Parameterized Approximation Algorithms for Some Location Problems in Graphs

Arne Leitert $^{1(\boxtimes)}$ and Feodor F. Dragan²

Department of Computer Science, Central Washington University, Ellensburg, WA, USA arne.leitert@cwu.edu

Abstract. We develop efficient parameterized, with additive error, approximation algorithms for the (Connected) r-Domination problem and the (Connected) p-Center problem for unweighted and undirected graphs. Given a graph G, we show how to construct a (connected) $(r + \mathcal{O}(\mu))$ -dominating set D with $|D| \leq |D^*|$ efficiently. Here, D^* is a minimum (connected) r-dominating set of G and μ is our graph parameter, which is the tree-breadth or the cluster diameter in a layering partition of G. Additionally, we show that a $+\mathcal{O}(\mu)$ -approximation for the (Connected) p-Center problem on G can be computed in polynomial time. Our interest in these parameters stems from the fact that in many real-world networks, including Internet application networks, web networks, collaboration networks, social networks, biological networks, and others, and in many structured classes of graphs these parameters are small constants.

1 Introduction

The (Connected) r-Domination problem and the (Connected) p-Center problem, along with the p-Median problem, are among basic facility location problems with many applications in data clustering, network design, operations research—to name a few. Let G = (V, E) be an unweighted and undirected graph. Given a radius $r(v) \in \mathbb{N}$ for each vertex v of G, indicating within what radius a vertex v wants to be served, the r-Domination problem asks to find a set $D \subseteq V$ of minimum cardinality such that $d_G(v, D) \leq r(v)$ for every $v \in V$. The Connected r-Domination problem asks to find an r-dominating set D of minimum cardinality with an additional requirement that D needs to induce a connected subgraph of G. When r(v) = 1 for every $v \in V$, one gets the classical (Connected) Domination problem. Note that the Connected r-Domination problem is a natural generalization of the Steiner Tree problem (where each vertex t in the target set has r(t) = 0 and each other vertex s has r(s) = diam(G)). The connectedness of D is important also in network design and analysis applications (e. g. in finding a small backbone of a network). It is easy to see also that finding

Department of Computer Science, Kent State University, Kent, OH, USA dragan@cs.kent.edu

minimum connected dominating sets is equivalent to finding spanning trees with the maximum possible number of leaves.

The (closely related) p-Center problem asks to find in G a set $C \subseteq V$ of at most p vertices such that the value $\max_{v \in V} d_G(v, C)$ is minimized. If, additionally, C is required to induce a connected subgraph of G, then one gets the Connected p-Center problem.

The domination problem is one of the most well-studied NP-hard problems in algorithmic graph theory. To cope with the intractability of this problem, it has been studied both in terms of approximability (relaxing the optimality) and fixed-parameter tractability (relaxing the runtime). The Domination problem is notorious in the theory of fixed-parameter tractability (see, e.g., [13,20] for an introduction to parameterized complexity). It was the first problem to be shown W[2]-complete [13], and it is hence unlikely to be FPT, i. e., unlikely to have an algorithm with runtime $f(k)n^c$ for f a computable function, k the size of an optimal solution, c a constant, and n the number of vertices of the input graph. Similar results are known also for the connected domination problem [18]. From the approximability prospective, a logarithmic approximation factor can be found by using a simple greedy algorithm, and finding a sublogarithmic approximation factor is NP-hard [21]. The problem is in fact Log-APX-complete [16] and it is unlikely that there is a good FPT approximation algorithm for it (see [5,6]).

The p-Center problem is known to be NP-hard on graphs. However, for it, a simple and efficient factor-2 approximation algorithm exists [17]. Furthermore, it is a best possible approximation algorithm in the sense that an approximation with factor less than 2 is proven to be NP-hard (see [17] for more details). The NP-hardness of the Connected p-Center problem is shown in [22].

Recently, in [9], a new type of approximability result (call it a parameterized approximability result) was obtained: there exists a polynomial time algorithm which finds in an arbitrary graph G having a minimum r-dominating set D a set D' such that $|D'| \leq |D|$ and each vertex $v \in V$ is within distance at most $r(v) + 2\delta$ from D', where δ is the hyperbolicity parameter of G (see [9] for details). We call such a D' an $(r+2\delta)$ -dominating set of G. Later, in [15], this idea was extended to the p-Center problem: there is a quasi-linear time algorithm for the p-Center problem with an additive error less than or equal to six times the input graph's hyperbolicity (i. e., it finds a set C' with at most p vertices such that $\max_{v \in V} d_G(v, C') \leq \min_{C \subseteq V, |C| \leq p} \max_{v \in V} d_G(v, C) + 6\delta$). We call such a C' $a + 6\delta$ -approximation for the p-Center problem.

In this paper, we continue the line of research started in [9,15]. Unfortunately, the results of [9,15] are hardly extendable to connected versions of the r-Domination and p-Center problems. It remains an open question whether similar approximability results parameterized by the graph's hyperbolicity can be obtained for the Connected r-Domination and Connected p-Center problems. Instead, we consider two other graph parameters: the tree-breadth ρ and the cluster diameter Δ in a layering partition (formal definitions will be given in the next sections). Both parameters (like the hyperbolicity) capture the metric

tree-likeness of a graph (see, e. g., [2] and papers cited therein). As demonstrated in [2], in many real-world networks, including Internet application networks, web networks, collaboration networks, social networks, biological networks, and others, as well as in many structured classes of graphs the parameters δ , ρ , and Δ are small constants.

