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Abstract. We develop efficient parameterized, with additive error,
approximation algorithms for the (Connected) r-Domination problem
and the (Connected) p-Center problem for unweighted and undirected
graphs. Given a graph G, we show how to construct a (connected)
(r + O(u))-dominating set D with |D| < |D*| efficiently. Here, D* is
a minimum (connected) r-dominating set of G and p is our graph para-
meter, which is the tree-breadth or the cluster diameter in a layering
partition of G. Additionally, we show that a +O(u)-approximation for
the (Connected) p-Center problem on G can be computed in polynomial
time. Our interest in these parameters stems from the fact that in many
real-world networks, including Internet application networks, web net-
works, collaboration networks, social networks, biological networks, and
others, and in many structured classes of graphs these parameters are
small constants.

1 Introduction

The (Connected) r-Domination problem and the (Connected) p-Center problem,
along with the p-Median problem, are among basic facility location problems
with many applications in data clustering, network design, operations research —
to name a few. Let G = (V, E') be an unweighted and undirected graph. Given
a radius r(v) € N for each vertex v of G, indicating within what radius a ver-
tex v wants to be served, the r-Domination problem asks to find a set D C V
of minimum cardinality such that dg (v, D) < r(v) for every v € V. The Con-
nected r-Domination problem asks to find an r-dominating set D of minimum
cardinality with an additional requirement that D needs to induce a connected
subgraph of G. When r(v) = 1 for every v € V, one gets the classical (Con-
nected) Domination problem. Note that the Connected r-Domination problem
is a natural generalization of the Steiner Tree problem (where each vertex ¢ in
the target set has r(¢f) = 0 and each other vertex s has r(s) = diam(G)). The
connectedness of D is important also in network design and analysis applications
(e. g. in finding a small backbone of a network). It is easy to see also that finding
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minimum connected dominating sets is equivalent to finding spanning trees with
the maximum possible number of leaves.

The (closely related) p-Center problem asks to find in G a set C C V of
at most p vertices such that the value max,ecy dg(v, C) is minimized. If, addi-
tionally, C' is required to induce a connected subgraph of G, then one gets the
Connected p-Center problem.

The domination problem is one of the most well-studied NP-hard problems
in algorithmic graph theory. To cope with the intractability of this problem, it
has been studied both in terms of approximability (relaxing the optimality) and
fixed-parameter tractability (relaxing the runtime). The Domination problem
is notorious in the theory of fixed-parameter tractability (see, e.g., [13,20] for
an introduction to parameterized complexity). It was the first problem to be
shown W{2]-complete [13], and it is hence unlikely to be FPT, i.e., unlikely to
have an algorithm with runtime f(k)n¢ for f a computable function, k the size
of an optimal solution, ¢ a constant, and n the number of vertices of the input
graph. Similar results are known also for the connected domination problem [18].
From the approximability prospective, a logarithmic approximation factor can be
found by using a simple greedy algorithm, and finding a sublogarithmic approx-
imation factor is NP-hard [21]. The problem is in fact Log-APX-complete [16]
and it is unlikely that there is a good FPT approximation algorithm for it (see
[5,6]).

The p-Center problem is known to be NP-hard on graphs. However, for it, a
simple and efficient factor-2 approximation algorithm exists [17]. Furthermore,
it is a best possible approximation algorithm in the sense that an approximation
with factor less than 2 is proven to be NP-hard (see [17] for more details). The
NP-hardness of the Connected p-Center problem is shown in [22].

Recently, in [9], a new type of approximability result (call it a parameterized
approximability result) was obtained: there exists a polynomial time algorithm
which finds in an arbitrary graph G having a minimum r-dominating set D
a set D’ such that |D’| < |D| and each vertex v € V is within distance at
most 7(v) + 20 from D', where § is the hyperbolicity parameter of G (see [9]
for details). We call such a D’ an (r + 20)-dominating set of G. Later, in [15],
this idea was extended to the p-Center problem: there is a quasi-linear time
algorithm for the p-Center problem with an additive error less than or equal to
six times the input graph’s hyperbolicity (i.e., it finds a set C’ with at most
p vertices such that max,cv dg(v,C") < mingcy,oj<p Maxyey dg (v, C) + 60).
We call such a C’ a + 66 -approzimation for the p-Center problem.

