instead of a tree with multiple branches. Accordingly, a
graph has (strong) path-breadth ρ if it admits a path-decomposition with (strong)
breadth ρ. In [10], it was shown that, for graphs with bounded path-breadth, a
constant factor approximation for the bandwidth problem and the line-distortion
problem can be found in polynomial time.

Now, consider the case that we want to compute if a given graph admits a
path-decomposition P with strong breadth 1. In this case, there can be at most
two bags adjacent to a bag NG[v] in P . Hence, for each v, there is at most a
quadratic number of combinations. This leads to the following conjecture.

Conjecture. The strong path-breadth of a graph can be computed in polynomial
time.

Another question is if a bounded strong tree-breadth leads to a lower bound
for the tree-breadth of a graph. That is, is there a constant c such that, for any
graph G, stb(G) ≤ c · tb(G). Using Algorithm 1, a small constant might lead to
a new approach for approximating the tree-breadth of a graph.

References

1. Abu-Ata, M., Dragan, F.F.: Metric tree-like structures in real-life networks: an
empirical study. Networks 67(1), 49–68 (2016)

2. Bandelt, H.-J., Mulder, H.M.: Distance-hereditary graphs. J. Comb. Theory Ser.
B 41, 182–208 (1986)

3. Brandstädt, A., Chepoi, V.D., Dragan, F.F.: The algorithmic use of hypertree
structure and maximum neighborhood orderings. Discret. Appl. Math. 82, 43–77
(1998)

4. Brandstädt, A., Dragan, F.F., Chepoi, V.D., Voloshin, V.: Dually chordal graphs.
SIAM J. Discret. Math. 11(3), 437–455 (1998)

5. Brandstädt, A., Fičur, P., Leitert, A., Milanič, M.: Polynomial-time algorithms
for weighted efficient domination problems in AT-free graphs and dually chordal
graphs. Inf. Process. Lett. 115(2), 256–262 (2015)

76 A. Leitert and F.F. Dragan

6. Brandstädt, A., Leitert, A., Rautenbach, D.: Efficient dominating and edge domi-
nating sets for graphs and hypergraphs. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.)
ISAAC 2012. LNCS, vol. 7676, pp. 267–277. Springer, Heidelberg (2012)

7. Damiand, G., Habib, M., Paul, C.: A simple paradigm for graph recognition: appli-
cation to cographs and distance hereditary graphs. Theoret. Comput. Sci. 263(1–
2), 99–111 (2001)

8. Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter.
Discret. Math. 307(16), 2008–2029 (2007)

9. Dragan, F.F., Köhler, E.: An approximation algorithm for the tree t-spanner prob-
lem on unweighted graphs via generalized chordal graphs. Algorithmica 69, 884–
905 (2014)

10. Dragan, F.F., Köhler, E., Leitert, A.: Line-distortion, bandwidth and path-length
of a graph. Algorithmica (in print)

11. Dragan, F.F., Lomonosov, I.: On compact and efficient routing in certain graph
classes. Discret. Appl. Math. 155, 1458–1470 (2007)

12. Dragan, F.F., Matamala, M.: Navigating in a graph by aid of its spanning tree.
SIAM J. Discret. Math. 25(1), 306–332 (2011)

13. Ducoffe, G., Legay, S., Nisse, N.: On computing tree and path decompositions with
metric constraints on the bags. CoRR abs/1601.01958 (2016)

14. Halin, R.: S-functions for graphs. J. Geom. 8(1–2), 171–186 (1976)
15. Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Comb.

Theory Ser. B 35(1), 39–61 (1983)
16. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb.

Theory Ser. B 36(1), 49–64 (1984)
17. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the

Tenth Annual ACM Symposium on Theory of Computing (STOC 1978), pp. 216–
226 (1978)

18. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM J. Comput. 13(3), 566–579 (1984)

	On Strong Tree-Breadth
	1 Introduction
	2 Preliminaries
	3 NP-Completeness
	4 Polynomial Time Cases
	4.1 General Graphs
	4.2 Special Graph Classes

	5 Conclusion
	References