We show here that, for a given n-vertex, m-edge graph G, having a minimum r-dominating set D and a minimum connected r-dominating set C: an $(r + \Delta)$ -dominating set D' with $|D'| \leq |D|$ can be computed in linear time; a connected $(r+2\Delta)$ -dominating set C' with $|C'| \leq |C|$ can be computed in $\mathcal{O}(m \alpha(n) \log \Delta)$ time (where $\alpha(n)$ is the inverse Ackermann function); a $+\Delta$ -approximation for the p-Center problem can be computed in linear time; a $+2\Delta$ -approximation for the connected p-Center problem can be computed in $\mathcal{O}(m \alpha(n) \log \min(\Delta, p))$ time.

Furthermore, given a tree-decomposition with breadth ρ for G: an $(r + \rho)$ -dominating set D' with $|D'| \leq |D|$ can be computed in $\mathcal{O}(nm)$ time; a connected $(r + 5\rho)$ -dominating set C' with $|C'| \leq |C|$ can be computed in $\mathcal{O}(nm)$ time; a $+\rho$ -approximation for the p-Center problem can be computed in $\mathcal{O}(nm \log n)$ time; a $+5\rho$ -approximation for the Connected p-Center problem can be computed in $\mathcal{O}(nm \log n)$ time.

To compare these results with the results of [9,15], notice that, for any graph G, its hyperbolicity δ is at most Δ [2] and at most two times its tree-breadth ρ [8], and the inequalities are sharp.

Note that, for split graphs (graphs in which the vertices can be partitioned into a clique and an independent set), δ and ρ are at most 1, and Δ is at most 2. Additionally, as shown in [10], there is (under reasonable assumptions) no polynomial-time algorithm to compute a sublogarithmic-factor approximation for the (Connected) Domination problem in split graphs. Hence, there is no such algorithm even for constant δ , ρ , and Δ .

One can extend this result to show that there is no polynomial-time algorithm \mathcal{A} which computes, for any constant c, a $+c\log n$ -approximation for split graphs. Hence, there is no polynomial-time $+c\Delta\log n$ -approximation algorithm in general. Consider a given split graph $G=(C\cup I,E)$ with n vertices where C induces a clique and I induces an independent set. Create a graph $H=(C_H\cup I_H,E_H)$ by, first, making n copies of G. Let $C_H=C_1\cup C_2\cup\ldots\cup C_n$ and $I_H=I_1\cup I_2\cup\ldots\cup I_n$. Second, make the vertices in C_H pairwise adjacent. Then, C_H induces a clique and I_H induces an independent set. If there is such an algorithm \mathcal{A} , then \mathcal{A} produces a (connected) dominating set $D_{\mathcal{A}}$ for H which has at most $2c\log n$ more vertices than a minimum (connected) dominating set D. Thus, by pigeonhole principle, H contains a clique C_i for which $|C_i\cap D_{\mathcal{A}}|=|C_i\cap D|$. Therefore, such an algorithm \mathcal{A} would allow to solve the (Connected) Domination problem for split graphs in polynomial time.

Due to space limitations, all proofs are omitted. Additionally, Sect. 4 is limited to the main ideas of our algorithm. A full version of the paper can be found in [19].

2 Preliminaries

All graphs occurring in this paper are connected, finite, unweighted, undirected, without loops, and without multiple edges. For a graph G = (V, E), we use n = |V| and m = |E| to denote the cardinality of the vertex set and the edge set of G, respectively.

The length of a path from a vertex v to a vertex u is the number of edges in the path. The distance $d_G(u,v)$ in a graph G of two vertices u and v is the length of a shortest path connecting u and v. The distance between a vertex v and a set $S \subseteq V$ is defined as $d_G(v,S) = \min_{u \in S} d_G(u,v)$. For a vertex v of G and some positive integer r, the set $N_G^r[v] = \{u \mid d_G(u,v) \leq r\}$ is called the r-neighbourhood of v. The eccentricity $\operatorname{ecc}_G(v)$ of a vertex v is $\max_{u \in V} d_G(u,v)$. For a set $S \subseteq V$, its eccentricity is $\operatorname{ecc}_G(S) = \max_{u \in V} d_G(u,S)$.

For some function $r: V \to \mathbb{N}$, a vertex u is r-dominated by a vertex v (by a set $S \subseteq V$), if $d_G(u,v) \leq r(u)$ ($d_G(u,S) \leq r(u)$, respectively). A vertex set D is called an r-dominating set of G if each vertex $u \in V$ is r dominated by D. Additionally, for some non-negative integer ϕ , we say a vertex is $(r + \phi)$ -dominated by a vertex v (by a set $S \subseteq V$), if $d_G(u,v) \leq r(u) + \phi$ ($d_G(u,S) \leq r(u) + \phi$, respectively). An $(r + \phi)$ -dominating set is defined accordingly. For a given graph G and function r, the (Connected) r-Domination problem asks for the smallest (connected) vertex set D such that D is an r-dominating set of G.

The degree of a vertex v is the number of vertices adjacent to it. For a vertex set S, let G[S] denote the subgraph of G induced by S. A vertex set S is a separator for two vertices u and v in G if each path from u to v contains a vertex $s \in S$; in this case we say S separates u from v.