In this paper, we continue the line of research started in [9,15]. Unfortu-
nately, the results of [9,15] are hardly extendable to connected versions of the
r-Domination and p-Center problems. It remains an open question whether sim-
ilar approximability results parameterized by the graph’s hyperbolicity can be
obtained for the Connected r-Domination and Connected p-Center problems.
Instead, we consider two other graph parameters: the tree-breadth p and the
cluster diameter A in a layering partition (formal definitions will be given in
the next sections). Both parameters (like the hyperbolicity) capture the metric
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tree-likeness of a graph (see, e. g., [2] and papers cited therein). As demonstrated
in [2], in many real-world networks, including Internet application networks, web
networks, collaboration networks, social networks, biological networks, and oth-
ers, as well as in many structured classes of graphs the parameters 9, p, and A
are small constants.

We show here that, for a given n-vertex, m-edge graph G, having a minimum
r-dominating set D and a minimum connected r-dominating set C: an (r + A)-
dominating set D’ with |D’| < |D| can be computed in linear time; a connected
(r+2A)-dominating set C’ with |C’| < |C| can be computed in O(m a(n)log A)
time (where a(n) is the inverse Ackermann function); a +A-approximation for
the p-Center problem can be computed in linear time; a +2A-approximation for
the connected p-Center problem can be computed in O(m a(n)logmin(4, p))
time.

Furthermore, given a tree-decomposition with breadth p for G: an (r + p)-
dominating set D’ with |D’| < |D| can be computed in O(nm) time; a connected
(r + 5p)-dominating set C’ with |C’| < |C| can be computed in O(nm) time;
a +p-approximation for the p-Center problem can be computed in O(nmlogn)
time; a +5p-approximation for the Connected p-Center problem can be com-
puted in O(nmlogn) time.

To compare these results with the results of [9,15], notice that, for any
graph G, its hyperbolicity 0 is at most A [2] and at most two times its tree-
breadth p [8], and the inequalities are sharp.

Note that, for split graphs (graphs in which the vertices can be partitioned
into a clique and an independent set), § and p are at most 1, and A is at
most 2. Additionally, as shown in [10], there is (under reasonable assumptions)
no polynomial-time algorithm to compute a sublogarithmic-factor approximation
for the (Connected) Domination problem in split graphs. Hence, there is no such
algorithm even for constant §, p, and A.

One can extend this result to show that there is no polynomial-time algo-
rithm A which computes, for any constant ¢, a +clog n-approximation for split
graphs. Hence, there is no polynomial-time +cA log n-approximation algorithm
in general. Consider a given split graph G = (C U I, E) with n vertices where
C induces a clique and I induces an independent set. Create a graph H =
(Cy U Iy, Ey) by, first, making n copies of G. Let Cyg = CiUC U ... UC,
and Iy = I; Ul U...UI,. Second, make the vertices in Cy pairwise adja-
cent. Then, C'y induces a clique and Iy induces an independent set. If there is
such an algorithm A, then A produces a (connected) dominating set D 4 for H
which has at most 2clogn more vertices than a minimum (connected) domi-
nating set D. Thus, by pigeonhole principle, H contains a clique C; for which
|C; N D 4| = |C; N DJ. Therefore, such an algorithm A would allow to solve the
(Connected) Domination problem for split graphs in polynomial time.

Due to space limitations, all proofs are omitted. Additionally, Sect.4 is lim-
ited to the main ideas of our algorithm. A full version of the paper can be found
in [19].
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2 Preliminaries

All graphs occurring in this paper are connected, finite, unweighted, undirected,
without loops, and without multiple edges. For a graph G = (V, E), we use
n = |V| and m = |E| to denote the cardinality of the vertex set and the edge
set of G, respectively.

