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Abstract. We show that the eccentricities (and thus the centrality
indices) of all vertices of a §-hyperbolic graph G = (V, E) can be com-
puted in linear time with an additive one-sided error of at most c¢d, i.e.,
after a linear time preprocessing, for every vertex v of G one can com-
pute in O(1) time an estimate é(v) of its eccentricity ecce(v) such that
eccg(v) < é(v) < eccq(v)—+cd for a small constant c. We prove that every
é-hyperbolic graph G has a shortest path tree, constructible in linear
time, such that for every vertex v of G, eccg(v) < ecer(v) < eceq(v)+cd.
We also show that the distance matrix of G with an additive one-sided
error of at most ¢/ can be computed in O(|]V|?log®|V]) time, where
¢ < cis a small constant. Recent empirical studies show that many real-
world graphs (including Internet application networks, web networks,
collaboration networks, social networks, biological networks, and others)
have small hyperbolicity.

1 Introduction

The diameter diam(G) and the radius rad(G) of a graph G = (V, E) are two
fundamental metric parameters that have many important practical applications
in real world networks. The problem of finding the center C(G) of a graph G
is often studied as a facility location problem for networks where one needs to
select a single vertex to place a facility so that the maximum distance from any
demand vertex in the network is minimized. In the analysis of social networks
(e.g., citation networks or recommendation networks), biological systems (e.g.,
protein interaction networks), computer networks (e.g., the Internet or peer-
to-peer networks), transportation networks (e.g., public transportation or road
networks), etc., the eccentricity ecc(v) of a vertex v is used to measure the
importance of v in the network: the centrality index of v is defined as ﬁ(v)
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Being able to compute efficiently the diameter, center, radius, and vertex
centralities of a given graph has become an increasingly important problem in
the analysis of large networks. The algorithmic complexity of the diameter and
radius problems is very well-studied. For some special classes of graphs there are
efficient algorithms [1,7,12,16,29]. However, for general graphs, the only known
algorithms computing the diameter and the radius exactly compute the distance
between every pair of vertices in the graph, thus solving the all-pairs shortest
paths problem (APSP) and hence computing all eccentricities. In view of recent
negative results [1,6,36], this seems to be the best what one can do since even
for graphs with m = O(n) (where m is the number of edges and n is the number
of vertices) the existence of a subquadratic time (that is, O(n?~¢) time for some
e > 0) algorithm for the diameter or the radius problem will refute the well
known Strong Exponential Time Hypothesis (SETH). Furthermore, recent work
[2] shows that if the radius of a possibly dense graph (m = O(n?)) can be
computed in subcubic time (O(n37¢) for some € > 0), then APSP also admits
a subcubic algorithm. Such an algorithm for APSP has long eluded researchers,
and it is often conjectured that it does not exist.

Motivated by these negative results, researches started devoting more atten-
tion to development of fast approximation algorithms. In the analysis of large-
scale networks, for fast estimations of diameter, center, radius, and centrality
indices, linear or almost linear time algorithms are desirable. One hopes also for
the all-pairs shortest paths problem to have o(nm) time small-constant—factor
approximation algorithms. In general graphs, both diameter and radius can be
2-approximated by a simple linear time algorithm which picks any node and
reports its eccentricity. A 3/2-approximation algorithm for the diameter and the
radius which runs in O(mn?/3) time was recently obtained in [10] (see also [4]
for an earlier O(n? + my/n) time algorithm and [36] for a randomized O(m./n)
time algorithm). For the sparse graphs, this is an o(n?) time approximation
algorithm. Furthermore, under plausible assumptions, no O(n?~¢) time algo-
rithm can exist that (3/2 — €’)-approximates (for €,€¢ > 0) the diameter [36] and
the radius [1] in sparse graphs. Similar results are known also for all eccentric-
ities: a 5/3-approximation to the eccentricities of all vertices can be computed
in O(m?/?) time [10] and, under plausible assumptions, no O(n?~¢) time algo-
rithm can exist that (5/3 — €’)-approximates (for €,¢’ > 0) the eccentricities of
all vertices in sparse graphs [1]. Better approximation algorithms are known for
some special classes of graphs [13,19,24,25].

Approximability of APSP is also extensively investigated. An additive 2-
approximation for APSP in unweighted undirected graphs (the graphs we con-
sider in this paper) was presented in [20]. It runs in O(min{n?/?m!/2 n7/3}) time
and hence improves the runtime of an earlier algorithm from [4]. In [5], an O(n?)
time algorithm was designed which computes an approximation of all distances
with a multiplicative error of 2 and an additive error of 1. Furthermore, [5] gives
an O(n??4t°(Me=31og(n/e)) time algorithm that computes an approximation of
all distances with a multiplicative error of (1 + €) and an additive error of 2.
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Better algorithms are known for some special classes of graphs (see [7,13,23]
and papers cited therein).