A tree-decomposition of a graph G = (V, E) is a tree T with the vertex set \mathcal{B} where each vertex of T, called bag, is a subset of V such that: (i) $V = \bigcup_{B \in \mathcal{B}} B$, (ii) for each edge $uv \in E$, there is a bag $B \in \mathcal{B}$ with $u, v \in B$, and (iii) for each vertex $v \in V$, the bags containing v induce a subtree of T. A tree-decomposition T of G has breadth ρ if, for each bag B of T, there is a vertex v in G with $B \subseteq N_G^{\rho}[v]$. The tree-breadth of a graph G is ρ , written as $\mathrm{tb}(G) = \rho$, if ρ is the minimal breadth of all tree-decomposition for G. A tree-decomposition T of G has length λ if, for each bag B of T and any two vertices $u, v \in B$, $d_G(u, v) \leq \lambda$. The tree-length of a graph G is λ , written as $\mathrm{tl}(G) = \lambda$, if λ is the minimal length of all tree-decomposition for G.

For a rooted tree T, let $\Lambda(T)$ denote the number of leaves of T. For the case when T contains only one node, let $\Lambda(T) := 0$. With α , we denote the inverse Ackermann function (see, e.g., [11]). It is well known that α grows extremely slowly. For $x = 10^{80}$ (estimated number of atoms in the universe), $\alpha(x) \le 4$.

3 Using a Layering Partition

The concept of a layering partition was introduced in [4,7]. The idea is the following. First, partition the vertices of a given graph G = (V, E) in distance layers $L_i = \{v \mid d_G(s, v) = i\}$ for a given vertex s. Second, partition each

layer L_i into clusters in such a way that two vertices u and v are in the same cluster if and only if they are connected by a path only using vertices in the same or upper layers. That is, u and v are in the same cluster if and only if, for some i, $\{u,v\} \subseteq L_i$ and there is a path P from u to v in G such that, for all j < i, $P \cap L_j = \emptyset$. Note that each cluster C is a set of vertices of G, i. e., $C \subseteq V$, and all clusters are pairwise disjoint. The created clusters form a rooted tree T with the cluster $\{s\}$ as the root where each cluster is a node of T and two clusters C and C' are adjacent in T if and only if G contains an edge uv with $u \in C$ and $v \in C'$. Figure 1 gives an example for such a partition. A layering partition of a graph can be computed in linear time [7].

Fig. 1. Example of a layering partition. A given graph G (a) and the layering partition of G generated when starting at vertex s (b). Example taken from [7].

For the remainder of this section, assume that we are given a graph G = (V, E) and a layering partition \mathcal{T} of G for an arbitrary start vertex. We denote the largest diameter of all clusters of \mathcal{T} as Δ , i.e., $\Delta := \max \{ d_G(x, y) \mid x, y \text{ are in a cluster } C \text{ of } \mathcal{T} \}$. For two vertices u and v of G contained in the clusters C_u and C_v of \mathcal{T} , respectively, we define $d_{\mathcal{T}}(u, v) := d_{\mathcal{T}}(C_u, C_v)$.

Lemma 1. For all vertices u and v of G, $d_{\mathcal{T}}(u,v) \leq d_{G}(u,v) \leq d_{\mathcal{T}}(u,v) + \Delta$.

Theorem 1 below shows that we can use the layering partition \mathcal{T} to compute an $(r+\Delta)$ -dominating set for G in linear time which is not larger than a minimum r-dominating set for G. This is done by finding a minimum r-dominating set of \mathcal{T} where, for each cluster C of \mathcal{T} , r(C) is defined as $\min_{v \in C} r(v)$.

Theorem 1. Let D be a minimum r-dominating set for a given graph G. An $(r+\Delta)$ -dominating set D' for G with $|D'| \leq |D|$ can be computed in linear time.

We now show how to construct a connected $(r + 2\Delta)$ -dominating set for G using \mathcal{T} in such a way that the set created is not larger than a minimum connected r-dominating set for G. For the remainder of this section, let D_r be a

minimum connected r-dominating set of G and let, for each cluster C of T, r(C) be defined as above. Additionally, we say that a subtree T' of some tree T is an r-dominating subtree of T if the nodes (clusters in case of a layering partition) of T' form a connected r-dominating set for T.

The first step of our approach is to construct a minimum r-dominating subtree T_r of \mathcal{T} . Such a subtree T_r can be computed in linear time [14]. Lemma 2 below shows that T_r gives a lower bound for the cardinality of D_r .

Lemma 2. If T_r contains more than one cluster, each connected r-dominating set of G intersects all clusters of T_r . Therefore, $|T_r| \leq |D_r|$.

As we show later in Corollary 1, each connected vertex set $S \subseteq V$ that intersects each cluster of T_r gives an $(r + \Delta)$ -dominating set for G. It follows from Lemma 2 that, if such a set S has minimum cardinality, $|S| \leq |D_r|$. However, finding a minimum cardinality connected set intersecting each cluster of a layering partition (or of a subtree of it) is as hard as finding a minimum Steiner tree.

The main idea of our approach is to construct a minimum $(r+\delta)$ -dominating subtree T_{δ} of \mathcal{T} for some integer δ . We then compute a small enough connected set S_{δ} that intersects all cluster of T_{δ} . By trying different values of δ , we eventually construct a connected set S_{δ} such that $|S_{\delta}| \leq |T_r|$ and, thus, $|S_{\delta}| \leq |D_r|$. Additionally, we show that S_{δ} is a connected $(r+2\Delta)$ -dominating set of G.