The length of a path from a vertex v to a vertex u is the number of edges
in the path. The distance dg(u,v) in a graph G of two vertices u and v is the
length of a shortest path connecting v and v. The distance between a vertex v
and a set S C V is defined as dg(v,S) = min,es dg(u,v). For a vertex v of G
and some positive integer r, the set NZ[v] = {u | dg(u,v) < r} is called the
r-neighbourhood of v. The eccentricity eccg(v) of a vertex v is maxycy dg(u,v).
For a set S C V, its eccentricity is eccg(S) = maxyey dg(u, S).

For some function r: V' — N, a vertex u is r-dominated by a vertex v (by
aset S C V), if da(u,v) < r(u) (dg(u,S) < r(u), respectively). A vertex
set D is called an r-dominating set of G if each vertex u € V is r dominated
by D. Additionally, for some non-negative integer ¢, we say a vertex is (r + ¢)-
dominated by a vertex v (by a set S C V), if dg(u,v) < r(u) + ¢ (dg(u,S) <
r(u) + ¢, respectively). An (r + ¢)-dominating set is defined accordingly. For a
given graph G and function r, the (Connected) r- Domination problem asks for
the smallest (connected) vertex set D such that D is an r-dominating set of G.

The degree of a vertex v is the number of vertices adjacent to it. For a vertex
set S, let G[S] denote the subgraph of G induced by S. A vertex set S is a
separator for two vertices u and v in G if each path from u to v contains a
vertex s € S; in this case we say S separates u from v.

A tree-decomposition of a graph G = (V,E) is a tree T with the vertex
set B where each vertex of T, called bag, is a subset of V such that: (i) V =
Upep B, (ii) for each edge uv € E, there is a bag B € B with u,v € B, and
(iii) for each vertex v € V, the bags containing v induce a subtree of T. A
tree-decomposition T" of G has breadth p if, for each bag B of T, there is a
vertex v in G with B C N&[v]. The tree-breadth of a graph G is p, written
as tb(G) = p, if p is the minimal breadth of all tree-decomposition for G. A
tree-decomposition T of G has length )\ if, for each bag B of T and any two
vertices u,v € B, dg(u,v) < A. The tree-length of a graph G is A, written as
tI(G) = A, if A is the minimal length of all tree-decomposition for G.

For a rooted tree T', let A(T') denote the number of leaves of T'. For the case
when T contains only one node, let A(T') := 0. With «, we denote the inverse
Ackermann function (see, e.g., [11]). It is well known that a grows extremely
slowly. For z = 1080 (estimated number of atoms in the universe), a(x) < 4.

3 Using a Layering Partition

The concept of a layering partition was introduced in [4,7]. The idea is the
following. First, partition the vertices of a given graph G = (V| E) in distance
layers L; = {v | dg(s,v) = i} for a given vertex s. Second, partition each
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layer L; into clusters in such a way that two vertices © and v are in the same
cluster if and only if they are connected by a path only using vertices in the
same or upper layers. That is, v and v are in the same cluster if and only if,
for some 4, {u,v} C L; and there is a path P from u to v in G such that, for
all j <4, PN L; = 0. Note that each cluster C is a set of vertices of G, i.e.,
C C V, and all clusters are pairwise disjoint. The created clusters form a rooted
tree 7 with the cluster {s} as the root where each cluster is a node of 7 and two
clusters C' and C are adjacent in 7 if and only if G' contains an edge uv with
u € C and v € C'. Figure1 gives an example for such a partition. A layering
partition of a graph can be computed in linear time [7].

g R R

< gl [o=—=< p

(a) A graph G. (b) A layering partition 7 for G.

Fig. 1. Example of a layering partition. A given graph G (a) and the layering partition
of G generated when starting at vertex s (b). Example taken from [7].

For the remainder of this section, assume that we are given a graph G =
(V, E) and a layering partition 7 of G for an arbitrary start vertex. We denote
the largest diameter of all clusters of 7 as A, i.e., A := max{dg(z,y) |
x,y are in a cluster C of T } For two vertices u and v of G contained in the
clusters C,, and C, of T, respectively, we define dy(u,v) := d7(C,,Cy).