The need for fast approximation algorithms for estimating diameters, radii,
centrality indices, or all pairs shortest paths in large-scale complex networks
dictates to look for geometric and topological properties of those networks and
utilize them algorithmically. The classical relationships between the diameter,
radius, and center of trees and folklore linear time algorithms for their compu-
tation is one of the departing points of this research. A result from 1869 by C.
Jordan [31] asserts that the radius of a tree T is roughly equal to half of its
diameter and the center is either the middle vertex or the middle edge of any
diametral path. The diameter and a diametral pair of T can be computed (in
linear time) by a simple but elegant procedure: pick any vertex x, find any vertex
y furthest from z, and find once more a vertex z furthest from y; then return
{y, z} as a diametral pair. One computation of a furthest vertex is called an F'P
scam; hence the diameter of a tree can be computed via two FP scans. This two
FP scans procedure can be extended to exact or approximate computation of
the diameter and radius in many classes of tree-like graphs. For example, this
approach was used to compute the radius and a central vertex of a chordal graph
in linear time [12]. In this case, the center of G is still close to the middle of all
(y, z)-shortest paths and d¢(y, 2) is not the diameter but is still its good approx-
imation: d(y, z) > diam(G) — 2. Even better, the diameter of any chordal graph
can be approximated in linear time with an additive error 1 [25]. But it turns
out that the exact computation of diameters of chordal graphs is as difficult as
the general diameter problem: it is even difficult to decide if the diameter of a
split graph is 2 or 3.

The experience with chordal graphs shows that one have to abandon
the hope of having fast exact algorithms, even for very simple (from metric
point of view) graph-classes, and to search for fast algorithms approximating
diam(G), rad(G), C(G), eccg(v) with a small additive constant depending only
of the coarse geometry of the graph. Gromov hyperbolicity or the negative cur-
vature of a graph (and, more generally, of a metric space) is one such constant.
A graph G = (V| E) is d-hyperbolic [9,27,28] if for any four vertices w, v, z,y of
G, the two largest of the three distance sums d(w,v) + d(z,y), d(w, z) + d(v, y),
d(w,y) + d(v,z) differ by at most 26 > 0. The hyperbolicity 6(G) of a graph
G is the smallest number § such that G is §-hyperbolic. The hyperbolicity can
be viewed as a local measure of how close a graph is metrically to a tree: the
smaller the hyperbolicity is, the closer its metric is to a tree-metric (trees are
0O-hyperbolic and chordal graphs are 1-hyperbolic).

Recent empirical studies showed that many real-world graphs (including
Internet application networks, web networks, collaboration networks, social net-
works, biological networks, and others) are tree-like from a metric point of view
[3] or have small hyperbolicity [33,37]. It has been suggested in [33], and recently
formally proved in [17], that the property, observed in real-world networks, in
which traffic between nodes tends to go through a relatively small core of the
network, as if the shortest paths between them are curved inwards, is due to the
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hyperbolicity of the network. Small hyperbolicity in real-world graphs provides
also many algorithmic advantages. Efficient approximate solutions are attainable
for a number of optimization problems [13,14,17,18,26,38].

In [13] we initiated the investigation of diameter, center, and radius problems
for 6-hyperbolic graphs and we showed that the existing approach for trees can
be extended to this general framework. Namely, it is shown in [13] that if G is
a 0-hyperbolic graph and {y, z} is the pair returned after two FP scans, then
d(y,z) > diam(G) — 26, diam(G) > 2rad(G) — 46 — 1, diam(C(GQ)) < 40 +
1, and C(G) is contained in a small ball centered at a middle vertex of any
shortest (y, z)-path. Consequently, we obtained linear time algorithms for the
diameter and radius problems with additive errors linearly depending on the
input graph’s hyperbolicity. In this paper, we advance this line of research and
provide a linear time algorithm for approximate computation of the eccentricities
(and thus of centrality indices) of all vertices of a d-hyperbolic graph G, i.e., we
compute the approximate values of all eccentricities within the same time bounds
as one computes the approximation of the largest or the smallest eccentricity
(diam(G) or rad(G)). Namely, the algorithm outputs for every vertex v of G
an estimate é(v) of eccg(v) such that eccg(v) < é(v) < eccq(v) + ¢d, where
¢ > 0 is a small constant. In fact, we demonstrate that G has a shortest path
tree, constructible in linear time, such that for every vertex v of G, eccg(v) <
ecer(v) < eceq(v) + ¢d (a so-called eccentricity cd-approzimating spanning tree).
This is our first main result of this paper and the main ingredient in proving
it is the following interesting dependency between the eccentricities of vertices
of G and their distances to the center C(G): up to an additive error linearly
depending on 4, eccg(v) is equal to d(v, C(G)) plus rad(G). To establish this
new result, we have to revisit the results of [13] about diameters, radii, and
centers, by simplifying their proofs and extending them to all eccentricities.