For some non-negative integer δ , let T_{δ} be a minimum $(r + \delta)$ -dominating subtree of \mathcal{T} . Clearly, $T_0 = T_r$. The following two lemmas set an upper bound for the maximum distance of a vertex of G to a vertex in a cluster of T_{δ} and for the size of T_{δ} compared to the size of T_r .

Lemma 3. For each vertex v of G, $d_{\mathcal{T}}(v, T_{\delta}) \leq r(v) + \delta$.

Because the diameter of each cluster is at most Δ , Lemmas 1 and 3 imply the following.

Corollary 1. If a vertex set intersects all clusters of T_{δ} , it is an $(r + (\delta + \Delta))$ -dominating set of G.

Lemma 4. $|T_{\delta}| \leq |T_r| - \delta \cdot \Lambda(T_{\delta})$.

Now that we have constructed and analysed T_{δ} , we show how to construct S_{δ} . First, we construct a set of shortest paths such that each cluster of T_{δ} is intersected by exactly one path. Second, we connect these paths with each other to from a connected set using an approach which is similar to Kruskal's algorithm for minimum spanning trees.

Let $\mathcal{L} = \{C_1, C_2, \dots, C_{\lambda}\}$ be the leaf clusters of T_{δ} (excluding the root) with either $\lambda = \Lambda(T_{\delta}) - 1$ if the root of T_{δ} is a leaf, or with $\lambda = \Lambda(T_{\delta})$ otherwise. We construct a set $\mathcal{P} = \{P_1, P_2, \dots, P_{\lambda}\}$ of paths as follows. Initially, \mathcal{P} is empty. For each cluster $C_i \in \mathcal{L}$, in turn, find the ancestor C_i' of C_i which is closest to the root of T_{δ} and does not intersect any path in \mathcal{P} yet. If we assume that the indices of the clusters in \mathcal{L} represent the order in which they are processed, then

 C'_1 is the root of T_δ . Then, select an arbitrary vertex v in C_i and find a shortest path P_i in G form v to C'_i . Add P_i to \mathcal{P} and continue with the next cluster in \mathcal{L} . Figure 2 gives an example.

Fig. 2. Example for the set \mathcal{P} for a subtree of a layering partition. Paths are shown in red. Each path P_i , with $1 \leq i \leq 5$, starts in the leaf C_i and ends in the cluster C'_i . For i = 2 and i = 5, P_i contains only one vertex.

Lemma 5. For each cluster C of T_{δ} , there is exactly one path $P_i \in \mathcal{P}$ intersecting C. Additionally, C and P_i share exactly one vertex, i. e., $|C \cap P_i| = 1$.

Next, we use the paths in \mathcal{P} to create the set S_{δ} . As first step, let $S_{\delta} := \bigcup_{P_i \in \mathcal{P}} P_i$. Later, we add more vertices into S_{δ} to ensure it is a connected set.

Now, create a partition $\mathcal{V} = \{V_1, V_2, \dots, V_{\lambda}\}$ of V such that, for each i, $P_i \subseteq V_i$, V_i is connected, and $d_G(v, P_i) = \min_{P \in \mathcal{P}} d_G(v, P)$ for each vertex $v \in V_i$. That is, V_i contains the vertices of G which are not more distant to P_i in G than to any other path in \mathcal{P} . Additionally, for each vertex $v \in V$, set $P(v) := P_i$ if and only if $v \in V_i$ (i. e., P(v) is the path in \mathcal{P} which is closest to v) and set $d(v) := d_G(v, P(v))$. Such a partition as well as P(v) and d(v) can be computed by performing a BFS on G starting at all paths $P_i \in \mathcal{P}$ simultaneously. Later, the BFS also allows us to easily determine the shortest path from v to P(v) for each vertex v.

To manage the subsets of \mathcal{V} , we use a Union-Find data structure such that, for two vertices u and v, Find(u) = Find(v) if and only if u and v are in the same set of \mathcal{V} . A Union-Find data structure additionally allows us to easily join two sets of \mathcal{V} into one by performing a single Union operation. Note that, whenever we join two sets of \mathcal{V} into one, P(v) and d(v) remain unchanged for each vertex v.

Next, create an edge set $E' = \{uv \mid \text{Find}(u) \neq \text{Find}(v)\}$, i.e., the set of edges uv such that u and v are in different sets of \mathcal{V} . Sort E' in such a way that an edge uv precedes an edge xy only if $d(u) + d(v) \leq d(x) + d(y)$.

The last step to create S_{δ} is similar to Kruskal's minimum spanning tree algorithm. Iterate over the edges in E' in increasing order. If, for an edge uv, $\operatorname{Find}(u) \neq \operatorname{Find}(v)$, i. e., if u and v are in different sets of \mathcal{V} , then join these sets into one by performing $\operatorname{Union}(u, v)$, add the vertices on the shortest path from

u to P(u) to S_{δ} , and add the vertices on the shortest path from v to P(v) to S_{δ} . Repeat this, until \mathcal{V} contains only one set, i. e., until $\mathcal{V} = \{V\}$.

Algorithm 1 below summarises the steps to create a set S_{δ} for a given subtree of a layering partition subtree T_{δ} .