Lemma 1. For all vertices u and v of G, dr(u,v) < dg(u,v) < dr(u,v)+ A.

Theorem 1 below shows that we can use the layering partition 7 to compute
an (r+A)-dominating set for G in linear time which is not larger than a minimum
r-dominating set for G. This is done by finding a minimum r-dominating set of 7°
where, for each cluster C of 7, r(C) is defined as min,ecc 7(v).

Theorem 1. Let D be a minimum r-dominating set for a given graph G. An
(r+ A)-dominating set D’ for G with |D’| < |D| can be computed in linear time.

We now show how to construct a connected (r + 2A)-dominating set for G
using 7 in such a way that the set created is not larger than a minimum con-
nected r-dominating set for G. For the remainder of this section, let D, be a



Parameterized Approximation Algorithms 353

minimum connected r-dominating set of G and let, for each cluster C of 7, r(C)
be defined as above. Additionally, we say that a subtree T” of some tree T is an
r-dominating subtree of T if the nodes (clusters in case of a layering partition)
of T” form a connected r-dominating set for T'.

The first step of our approach is to construct a minimum r-dominating sub-
tree T, of 7. Such a subtree T, can be computed in linear time [14]. Lemma 2
below shows that T, gives a lower bound for the cardinality of D,..

Lemma 2. If T, contains more than one cluster, each connected r-dominating
set of G intersects all clusters of T,.. Therefore, |T,.| < |D,|.

As we show later in Corollary 1, each connected vertex set S C V' that inter-
sects each cluster of T, gives an (r + A)-dominating set for G. It follows from
Lemma2 that, if such a set S has minimum cardinality, |S| < |D,|. However,
finding a minimum cardinality connected set intersecting each cluster of a lay-
ering partition (or of a subtree of it) is as hard as finding a minimum Steiner
tree.

The main idea of our approach is to construct a minimum (r 4+ ¢)-dominating
subtree Ty of 7 for some integer 6. We then compute a small enough connected
set Ss that intersects all cluster of T5. By trying different values of §, we even-
tually construct a connected set Ss such that |Ss| < |T| and, thus, |S5| < |D,|.
Additionally, we show that Ss is a connected (r 4+ 2A)-dominating set of G.

For some non-negative integer ¢, let Ts be a minimum (r + ¢)-dominating
subtree of 7. Clearly, Ty = T,.. The following two lemmas set an upper bound
for the maximum distance of a vertex of G to a vertex in a cluster of Ty and for
the size of T compared to the size of T,..

Lemma 3. For each vertex v of G, d7(v,Ts) < r(v) + .

Because the diameter of each cluster is at most A, Lemmas1 and 3 imply
the following.

Corollary 1. If a vertex set intersects all clusters of Ty, it is an (r +(0+ A))-
dominating set of G.

Lemma 4. |Ts| < |T;| — ¢ - A(Ts).

Now that we have constructed and analysed T}y, we show how to construct Ss.
First, we construct a set of shortest paths such that each cluster of Ty is inter-
sected by exactly one path. Second, we connect these paths with each other to
from a connected set using an approach which is similar to Kruskal’s algorithm
for minimum spanning trees.

Let £ = {C1,Cs,...,C\} be the leaf clusters of Ty (excluding the root) with
either A = A(Ts) — 1 if the root of Ty is a leaf, or with A = A(Tj) otherwise. We
construct a set P = {Pl, P, ..., PA} of paths as follows. Initially, P is empty.
For each cluster C; € £, in turn, find the ancestor C} of C; which is closest to
the root of T5 and does not intersect any path in P yet. If we assume that the
indices of the clusters in £ represent the order in which they are processed, then
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(1 is the root of Ts. Then, select an arbitrary vertex v in C; and find a shortest
path P; in G form v to C}. Add P; to P and continue with the next cluster in L.
Figure 2 gives an example.