Eccentricity k-approximating spanning trees were introduced by Prisner
in [35]. A spanning tree T of a graph G is called an eccentricity k-approzimating
spanning tree if for every vertex v of G eccr(v) < eccq(v) + k holds [35]. Prisner
observed that any graph admitting an additive tree k-spanner (that is, a spanning
tree T such that dr(v,u) < dg(v,u)+k for every pair u, v) admits also an eccen-
tricity k-approximating spanning tree. Therefore, eccentricity k-approximating
spanning trees exist in interval graphs for k = 2 [32,34], in asteroidal-triple—free
graph [32], strongly chordal graphs [8] and dually chordal graphs [8] for k = 3.
On the other hand, although for every k there is a chordal graph without an addi-
tive tree k-spanner [32,34], yet as Prisner demonstrated in [35], every chordal
graph has an eccentricity 2-approximating spanning tree. Later this result was
extended in [24] to a larger family of graphs which includes all chordal graphs
and all plane triangulations with inner vertices of degree at least 7. Both those
classes belong to the class of 1-hyperbolic graphs. Thus, our result extends the
result of [35] to all 6-hyperbolic graphs.

As our second main result, we show that in every J-hyperbolic graph G
all distances with an additive one-sided error of at most ¢’d can be found in
O(|V2log® |V|) time, where ¢ < ¢ is a small constant. With a recent result
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n [11], this demonstrates an equivalence between approximating the hyperbol-
icity and approximating the distances in graphs. Note that every J-hyperbolic
graph G admits a distance approximating tree T' [13,14], that is, a tree T' (which
is not necessarily a spanning tree) such that dp(v,u) < dg(v,u) + O(dlogn) for
every pair u,v. Such a tree can be used to compute all distances in G with an
additive one-sided error of at most O(5logn) in O(|V|?) time. Our new result
removes the dependency of the additive error from logn and has a much smaller
constant in front of §. Note also that tree T' is not a spanning tree of G and thus
cannot serve as an eccentricity O(d log n)-approximating spanning tree. Further-
more, as chordal graphs are 1-hyperbolic, for every k there is a 1-hyperbolic
graph without an additive tree k-spanner [32,34].

Finally, in the full version of the paper [15], we analyze the performance
of our algorithms for approximating eccentricities and distances on a number
of real-world networks. Our experimental results show that the estimates on
eccentricities and distances obtained are even better than the theoretical bounds
proved. Experimental results can be found in the full version of the paper [15].

2 Preliminaries

Center, Diameter, Centrality. All graphs G = (V, E) occurring in this paper
are finite, undirected, connected, without loops or multiple edges. We use n and
|V| interchangeably to denote the number of vertices and m and |E| to denote
the number of edges in G. The length of a path from a vertex v to a vertex wu
is the number of edges in the path. The distance dg(u,v) between vertices u
and v is the length of a shortest path connecting v and v in G. The eccentricity
of a vertex v, denoted by eccg(v), is the largest distance from v to any other
vertex, i.e., eccg(v) = maxycy dg(v,u). The centrality index of v is ﬁ(v)
The radius rad(G) of a graph G is the minimum eccentricity of a vertex in G,
i.e., rad(G) = min,ecy eccg(v). The diameter diam(G) of a graph G is the the
maximum eccentricity of a vertex in G, i.e., diam(G) = max,cv eccg(v). The
center C(G) = {c € V : eccg(c) = rad(G)} of a graph G is the set of vertices
with minimum eccentricity.

Gromov Hyperbolicity and Thin Geodesic Triangles. Let (X,d) be a
metric space. The Gromov product of y,z € X with respect to w is defined
to be (y[2)w = 1(d(y,w) + d(z,w) — d(y,z)). A metric space (X,d) is said
to be d-hyperbolic [28] for § > 0 if (z|y)w > min{(z|z)w, (y|2)w} — ¢ for all
w,z,y,z € X. Equivalently, (X, d) is d-hyperbolic if for any four points u, v, z,y
of X, the two largest of the three distance sums d(u,v)+d(z,y), d(u, z)+d(v,y),
d(u,y) + d(v, x) differ by at most 26 > 0. A connected graph G = (V, E) is §-
hyperbolic (or of hyperbolicity §) if the metric space (V, dg) is §-hyperbolic, where
dg is the standard shortest path metric defined on G.

6-Hyperbolic graphs generalize k-chordal and bounded tree-length graphs:
each k-chordal graph has the tree-length at most | £ | [21] and each tree-length A
graph has hyperbolicity at most A [13]. A graph is k-chordal if its induced cycles
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are of length at most k, and it is of tree-length X if it has a tree-decomposition
into bags of diameter at most A [21].