Algorithm 1. Computes a connected vertex set that intersects each cluster of a given layering partition.

Input: A graph G = (V, E) and a subtree T_{δ} of some layering partition of G. **Output**: A connected set $S_{\delta} \subseteq V$ that intersects each cluster of T_{δ} and contains at most $|T_{\delta}| + (\Lambda(T_{\delta}) - 1) \cdot \Delta$ vertices.

- 1 Let $\mathcal{L} = \{C_1, C_2, \dots, C_{\lambda}\}$ be the set of clusters excluding the root that are leaves of T_{δ} .
- **2** Create an empty set \mathcal{P} .
- 3 foreach cluster $C_i \in \mathcal{L}$ do
- 4 Select an arbitrary vertex $v \in C_i$.
- Find the highest ancestor C'_i of C_i (i. e., the ancestor which is closest to the root of T_{δ}) that is not flagged.
- Find a shortest path P_i from v to an ancestor of v in C'_i (i. e., a shortest path from C_i to C'_i in G that contains exactly one vertex of each cluster of the corresponding path in T_{δ}).
- 7 Add P_i to \mathcal{P} .
- 8 Flag each cluster intersected by P_i .
- 9 Create a set $S_{\delta} := \bigcup_{P_i \in \mathcal{P}} P_i$.
- 10 Perform a BFS on G starting at all paths $P_i \in \mathcal{P}$ simultaneously. This results in a partition $\mathcal{V} = \{V_1, V_2, \dots, V_{\lambda}\}$ of V with $P_i \subseteq V_i$ for each $P_i \in \mathcal{P}$. For each vertex v, set $P(v) := P_i$ if and only if $v \in V_i$ and let $d(v) := d_G(v, P(v))$.
- 11 Create a Union-Find data structure and add all vertices of G such that $\operatorname{Find}(v) = i$ if and only if $v \in V_i$.
- 12 Determine the edge set $E' = \{ uv \mid \text{Find}(u) \neq \text{Find}(v) \}.$
- 13 Sort E' such that $uv \leq xy$ if and only if $d(u) + d(v) \leq d(x) + d(y)$. Let $\langle e_1, e_2, \dots, e_{|E'|} \rangle$ be the resulting sequence.

```
\begin{array}{llll} \textbf{14 for} & i := 1 \textbf{ to } |E'| \textbf{ do} \\ \textbf{15} & \text{Let } uv = e_i. \\ \textbf{16} & \textbf{if } \operatorname{Find}(u) \neq \operatorname{Find}(v) \textbf{ then} \\ \textbf{17} & \text{Add the shortest path from } u \text{ to } P(u) \text{ to } S_{\delta}. \\ \textbf{19} & \text{Union}(u,v) \end{array}
```

20 Output S_{δ} .

Lemma 6. For a given graph G and a given subtree T_{δ} of some layering partition of G, Algorithm 1 constructs, in $\mathcal{O}(m \alpha(n))$ time, a connected set S_{δ} with $|S_{\delta}| \leq |T_{\delta}| + \Delta \cdot \Lambda(T_{\delta})$ which intersects each cluster of T_{δ} .

Because, for each integer $\delta \geq 0$, $|S_{\delta}| \leq |T_{\delta}| + \Delta \cdot \Lambda(T_{\delta})$ (Lemma 6) and $|T_{\delta}| \leq |T_r| - \delta \cdot \Lambda(T_{\delta})$ (Lemma 4), we have the following.

Corollary 2. For each $\delta \geq \Delta$, $|S_{\delta}| \leq |T_r|$ and, thus, $|S_{\delta}| \leq |D_r|$.

To the best of our knowledge, there is no algorithm known that computes Δ in less than $\mathcal{O}(nm)$ time. Additionally, under reasonable assumptions, computing the diameter or radius of a general graph requires $\Omega(n^2)$ time [1]. We conjecture that the runtime for computing Δ for a given graph has a similar lower bound.

To avoid the runtime required for computing Δ , we use the following approach shown in Algorithm 2 below. First, compute a layering partition \mathcal{T} and the subtree T_r . Second, for a certain value of δ , compute T_{δ} and perform Algorithm 1 on it. If the resulting set S_{δ} is larger than T_r (i. e., $|S_{\delta}| > |T_r|$), increase δ ; otherwise, if $|S_{\delta}| \leq |T_r|$, decrease δ . Repeat the second step with the new value of δ .

One strategy to select values for δ is a classical binary search over the number of vertices of G. In this case, Algorithm 1 is called up-to $\mathcal{O}(\log n)$ times. Empirical analysis [2], however, have shown that Δ is usually very small. Therefore, we use a so-called *one-sided* binary search.

Consider a sorted sequence $\langle x_1, x_2, \dots, x_n \rangle$ in which we search for a value x_p . We say the value x_i is at position i. For a one-sided binary search, instead of starting in the middle at position n/2, we start at position 1. We then processes position 2, then position 4, then position 8, and so on until we reach position $j=2^i$ and, next, position $k=2^{i+1}$ with $x_j < x_p \le x_k$. Then, we perform a classical binary search on the sequence $\langle x_{j+1}, \dots, x_k \rangle$. Note that, because $x_j < x_p \le x_k$, $2^i and, hence, <math>j . Therefore, a one-sided binary search requires at most <math>\mathcal{O}(\log p)$ iterations to find x_p .