Q| Ci
/’ g A
\ ;f/q’ o /p R/
!d—U \bH | [e—=>] [o]

Ch Cy=0C4 Cs Cy Cs =Cj

Fig. 2. Example for the set P for a subtree of a layering partition. Paths are shown in
red. Each path P;, with 1 < i < 5, starts in the leaf C; and ends in the cluster C;.For
i =2 and ¢ = 5, P; contains only one vertex.

Lemma 5. For each cluster C of Ty, there is exactly one path P; € P intersect-
ing C. Additionally, C and P; share exactly one vertez, i.e., |C N P;| = 1.

Next, we use the paths in P to create the set Ss. As first step, let S5 :=
U PP P;. Later, we add more vertices into S5 to ensure it is a connected set.

Now, create a partition ¥V = {Vl,VQ, .. .,V)\} of V' such that, for each i,
P, CV;, V; is connected, and dg(v, P;) = minpep dg(v, P) for each vertex v €
V;. That is, V; contains the vertices of G which are not more distant to P;
in G than to any other path in P. Additionally, for each vertex v € V, set
P(v) := P; if and only if v € V; (i.e., P(v) is the path in P which is closest to v)
and set d(v) := dg (v, P(v)). Such a partition as well as P(v) and d(v) can be
computed by performing a BFS on G starting at all paths P; € P simultaneously.
Later, the BF'S also allows us to easily determine the shortest path from v to P(v)
for each vertex v.

To manage the subsets of V, we use a Union-Find data structure such that,
for two vertices u and v, Find(u) = Find(v) if and only if v and v are in the same
set of V. A Union-Find data structure additionally allows us to easily join two
sets of V into one by performing a single Union operation. Note that, whenever
we join two sets of V into one, P(v) and d(v) remain unchanged for each vertex v.

Next, create an edge set E/ = {wv | Find(u) # Find(v) }, i.e., the set of
edges uv such that v and v are in different sets of V. Sort E’ in such a way that
an edge uv precedes an edge xy only if d(u) + d(v) < d(z) + d(y).

The last step to create Ss is similar to Kruskal’s minimum spanning tree
algorithm. Iterate over the edges in E’ in increasing order. If, for an edge uwv,
Find(u) # Find(v), i.e., if v and v are in different sets of V, then join these sets
into one by performing Union(u,v), add the vertices on the shortest path from
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u to P(u) to Ss, and add the vertices on the shortest path from v to P(v) to S;.
Repeat this, until V contains only one set, i.e., until V = {V'}.

Algorithm 1 below summarises the steps to create a set Ss for a given subtree

of a layering partition subtree Ty.

Algorithm 1. Computes a connected vertex set that intersects each cluster
of a given layering partition.

ok WN

10

11

12
13

14
15
16
17
18
19

20

Input: A graph G = (V, E) and a subtree Ts of some layering partition of G.

Output: A connected set S5 C V that intersects each cluster of Ts and
contains at most |Ts| 4+ (A(T5) — 1) - A vertices.

Let £ = {C’l7 Cayy..ny CA} be the set of clusters excluding the root that are

leaves of Ts.

Create an empty set P.

foreach cluster C; € L do

Select an arbitrary vertex v € C;.

Find the highest ancestor C; of C; (i.e., the ancestor which is closest to the

root of Tj) that is not flagged.

Find a shortest path P; from v to an ancestor of v in Cj (i.e., a shortest

path from C; to C; in G that contains exactly one vertex of each cluster of

the corresponding path in Tj).

Flag each cluster intersected by P;.

Create a set S5 := UPi679 P;.
Perform a BFS on G starting at all paths P; € P simultaneously. This results in
a partition V = {Vl, Vo, ..., VA} of V with P; CV; for each P; € P. For each
vertex v, set P(v) := F; if and only if v € V; and let d(v) := da(v, P(v)).
Create a Union-Find data structure and add all vertices of G such that
Find(v) =i if and only if v € V;.
Determine the edge set £’ = { uv | Find(u) # Find(v) }.
Sort E’ such that uv < xy if and only if d(u) + d(v) < d(z) + d(y). Let
(e1,e2,...,e/p) be the resulting sequence.
for i:=1to |E'| do
Let uv = e;.
if Find(u) # Find(v) then

Add the shortest path from u to P(u) to Ss.