For geodesic metric spaces and graphs there exist several equivalent defini-
tions of §-hyperbolicity involving different but comparable values of 4 [9,27,28].
In this paper, we will use the definition via thin geodesic triangles. Let (X, d) be
a metric space. A geodesic joining two points x and y from X is a (continuous)
map f from the segment [a,b] of R! of length |a — b| = d(x,y) to X such that
fla) ==z, f(b) =y, and d(f(s), f(t)) = |s — t| for all s,¢ € [a,b]. A metric space
(X, d) is geodesic if every pair of points in X can be joined by a geodesic. Every
graph G = (V, E) can be transformed into a geodesic space (X, d) by replacing
every edge e = uv by a segment [u, v] of length 1; the segments may intersect only
at common ends. Then (V,dg) is isometrically embedded in a natural way in
(X,d). The restrictions of geodesics of X to the vertices V' of G are the shortest
paths of G.

x T z

Fig. 1. A geodesic triangle A(z,y, z), the points my, my, m., and the tripod 1 (z,y, 2)

Let (X,d) be a geodesic metric space. A geodesic triangle A(x,y,z) with
z,y, 2z € X is the union [z, y]U[z, 2] U[y, 2] of three geodesic segments connecting
these vertices. Let m, be the point of the geodesic segment [y, z] located at
distance o, = (z|2), = (d(y,x)+d(y, z) —d(x, 2))/2 from y. Then m,, is located
at distance o, := (y|z). = (d(z,y)+d(z, ) —d(y,x))/2 from z because o, +a, =
d(y, z). Analogously, define the points m,, € [z, 2] and m, € [z,y] both located
at distance oy := (y|2). = (d(z,y) + d(z,2) — d(y, z))/2 from x; see Fig.1 for
an illustration. There exists a unique isometry ¢ which maps A(z,y,z) to a
tripod T'(z,vy, z) consisting of three solid segments [z, m], [y, m], and [z,m] of
lengths o, ay, and «., respectively. This isometry maps the vertices x,y,z of
A(z,y, 2) to the respective leaves of T'(z,y, z) and the points m,, m,, and m_ to
the center m of this tripod. Any other point of T'(x,y, z) is the image of exactly
two points of A(z,y,z). A geodesic triangle A(z,y, z) is called §-thin if for all
points u,v € A(z,y, ), p(u) = ¢(v) implies d(u,v) < 0. A graph G = (V, E)
whose all geodesic triangles A(u, v, w), u,v,w € V, are é-thin is called a graph
with d-thin triangles, and § is called the thinness parameter of G.

The following result shows that hyperbolicity of a geodesic space or a graph
is equivalent to having thin geodesic triangles.
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Proposition 1 ([9,27,28]). Geodesic triangles of geodesic §-hyperbolic spaces or
graphs are 40-thin. Conversely, geodesic spaces or graphs with 0-thin triangles
are d-hyperbolic.

In what follows, we will need few more notions and notations. Let G = (V, E)
be a graph. By [z, y] we denote a shortest path connecting vertices  and y in
G; we call [z,y] a geodesic between = and y. A ball B(s,r) of G centered at
vertex s € V and with radius r is the set of all vertices with distance no more
than r from s (i.e., B(s,r) := {v € V : dg(v,s) < r}). The kth-power of a
graph G = (V, E) is the graph G¥ = (V, E’) such that zy € E’ if and only if
0 < dg(z,y) < k. Denote by F(z) := {y € V : dg(x,y) = eccg(x)} the set of
all vertices of G that are most distant from z. Vertices x and y of G are called
mutually distant if x € F(y) and y € F(x), i.e., eccg(x) = ecca(y) = da(z, y).

3 Fast Approximation of Eccentricities

In this section, we give linear and almost linear time algorithms for sharp estima-
tion of the diameters, the radii, the centers and the eccentricities of all vertices
in graphs with J-thin triangles. Before presenting those algorithms, we establish
some conditional lower bounds on complexities of computing the diameters and
the radii in those graphs.

3.1 Conditional Lower Bounds on Complexities

Recent work has revealed convincing evidence that solving the diameter problem
in subquadratic time might not be possible, even in very special classes of graphs.
Roditty and Vassilevska W. [36] showed that an algorithm that can distinguish
between diameter 2 and 3 in a sparse graph in subquadratic time refutes the
following widely believed conjecture.

The Orthogonal Vectors Conjecture: There is no € > 0 such that for all ¢ > 1,
there is an algorithm that given two lists of n binary vectors A, B C {0,1}¢
where d = clogn can determine if there is an orthogonal pair a € A,b € B, in
O(n?7¢) time.

Williams [39] showed that the Orthogonal Vectors (OV) Conjecture is implied
by the well-known Strong Exponential Time Hypothesis (SETH) of Impagliazzo,
Paturi, and Zane [30]. Nowadays many papers base the hardness of problems on
SETH and the OV conjecture (see, e.g., [1,6] and papers cited therein). Since
all geodesic triangles of a graph constructed in the reduction in [36] are 2-thin,
we can rephrase the result from [36] as follows.

Statement 1. If for some ¢ > 0, there is an algorithm that can determine if a
given graph with 2-thin triangles, n vertices and m = O(n) edges has diameter
2 or 3 in O(n®~¢) time, then the Orthogonal Vector Conjecture is false.