Because of Corollary 2, using a one-sided binary search allows us to find a value $\delta \leq \Delta$ for which $|S_{\delta}| \leq |T_r|$ by calling Algorithm 1 at most $\mathcal{O}(\log \Delta)$ times. Algorithm 2 below implements this approach.

Algorithm 2. Computes a connected $(r+2\Delta)$ -dominating set for a given graph G.

```
Input: A graph G = (V, E) and a function r: V \to \mathbb{N}.
    Output: A connected (r+2\Delta)-dominating set D for G with |D| \leq |D_r|.
 1 Create a layering partition \mathcal{T} of G.
 2 For each cluster C of \mathcal{T}, set r(C) := \min_{v \in C} r(v).
 3 Compute a minimum r-dominating subtree T_r for \mathcal{T} (see [14]).
 4 One-Sided Binary Search over \delta, starting with \delta = 0
        Create a minimum \delta-dominating subtree T_{\delta} of T_r (i. e., T_{\delta} is a minimum
 5
         (r+\delta)-dominating subtree for \mathcal{T}).
        Run Algorithm 1 on T_{\delta} and let the set S_{\delta} be the corresponding output.
 6
 7
        if |S_{\delta}| \leq |T_r| then
 8
             Decrease \delta.
 9
        else
             Increase \delta.
10
11 Output S_{\delta} with the smallest \delta for which |S_{\delta}| \leq |T_r|.
```

Theorem 2. For a given graph G, Algorithm 2 computes a connected $(r+2\Delta)$ -dominating set D with $|D| \leq |D_r|$ in $\mathcal{O}(m \alpha(n) \log \Delta)$ time.

4 Using a Tree-Decomposition

Theorems 1 and 2 respectively show how to compute an $(r + \Delta)$ -dominating set in linear time and a connected $(r+2\Delta)$ -dominating set in $\mathcal{O}(m \alpha(n) \log \Delta)$ time. It is known that the maximum diameter Δ of clusters of any layering partition of a graph approximates the tree-breadth and tree-length of this graph. Indeed, for a graph G with $\operatorname{tl}(G) = \lambda$, $\Delta \leq 3\lambda$ [12].

Corollary 3. Let D be a minimum r-dominating set for a given graph G with $tl(G) = \lambda$. An $(r+3\lambda)$ -dominating set D' for G with $|D'| \leq |D|$ can be computed in linear time.

Corollary 4. Let D be a minimum connected r-dominating set for a given graph G with $\operatorname{tl}(G) = \lambda$. A connected $(r + 6\lambda)$ -dominating set D' for G with $|D'| \leq |D|$ can be computed in $\mathcal{O}(m \alpha(n) \log \lambda)$ time.

In this section, we consider the case when we are given a graph G = (V, E) and a tree-decomposition \mathcal{T} of G with known breadth ρ and length λ . Additionally, we assume that, for each bag B of \mathcal{T} , we know a vertex c(B), called *center of* B, with $B \subseteq N_G^{\rho}[c(B)]$. We present algorithms to compute an $(r+\rho)$ -dominating set as well as a connected $(r + \min(3\lambda, 5\rho))$ -dominating set in $\mathcal{O}(nm)$ time.

Before approaching the (Connected) r-Domination problem, we compute a subtree \mathcal{T}' of \mathcal{T} such that, for each vertex v of G, \mathcal{T}' contains a bag B with $d_G(v, B) \leq r(v)$. We call such a (not necessarily minimal) subtree an r-covering subtree of \mathcal{T} .

Lemma 7. One can compute a minimum r-covering subtree T_r of \mathcal{T} in $\mathcal{O}(nm)$ time.

Next, we use a minimum r-covering subtree T_r to determine an $(r + \rho)$ -dominating set S in $\mathcal{O}(nm)$ time using the following approach.

First, compute T_r . Second, pick a leaf B of T_r . If there is a vertex v such that v is not dominated and B is the only bag intersecting the r-neighbourhood of v, then add the center of B into S, flag all vertices u with $d_G(u, B) \leq r(u)$ as dominated, and remove B from T_r . Repeat the second step until T_r contains no more bags and each vertex is flagged as dominated.

Theorem 3. Let D be a minimum r-dominating set for a given graph G. Given a tree-decomposition with breadth ρ for G, one can compute an $(r+\rho)$ -dominating set S with $|S| \leq |D|$ in $\mathcal{O}(nm)$ time.

Now, we show how to compute a connected $(r + 5\rho)$ -dominating set and a connected $(r + 3\lambda)$ -dominating set for G. For both results, we use almost the same algorithm. To identify and emphasise the differences, we use the label (\mathfrak{P})

for parts which are only relevant to determine a connected $(r + 5\rho)$ -dominating set and use the label (\diamondsuit) for parts which are only relevant to determine a connected $(r + 3\lambda)$ -dominating set.

For (\heartsuit) $\phi = 3\rho$ or (\diamondsuit) $\phi = 2\lambda$, let T_{ϕ} be a minimum $(r+\phi)$ -covering subtree of \mathcal{T} . The idea of our algorithm is to, first, compute T_{ϕ} and, second, compute a small enough connected set C_{ϕ} such that C_{ϕ} intersects each bag of T_{ϕ} .