Add the shortest path from v to P(v) to Ss.

Union(u, v)

Output Ss.

Lemma 6. For a given graph G and a given subtree Ts of some layering parti-
tion of G, Algorithm 1 constructs, in O(m a(n)) time, a connected set Sy with
|Ss| < |Ts| + A - A(T5) which intersects each cluster of Ts.

Because, for each integer 6 > 0, |Ss| < |Ts| + A - A(Ts) (Lemma6) and

|Ts| <|T| — 6 - A(Ts) (Lemmad4), we have the following.
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Corollary 2. For each § > A, |Ss| <|T,| and, thus, |Ss| < |D,|.

To the best of our knowledge, there is no algorithm known that computes A
in less than O(nm) time. Additionally, under reasonable assumptions, computing
the diameter or radius of a general graph requires £2(n?) time [1]. We conjecture
that the runtime for computing A for a given graph has a similar lower bound.

To avoid the runtime required for computing A, we use the following app-
roach shown in Algorithm 2 below. First, compute a layering partition 7 and the
subtree T;.. Second, for a certain value of §, compute Ts and perform Algorithm 1
on it. If the resulting set S5 is larger than T,. (i.e., |Ss| > |T:|), increase §; oth-
erwise, if |Ss| < |T|, decrease §. Repeat the second step with the new value
of 4.

One strategy to select values for ¢ is a classical binary search over the number
of vertices of G. In this case, Algorithm 1 is called up-to O(logn) times. Empirical
analysis [2], however, have shown that A is usually very small. Therefore, we use
a so-called one-sided binary search.

Consider a sorted sequence (x1, 23, ..., Z,) in which we search for a value z,,.
We say the value x; is at position i. For a one-sided binary search, instead of
starting in the middle at position n/2, we start at position 1. We then processes
position 2, then position 4, then position 8, and so on until we reach position j =
2" and, next, position k = 27! with z; < z,, < ). Then, we perform a classical
binary search on the sequence (x;41,...,2x). Note that, because z; < x, < xy,
2% < p < 21 and, hence, j < p < k < 2p. Therefore, a one-sided binary search
requires at most O(logp) iterations to find x,.

Because of Corollary 2, using a one-sided binary search allows us to find a
value § < A for which |Ss| < |T;.| by calling Algorithm 1 at most O(log A) times.
Algorithm 2 below implements this approach.

Algorithm 2. Computes a connected (r + 2A)-dominating set for a given
graph G.
Input: A graph G = (V, E) and a function r: V — N.
Output: A connected (r + 2A)-dominating set D for G with |D| < |D,|.
1 Create a layering partition 7 of G.
2 For each cluster C of 7, set r(C) := minyec r(v).
3 Compute a minimum r-dominating subtree 1) for 7 (see [14]).
4 One-Sided Binary Search owver §, starting with § =0
5 Create a minimum J-dominating subtree T of T; (i.e., Ts is a minimum
(r + 6)-dominating subtree for 7).
Run Algorithm 1 on Ts and let the set S5 be the corresponding output.
if |S5| <|T| then
| Decrease 6.

else
10 L Increase 6.

© W N o

11 Output S5 with the smallest ¢ for which |Ss| < |T5|.
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Theorem 2. For a given graph G, Algorithm 2 computes a connected (r +2A)-
dominating set D with |D| < |D,| in O(ma(n)log A) time.

4 Using a Tree-Decomposition

Theorems 1 and 2 respectively show how to compute an (r + A)-dominating set
in linear time and a connected (r+2A)-dominating set in O(m a(n)log A) time.
It is known that the maximum diameter A of clusters of any layering partition
of a graph approximates the tree-breadth and tree-length of this graph. Indeed,
for a graph G with tI(G) = A\, A <3\ [12].