To prove a similar lower bound result for the radius problem, recently Abboud
et al. [1] suggested to use the following natural and plausible variant of the OV
conjecture.



10 V. Chepoi et al.

The Hitting Set Conjecture: There is no € > 0 such that for all ¢ > 1, there is
an algorithm that given two lists A, B of n subsets of a universe U of size clogn,
can decide in O(n?~¢) time if there is a set in the first list that intersects every
set in the second list.

Abboud et al. [1] showed that an algorithm that can distinguish between
radius 2 and 3 in a sparse graph in subquadratic time refutes the Hitting Set
Conjecture. Since all geodesic triangles of a graph constructed in [1] are 2-thin,
rephrasing that result from [1], we have.

Statement 2. If for some ¢ > 0, there is an algorithm that can determine if a
given graph with 2-thin triangles, n vertices, and m = O(n) edges has radius 2
or 8 in O(n*>~€) time, then the Hitting Set Conjecture is false.

3.2 Fast Additive Approximations

In this subsection, we show that in a graph G with d-thin triangles the eccentric-
ities of all vertices can be computed in total linear time with an additive error
depending on §. We establish that the eccentricity of a vertex is determined (up-
to a small error) by how far the vertex is from the center C(G) of G. Finally, we
show how to construct a spanning tree 7' of G in which the eccentricity of any
vertex is its eccentricity in G up to an additive error depending only on ¢. For
these purposes, we revisit and extend several results from our previous paper
[13] about diameters, radii, and centers of d-hyperbolic graphs.

Define the eccentricity layers of a graph G as follows: for k = 0, . .., diam(G)—
rad(G) set C*(G) := {v € V : eccg(v) = rad(G) + k}. With this notation, the
center of a graph is C(G) = C°(G). In what follows, it will be convenient to
define also the eccentricity of the middle point m of any edge zy of G; set
eccg(m) = min{eccg (x), ecca(y)} + 1/2.

We start with a proposition showing that, in a graph G with §-thin triangles,
a middle vertex of any geodesic between two mutually distant vertices has the
eccentricity close to rad(G) and is not too far from the center C(G) of G.

Proposition 2. Let G be a graph with §-thin triangles and u,v be a pair of
mutually distant vertices of G.

a) If c* is the middle point of any (u,v)-geodesic, then eccq(c*) < do (u,v) +0 <
(a) If P y (u,v)-g ) 5

rad(G) + 0.
b) If ¢ is a middle vertex of any (u,v)-geodesic, then ecca(c) < da(uv) +6 <
( y g 2

rad(G) + 9.
¢) da(u,v) > 2rad(G) — 26 — 1. In particular, diam(G) > 2rad(G) — 26 — 1.
(c)
d) If c is a middle vertex of any (u,v)-geodesic and x € C*(G), then k —§ <
(

da(z,c) < k+ 20+ 1. In particular, C(G) C B(c,25 + 1).

Proof. Let x be any vertex of G and A(u, v, z) = [u, v]U[v, x]U[x, u] be a geodesic

triangle, where [z,v], [z, u] are arbitrary geodesics connecting x with v, u. Let

m, be a point on [u,v] at distance (z|u), = 3(d(z,v) + d(v,u) — d(z,u)) from

v and at distance (z|v), = 3(d(z,u) + d(v,u) — d(z,v)) from u. Since u and
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v are mutually distant, we can assume that ¢* is located on [u,v] between v
and my, ie., d(v,c*) < d(v,m;) = (z|u),, and hence (z|v), < (x|u),. Since
dG(va) < dg(U,U), we also get (u|v)x < (x|v)u

(a) By the triangle inequality and since dg(u,v) < diam(G) < 2rad(G), we get
de(z,¢*) < (uv)y + 6 + da(u, ¢*) — (z]v)y < dg(u,c*) + 6 = dc<“ voys<
rad(G) + 0.

(b) Since ¢* = ¢ when dg(u, v) is even and dg(c*, ¢) = % when dg(u, v) is odd, we
have eccg(c) < ecce(c*)+ . Additionally to the proof of (a), one needs only
to consider the case when dg(u,v) is odd. We know that the middle point ¢*
sees all vertices of G within distance at most w + 4. Hence, both ends
of the edge of (u,v)-geodesic, containing the point ¢*, have eccentricities at
most %4—%—}-5: fw—\ +6< [M#] + 6 =rad(G)+4.

(¢) Since a middle vertex ¢ of any (u,v)-geodesic sees all vertices of G within

distance at most fdc(u W46, if de(u, v) < 2rad(G)—26—2, then eccg(c) <

[M] +6 < [%22572] + 0 < rad(G), which is impossible.