Notation. Let T_{ϕ} be a rooted tree such that its root R is a leaf. Based on its degree in T_{ϕ} , we refer to each bag B of T_{ϕ} either as leaf, as path bag if B has degree 2, or as branching bag if B has a degree larger than 2. Additionally, we call a maximal connected set of path bags a path segment of T_{ϕ} . Let \mathbb{L} denote the set of leaves, \mathbb{P} denote the set of path segments, and \mathbb{B} denote the set of branching bags of T_{ϕ} . Clearly, for any given tree T, the sets \mathbb{L} , \mathbb{P} , and \mathbb{B} are pairwise disjoint and can be computed in linear time.

Let B and B' be two adjacent bags of T_{ϕ} such that B is the parent of B'. We call $S = B \cap B'$ the up-separator of B', denoted as $S^{\uparrow}(B')$, and a down-separator of B, denoted as $S^{\downarrow}(B)$, i.e., $S = S^{\uparrow}(B') = S^{\downarrow}(B)$. Note that a branching bag has multiple down-separators and that (with exception of R) each bag has exactly one up-separator. For each branching bag B, let $S^{\downarrow}(B)$ be the set of down-separators of B. Accordingly, for a path segment $P \in \mathbb{P}$, $S^{\uparrow}(P)$ is the up-separator of the bag in P closest to the root and $S^{\downarrow}(P)$ is the down separator of the bag in P furthest from the root. Let ν be a function that assigns a vertex of G to a given separator. Initially, $\nu(S)$ is undefined for each separator S.

Algorithm. Now, we show how to compute C_{ϕ} . We, first, split T_{ϕ} into the sets \mathbb{L} , \mathbb{P} , and \mathbb{B} . Second, for each $P \in \mathbb{P}$, we create a small connected set C_P , and, third, for each $B \in \mathbb{B}$, we create a small connected set C_B . If this is done properly, the union C_{ϕ} of all these sets forms a connected set which intersects each bag of T_{ϕ} .

Note that, due to properties of tree-decompositions, it can be the case that there are two bags B and B' which have a common vertex v, even if B and B' are non-adjacent in T_{ϕ} . In such a case, either $v \in S^{\downarrow}(B) \cap S^{\uparrow}(B')$ if B is an ancestor of B', or $v \in S^{\uparrow}(B) \cap S^{\uparrow}(B')$ if neither is ancestor of the other. To avoid problems caused by this phenomena and to avoid counting vertices multiple times, we consider any vertex in an up-separator as part of the bag above. That is, whenever we process some segment or bag $X \in \mathbb{L} \cup \mathbb{P} \cup \mathbb{B}$, even though we add a vertex $v \in S^{\uparrow}(X)$ to C_{ϕ} , v is not contained in C_X .

Processing Path Segments. First, after splitting T_{ϕ} , we create a set C_P for each path segment $P \in \mathbb{P}$ as follows. We determine $S^{\uparrow}(P)$ and $S^{\downarrow}(P)$ and then find a shortest path Q_P from $S^{\uparrow}(P)$ to $S^{\downarrow}(P)$. Note that Q_P contains exactly one vertex from each separator. Let $x \in S^{\uparrow}(P)$ and $y \in S^{\downarrow}(P)$ be these vertices. Then, we set $\nu(S^{\uparrow}(P)) = x$ and $\nu(S^{\downarrow}(P)) = y$. Last, we add the vertices of Q_P into C_{ϕ} and define C_P as $Q_P \setminus S^{\uparrow}(P)$.

Processing Branching Bags. After processing path segments, we process the branching bags of T_{ϕ} . Similar to path segments, we have to ensure that all separators are connected. Branching bags, however, have multiple down-separators. To connect all separators of some bag B, we pick a vertex s in each separator $S \in \mathcal{S}^{\downarrow}(B) \cup \{S^{\uparrow}(B)\}$. If $\nu(S)$ is defined, we set $s = \nu(S)$. Otherwise, we pick an arbitrary $s \in S$ and set $\nu(S) = s$. Let $\mathcal{S}^{\downarrow}(B) = \{S_1, S_2, \ldots\}$, $s_i = \nu(S_i)$, and $t = \nu(S^{\uparrow}(B))$. We then connect these vertices as follows. (See Fig. 3 for an illustration.)

- (\heartsuit) Connect each vertex s_i via a shortest path Q_i (of length at most ρ) with the center c(B) of B. Additionally, connect c(B) via a shortest path Q_t (of length at most ρ) with t. Add all vertices from the paths Q_i and from the path Q_t into C_{ϕ} .
- (\diamondsuit) Connect each vertex s_i via a shortest path Q_i (of length at most λ) with t. Add all vertices from the paths Q_i into C_{ϕ} .

Fig. 3. Construction of the set C_B for a branching bag B.

Theorem 4. For a given graph which has an unknown minimum connected r-dominating set D_r , one can compute a connected $(r+(\phi+\lambda))$ -dominating set C_{ϕ} with $|C_{\phi}| \leq |D_r|$ in $\mathcal{O}(nm)$ time.

5 Implications for the p-Center Problem

The (Connected) p-Center problem asks, given a graph G and some integer p, for a (connected) vertex set S with $|S| \leq p$ such that S has minimum eccentricity, i. e., there is no (connected) set S' with $\mathrm{ecc}_G(S') < \mathrm{ecc}_G(S)$. It is known (see, e. g., [3]) that the p-Center problem and r-Domination problem are closely related. Indeed, one can solve each of these problems by solving the other problem a logarithmic number of times. Lemma 8 below generalises this observation. Informally, it states that we are able to find a $+\phi$ -approximation for the p-Center problem if we can find a good $(r+\phi)$ -dominating set.