Corollary 3. Let D be a minimum r-dominating set for a given graph G with
t1(G) = X. An (r+3X)-dominating set D' for G with |D’| < |D| can be computed
in linear time.

Corollary 4. Let D be a minimum connected r-dominating set for a given
graph G with t1(G) = X. A connected (r + 6)\)-dominating set D' for G with
|D'| < |D| can be computed in O(ma(n)logA) time.

In this section, we consider the case when we are given a graph G = (V, E)
and a tree-decomposition 7 of G with known breadth p and length A. Addition-
ally, we assume that, for each bag B of 7, we know a vertex c¢(B), called center of
B, with B C N£[c¢(B)]. We present algorithms to compute an (r+ p)-dominating
set as well as a connected (r + min(3), 5p))-dominating set in O(nm) time.

Before approaching the (Connected) r-Domination problem, we compute a
subtree 7’ of 7 such that, for each vertex v of G, 7’ contains a bag B with
dg(v, B) < r(v). We call such a (not necessarily minimal) subtree an r-covering
subtree of T.

Lemma 7. One can compute a minimum r-covering subtree T, of T in O(nm)
time.

Next, we use a minimum r-covering subtree T,. to determine an (r + p)-
dominating set S in O(nm) time using the following approach.

First, compute T;.. Second, pick a leaf B of T,.. If there is a vertex v such
that v is not dominated and B is the only bag intersecting the r-neighbourhood
of v, then add the center of B into S, flag all vertices u with dg(u, B) < r(u) as
dominated, and remove B from T,.. Repeat the second step until 7} contains no
more bags and each vertex is flagged as dominated.

Theorem 3. Let D be a minimum r-dominating set for a given graph G. Given
a tree-decomposition with breadth p for G, one can compute an (r—+p)-dominating
set S with |S| < |D| in O(nm) time.

Now, we show how to compute a connected (r + 5p)-dominating set and a
connected (r + 3A)-dominating set for G. For both results, we use almost the
same algorithm. To identify and emphasise the differences, we use the label (Q)
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for parts which are only relevant to determine a connected (r 4 5p)-dominating
set and use the label (&) for parts which are only relevant to determine a
connected (r 4+ 3\)-dominating set.

For (Q) ¢ =3por (&) ¢ = 2A, let Ty be a minimum (r+¢)-covering subtree
of 7. The idea of our algorithm is to, first, compute Ty and, second, compute a
small enough connected set Cyg such that Cy intersects each bag of 1.

Notation. Let T} be a rooted tree such that its root R is a leaf. Based on its
degree in Ty, we refer to each bag B of Ty either as leaf, as path bag if B has
degree 2, or as branching bag if B has a degree larger than 2. Additionally, we
call a maximal connected set of path bags a path segment of Ty. Let L denote
the set of leaves, P denote the set of path segments, and B denote the set of
branching bags of Tj. Clearly, for any given tree T, the sets L, P, and B are
pairwise disjoint and can be computed in linear time.

Let B and B’ be two adjacent bags of Tj, such that B is the parent of B’. We
call S = BN B’ the up-separator of B’, denoted as ST(B'), and a down-separator
of B, denoted as S*(B), i.e., S = ST(B’) = S*(B). Note that a branching
bag has multiple down-separators and that (with exception of R) each bag has
exactly one up-separator. For each branching bag B, let §'(B) be the set of
down-separators of B. Accordingly, for a path segment P € P, S"(P) is the up-
separator of the bag in P closest to the root and S*(P) is the down separator
of the bag in P furthest from the root. Let v be a function that assigns a vertex
of G to a given separator. Initially, »(S) is undefined for each separator S.

Algorithm. Now, we show how to compute Cy. We, first, split T into the
sets L, P, and B. Second, for each P € P, we create a small connected set Cp,
and, third, for each B € B, we create a small connected set Cpg. If this is done
properly, the union Cy4 of all these sets forms a connected set which intersects
each bag of Tj.