In the proof of (a), instead of any vertex = of G, consider any vertex x from

C*(@). By the triangle inequality and since dg(u,v) > 2rad(G) —25 — 1 and

both dg(u, z),dg(x,v) are at most rad(G) + k, we get dg(z,c*) < (ulv), +

3+ (zlu)y — dg (v, ¢*) = dg (v, 2) —dg (v, ¢*) +6 < rad(G) +k — 24 4§ <

k+26+ 1. Consequently, dc(z,c) < dg(z,¢*)+ 4 < k+25+1. On the other

hand, since eccg () < eccg(c) + dg(z, ¢) and eccg(c) < rad(G) + 6, by (a)

we get dg(x,c¢) > eccq(x) — eccg(c) = k + rad(G) — eccg(c) > k — 6. O

=
S~—

As an easy consequence of Proposition 2(d), we get that the eccentricity
ecce(z) of any vertex z is equal, up to an additive one-sided error of at most
40 + 2, to dg(z, C(G)) + rad(G) (a proof can be found in the full version of this
paper [15]).

Corollary 1. For every wverter x of a graph G with 0-thin triangles,
dg(z,C(G)) 4+ rad(G) — 46 — 2 < eccg(x) < dg(z, C(G)) + rad(G).

It is interesting to note that the equality eccg(z) = dg(z, C(G)) + rad(Q)
holds for every vertex of a graph G if and only if the eccentricity function eccg(+)
on G is unimodal (that is, every local minimum is a global minimum)[22]. A
slightly weaker condition holds for all chordal graphs [24]: for every vertex z of
a chordal graph G, eccg(x) > dg(z, C(G)) 4+ rad(G) — 1. Proofs of the following
two propositions can be found in the full version of the paper [15].

Proposition 3. Let G be a graph with §-thin triangles and u,v be a pair of
vertices of G such that v € F(u).

(a) If w is a vertex of a (u,v)-geodesic at distance rad(G) from v, then
eccg(w) < rad(G) + 6.
(b) For every pair of vertices x,y € V, max{dg(v,z),dc(v,y)} > dg(z,y) — 26.
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(c) eccg(v) > diam(G) — 20 > 2rad(G) — 40 — 1.

(d) Ift € F(v), ¢ is a vertez of a (v,t)-geodesic at distance [M} from t and
r € C*(Q), then eccg(c) < rad(G)+ 35 and k — 35 < dg(x,c) < k-+35+1.
In particular, C(G) C B(c¢,35 + 1).

Proposition 4. For every graph G with §-thin triangles, diam(C*(G)) < 2k +
26 + 1. In particular, diam(C(G)) < 26 + 1.

Diameter and Radius. For any graph G = (V, E) and any vertex u € V, a
most distant from u vertex v € F'(u) can be found in linear (O(|E|)) time by a
breadth-first-search BFS(u) started at u. A pair of mutually distant vertices of
a connected graph G = (V, E) with §-thin triangles can be computed in O(J|E|)
total time as follows. By Proposition 3(c), if v is a most distant vertex from
uw and t is a most distant vertex from v, then d(v,t) > diam(G) — 26. Hence,
using at most O(8) breadth-first-searches, one can generate a sequence of vertices
v = v1,t:= v9,03,... 0, with k < 2§ + 2 such that each v; is most distant from
vi—1 (with, vg = u) and v, vp_1 are mutually distant vertices (the initial value
d(v,t) > diam(G) — 26 can be improved at most 2§ times). By Proposition 2
and Proposition 3, we get the following additive approximations for the radius
and the diameter of a graph with J-thin triangles.

Corollary 2. Let G = (V, E) be a graph with -thin triangles.

1. There is a linear (O(|E|)) time algorithm which finds in G a vertex ¢ with
eccentricity at most rad(G) + 35 and a verter v with eccentricity at least
diam(G) — 26. Furthermore, C(G) C B(c,36 + 1) holds.

2. There is an almost linear (O(S|E|)) time algorithm which finds in G a vertex
¢ with eccentricity at most rad(G) + 6. Furthermore, C(G) C B(c,25 4+ 1)
holds.

All Eccentricities. In what follows, we will show that all vertex eccentricities
of a graph with d-thin triangles can be also additively approximated in (almost)
linear time. It will be convenient, for the middle point m of an edge e of G, to
define a BFS(m)-tree of G; it is nothing else than a BFS(e)-tree of G rooted
at edge e.

Proposition 5. Let G be a graph with §-thin triangles.

(a) If v is a most distant vertex from an arbitrary vertex u, t is a most distant
vertex from v, ¢ is a vertex of a (v,t)-geodesic at distance fw] from t
and T is a BFS(c)-tree of G, then eccq(x) < ecer(z) < eccq(x) + 60 + 1.

(b) If ¢* is the middle point of any (u,v)-geodesic between a pair u,v of mutually
distant vertices of G and T is a BFS(c*)-tree of G, then, for every vertex x
of G, eccg(x) < ecer(z) < eccg(x) + 20.
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Proof. (a) Let x be an arbitrary vertex of G and assume that eccg(z) =
rad(G) + k for some integer k > 0. We know from Proposition 3(d) that
eccg(c) < rad(G) + 30 and dg(c,z) < k+ 30 + 1. Since T is a BFS(c)-tree,
dg(z,¢) = dp(z,c) and eccg(c) = ecer(c). Consider a vertex y in G such
that dr(z,y) = ecer(xz). We have ecer(x) = dr(z,y) < dr(z,c) + dr(c,y) <
dg(z,c) + ecer(c) = dg(x,c) + eccg(e) < k+ 30 + 1 + rad(G) + 35 =
rad(G) + k + 65 + 1 = eccg(x) + 65 + 1. As T is a spanning tree of G, evi-
dently, also eccg(z) < ecer(x) holds.