Lemma 8. For a given graph G, let D_r be an optimal (connected) r-dominating set and C_p be an optimal (connected) p-center. If, for some non-negative integer ϕ , there is an algorithm to compute a (connected) $(r + \phi)$ -dominating set D with $|D| \leq |D_r|$ in $\mathcal{O}(T(G))$ time, then there is an algorithm to compute a (connected) p-center C with $\operatorname{ecc}_G(C) \leq \operatorname{ecc}_G(C_p) + \phi$ in $\mathcal{O}(T(G) \log n)$ time.

From Lemma 8, the results in Tables 1 and 2 follow immediately.

Table 1. Implications of our results for the *p*-Center problem.

Approach	Approx.	Time
Layering partition	$+\Delta$	$\mathcal{O}(m \log n)$
Tree-decomposition	$+\rho$	$\mathcal{O}(nm\log n)$

Table 2. Implications of our results for the Connected *p*-Center problem.

Approach	Approx.	Time
Layering partition	$+2\Delta$	$\mathcal{O}(m \alpha(n) \log \Delta \log n)$
Tree-decomposition	$+\min(5\rho,3\lambda)$	$\mathcal{O}(nm\log n)$

In what follows, we show that, when using a layering partition, we can achieve the results from Tables 1 and 2 without the logarithmic overhead.

Theorem 5. For a given graph G, $a + \Delta$ -approximation for the p-Center problem can be computed in linear time.

Theorem 6. For a given graph G, a $+2\Delta$ -approximation for the connected p-Center problem can be computed in $\mathcal{O}(m \alpha(n) \log \min(\Delta, p))$ time.

References

- Abboud, A., Williams, V.V., Wang, J.: Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs. In: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 377–391 (2016)
- 2. Abu-Ata, M., Dragan, F.F.: Metric tree-like structures in real-life networks: an empirical study. Networks **67**(1), 49–68 (2016)
- Brandstädt, A., Chepoi, V., Dragan, F.F.: The algorithmic use of hypertree structure and maximum neighbourhood orderings. Discrete Appl. Math. 82(1–3), 43–77 (1998)
- Brandstädt, A., Chepoi, V., Dragan, F.F.: Distance approximating trees for chordal and dually chordal graphs. J. Algorithms 30, 166–184 (1999)

- Chalermsook, P., Cygan, M., Kortsarz, G., Laekhanukit, B., Manurangsi, P., Nanongkai, D., Trevisan, D.: From Gap-ETH to FPT-Inapproximability: Clique, Dominating Set, and More Manuscript, CoRR abs/1708.04218 (2017)
- Chen, Y., Lin, B.: The Constant Inapproximability of the Parameterized Dominating Set Problem, Manuscript, CoRR abs/1511.00075 (2015)
- Chepoi, V., Dragan, F.F.: A note on distance approximating trees in graphs. Eur. J. Comb. 21, 761–766 (2000)
- Chepoi, V.D., Dragan, F.F., Estellon, B., Habib, M., Vaxes, Y.: Diameters, centers, and approximating trees of δ-hyperbolic geodesic spaces and graphs. In: Proceedings of the 24th Annual ACM Symposium on Computational Geometry, SoCG 2008, pp. 59–68 (2008)
- Chepoi, V., Estellon, B.: Packing and covering δ-hyperbolic spaces by balls. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) APPROX/RANDOM -2007. LNCS, vol. 4627, pp. 59–73. Springer, Heidelberg (2007). https://doi.org/ 10.1007/978-3-540-74208-1_5
- Chlebík, M., Chlebíková, J.: Approximation hardness of dominating set problems in bounded degree graphs. Inf. Comput. 206, 1264–1275 (2008)
- 11. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)
- 12. Dourisboure, Y., Dragan, F.F., Gavoille, C., Yan, C.: Spanners for bounded tree-length graphs. Theor. Comput. Sci. **383**(1), 34–44 (2007)
- Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)
- Dragan, F.F.: HT-graphs: centers, connected r-domination and Steiner trees. Comput. Sci. J. Moldova 1(2), 64–83 (1993)
- 15. Edwards, K., Kennedy, S., Saniee, I.: Fast approximation algorithms for p-centers in large δ -hyperbolic graphs. In: Bonato, A., Graham, F.C., Prałat, P. (eds.) WAW 2016. LNCS, vol. 10088, pp. 60–73. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49787-7_6
- Escoffier, B., Paschos, V.T.: Completeness in approximation classes beyond APX. Theor. Comput. Sci. 359(1–3), 369–377 (2006)
- 17. Gonzalez, T.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985)
- 18. Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets. Algorithmica **20**(4), 374–387 (1998)
- Leitert, A., Dragan, F.F.: Parametrized Approximation Algorithms for some Location Problems in Graphs, Manuscript, CoRR abs/1706.07475 (2017)
- 20. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford (2006)
- Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and sub-constant error-probability PCP characterization of NP. In: Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pp. 475–484 (1997)
- 22. Yen, W.C.-K., Chen, C.-T.: The *p*-center problem with connectivity constraint. Appl. Math. Sci. **1**(27), 1311–1324 (2007)