Note that, due to properties of tree-decompositions, it can be the case that
there are two bags B and B’ which have a common vertex v, even if B and B’
are non-adjacent in Ty. In such a case, either v € S*(B) N ST(B’) if B is an
ancestor of B’ or v € ST(B)NST(B’) if neither is ancestor of the other. To avoid
problems caused by this phenomena and to avoid counting vertices multiple
times, we consider any vertex in an up-separator as part of the bag above. That
is, whenever we process some segment or bag X € L UP U B, even though we
add a vertex v € ST(X) to Cyp, v is not contained in Cx.

Processing Path Segments. First, after splitting Ty, we create a set Cp for each
path segment P € PP as follows. We determine S'(P) and S*(P) and then find
a shortest path Qp from ST(P) to S*(P). Note that Qp contains exactly one
vertex from each separator. Let z € ST(P) and y € S'(P) be these vertices.
Then, we set v(S"(P)) =z and v(5*(P)) = y. Last, we add the vertices of Qp
into Cy and define Cp as Qp\S™(P).
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Processing Branching Bags. After processing path segments, we process the
branching bags of T. Similar to path segments, we have to ensure that all sepa-
rators are connected. Branching bags, however, have multiple down-separators.
To connect all separators of some bag B, we pick a vertex s in each separa-
tor S € SY(B) U {ST(B)}. If v(9) is defined, we set s = v(S). Otherwise, we
pick an arbitrary s € S and set v(S) = s. Let S*(B) = {51, So, ...}, s; = v(5;),
and t = v(S"(B)). We then connect these vertices as follows. (See Fig. 3 for an
illustration.)

(Q) Connect each vertex s; via a shortest path @; (of length at most p) with
the center ¢(B) of B. Additionally, connect ¢(B) via a shortest path Q
(of length at most p) with ¢. Add all vertices from the paths @Q); and from
the path @ into Cy.

(&) Connect each vertex s; via a shortest path @; (of length at most A) with ¢.
Add all vertices from the paths Q; into Cy.

—o—— g7"

(@) (<)

Fig. 3. Construction of the set C'p for a branching bag B.

Theorem 4. For a given graph which has an unknown minimum connected r-
dominating set D,., one can compute a connected (r+(¢+)\))-d0mmating set Cy
with |Cy| < |D,| in O(nm) time.

5 Implications for the p-Center Problem

The (Connected) p-Center problem asks, given a graph G and some integer p,
for a (connected) vertex set S with |S| < p such that S has minimum eccen-
tricity, i.e., there is no (connected) set S’ with eccq(S’) < eccq(S). It is known
(see, e. g., [3]) that the p-Center problem and r-Domination problem are closely
related. Indeed, one can solve each of these problems by solving the other prob-
lem a logarithmic number of times. Lemma 8 below generalises this observation.
Informally, it states that we are able to find a +¢-approximation for the p-Center
problem if we can find a good (r + ¢)-dominating set.
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Lemma 8. For a given graph G, let D, be an optimal (connected) r-dominating
set and C, be an optimal (connected) p-center. If, for some non-negative inte-
ger ¢, there is an algorithm to compute a (connected) (r + ¢)-dominating set D
with |D| < |D,| in O(T(G)) time, then there is an algorithm to compute a
(conmected) p-center C with ecce(C) < ecca(Cp) + ¢ in O(T(G)logn) time.

From Lemma &, the results in Tables 1 and 2 follow immediately.

Table 1. Implications of our results for the p-Center problem.

Approach Approx. | Time
Layering partition |+A O(mlogn)
Tree-decomposition | +p O(nmlogn)

Table 2. Implications of our results for the Connected p-Center problem.

Approach Approx. Time

Layering partition |+2A O(ma(n)log Alogn)

Tree-decomposition | +min(5p, 3\) | O(nmlogn)

In what follows, we show that, when using a layering partition, we can achieve
the results from Tables 1 and 2 without the logarithmic overhead.

Theorem 5. For a given graph G, a +A-approzximation for the p-Center prob-
lem can be computed in linear time.

Theorem 6. For a given graph G, a +2A-approximation for the connected p-
Center problem can be computed in O(m a(n)logmin(A,p)) time.
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