(b) Consider an arbitrary vertex = of G and a geodesic triangle A(z,u,v) =
[z, u]U[u, v]U v, z], where [u,v] is a (u, v)-geodesic containing ¢* and [u, 2], [v, z]
are arbitrary geodesics connecting x with u and v. Let m, be a point on [u,v]
which is at distance (a:|u)v = 2(da(x,v) +dg(u,v) — dg(z, u)) from v and hence
at distance (z[v), = 3(dg(z, u) +dg(v,u) — dg(z,v)) from u. Without loss of
generality, we can assume that ¢* is located on [u, v] between v and m,.. We have,
de(z,c*) < (ulv)y + 8+ dg(my, c*) = (ulv)y + 5+ dg(u, c*) — (v]|z)y = (ulv), +
o+ % — (v|@)w, and eccg(z) > dg(z,v) = (ulv), + (u]x),. Furthermore, by
Proposition 2(a), eccg(c*) < w +4. Hence, ecer(x) —eceq(x) < dr(x,c*)+
ecer(c*) — eccq(z) = da(z, c*) + eccg(c*) — ecca(x) < (ulv)e + 6 + dG(” W _
(v]x)y + %”’“) +0— (ulv)r — (ulz)y = 20 +da(v,u) — ((v|x)y + (ulx),) = 26. O

Theorem 1. Every graph G = (V, E) with 6-thin triangles admits an eccen-
tricity (20)-approzimating spanning tree constructible in O(0|E|) time and an
eccentricity (60 + 1)-approzimating spanning tree constructible in O(|E|) time.

Theorem 1 generalizes recent results from [24,35] that chordal graphs and some
of their generalizations admit eccentricity 2-approximating spanning trees.

Note that the eccentricities of all vertices in any tree T' = (V,U) can be com-
puted in O(|V|) total time. As we noticed already, for trees the following facts are
true: (1) C(T') consists of one or two adjacent vertices; (2) C(T) and rad(T") of T
can be found in linear time; (3) For any v € V, ecer(v) = dr(v, C(T)) +rad(T).
Hence, using BFS(C(T)) on T one can compute dr(v,C(T)) for all v € V
in total O(|V|) time. Adding now rad(T) to dr(v,C(T)), one gets eccr(v) for
all v € V. Consequently, by Theorem 1, we get the following additive approxi-
mations for the vertex eccentricities in graphs with §-thin triangles.

Theorem 2. Let G = (V, E) be a graph with §-thin triangles.

(1) There is an algorithm which in total linear (O(|E|)) time outputs for every
vertez v € V' an estimate é(v) of its eccentricity ecca(v) such that ecca(v) <
é(v) < eccg(v) + 64 + 1.

(2) There is an algorithm which in total almost linear (O(8|E|)) time outputs
for every vertex v € V an estimate é(v) of its eccentricity eccg(v) such that
ecca(v) < é(v) < eceq(v) + 26.

4 Fast Additive Approximation of All Distances

Here, we will show that if the Jth power G° of a graph G with J-thin triangles
is known in advance, then the distances in G can be additively approximated in
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O(|V']?) time. If G° is not known, then the distances can be additively approxi-
mated in almost quadratic time.

Our method is a generalization of an unified approach used in [23] to estimate
(or compute exactly) all pairs shortest paths in such special graph families as
k-chordal graphs, chordal graphs, AT-free graphs and many others. For example:
all distances in k-chordal graphs with an additive one-sided error of at most k—1
can be found in O(|V'|?) time; all distances in chordal graphs with an additive
one-sided error of at most 1 can be found in O(]V|?) time and the all pairs
shortest path problem on a chordal graph G can be solved in O(|V|?) time if G2
is known. Note that in chordal graph all geodesic triangles are 2-thin.

Let G = (V,E) be a graph with d-thin triangles. Pick an arbitrary start
vertex s € V and construct a BF'S(s)-tree T of G rooted at s. Denote by pr(z)
the parent and by hp(z) = dr(z,s) = dg(x,s) the height of a vertex = in T.
Since we will deal only with one tree T', we will often omit the subscript T". Let
Pr(z,s) = (zq,29-1,...,21,s) and Pr(y,s) := (Yp, Yp—1,- - -, Y1, ) be the paths
of T connecting vertices z and y with the root s. By slr(x,y; A) we denote the
largest index k such that dg(zk,yx) < A (the X separation level). Our method
is based on the following simple fact.

Proposition 6. For every vertices x and y of a graph G with §-thin triangles
and any BFS-tree T of G, hr(x)+hr(y) —2k—1 < dg(z,y) < hp(x)+hr(y) —
2k + dg(xk, yr ), where k = slp(x,y;0).

Proof. By the triangle inequality, da(z,y) < dg(x, zr) +da(xk, ye) +da (Y, y) =
hr(z)+hr(y) — 2k +dg(zk, yx ). Consider now an arbitrary (z,y)-geodesic [z, y]
in G. Let A(z,y,s) := [z,y] U[z,s] Uy, s] be a geodesic triangle, where [z, s] =
Pr(z,s) and [y, s] = Pr(y, s). Since A(z,y, s) is 6-thin, siz(z,y;0) > (x|y)s — %
Hence, hr(z) — slp(z,y;6) < (s|y)e + 5 and hp(y) — slp(z,y;6) < (s|z)y + 3.
As do(z,y) = (sly)a + (s]x)y, we get da(x,y) = hr(z) — slr(z,y;0) + hr(y) —
slr(x,y;0) — 1. O

Note that we may regard BF'S(s) as having produced a numbering from n
to 1 in decreasing order of the vertices in V' where vertex s is numbered n. As a
vertex is placed in the queue by BFS(s), it is given the next available number.
The last vertex visited is given the number 1. Let o := [v1,v9,...,v, = 8] be a
BFS(s)-ordering of the vertices of G and T be a BF'S(s)-tree of G produced by a
BFS(s). Let o(z) be the number assigned to a vertex x in this BF'S(s)-ordering.
For two vertices « and y, we write z < y whenever o(z) < o(y).

First, we show that if G is known in advance (i.e., its adjacency matrix
is given) for a graph G with J-thin triangles, then the distances in G can be
additively approximated (with an additive one-sided error of at most 6 + 1)
in O(|V|?) time. We consider the vertices of G in the order ¢ from 1 to n.
For each current vertex x we show that the values g(;v,y) := hr(x) + hr(y) —
2slp(x,y; 6)+0 for all vertices y with y > z can be computed in O(]V|) total time.
By Proposition 6, dg(z,y) < c?(x, y) < dg(x,y)+0+1. The values c/l\(z, y) for all
y with y > z can be computed using the following simple procedure. We omit the
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subscripts G and T if no ambiguities arise. Let also L; = {v € V : d(v, s) = i}.
In the procedure, S, represents vertices of a subtree of T rooted at .

01) set g := h(x)

02) let Sy := {u} for each vertex u € Lq, u > x, and denote this family of sets by F
03) for k = g downto 0 do

(01)

(02)

(03)

(04) let xy be the vertex from Ly N Pr(z,s)

(05) for each vertex u € Ly with u > = do

(06) if dg(u,x) < 6 (i.e., u =z or u is adjacent to xx in G°) then

(07) for every v € S, do

(08) set d(z,v) := h(z) + h(v) — 2k + 6 and remove S, from F

(09) /* update F for the next iteration */

(10) if £ > 0 then

(11) for each vertex u € Ly—1 do

(12) combine sets Sy, ..., Sy, from F (£ > 0) with pr(ui1) = ... =pr(uw) =u
(13) into one new set Sy := {u}U Sy, U...USy, /* when £ =0, S, := {u} */
(14)

14) set also dA(m,s) = h(zx).

Theorem 3. Let G = (V,E) be a graph with -thin triangles. Given G°, all
distances in G with an additive one-sided error of at most 6 + 1 can be found in
O(|V]?) time.

To avoid the requirement that G? is given in advance, we can use any known
fast constant-factor approximation algorithm that in total T'(|V'|)-time computes
for every pair of vertices ,y of G a value d(z,y) such that dg(z,y) < d(z,y) <
adg(x,y)+ 5. We can show that, using such an algorithm as a preprocessing step,
the distances in a graph G with §-thin triangles can be additively approximated
with an additive one-sided error of at most ad + 3+ 1 in O(T(|V|) + |V |?) time.
Although one can use any known fast constant-factor approximation algorithm
in the preprocessing step, in what follows, we will demonstrate our idea using a
fast approximation algorithm from [5]. It computes in O(|V|?log® |V]) total time
for every pair z,y a value glv(z,y) such that dg(z,y) < J(a:,y) < 2dg(x,y) + 1.
Assume that the values J(x,y), z,y € V, are precomputed. By ;lT(x,y; A) we
denote now the largest index k such that gg(xk, yr) < A. We have.

Proposition 7. For every vertices x and y of a graph G with d-thin triangles,
any integer p > &, and any BFS-tree T of G, hp(z)+hr(y)—2k—1 < dg(z,y) <
hr(z) + hr(y) — 2k + dg(xk, yx ), where k = slp(x,y;2p 4+ 1).

Proof of this propositions can be found in the full version of the paper [15].

Let p be any integer greater than or equal to d. By replacing in our earlier
procedure lines (06) and (08) with

(06)’ if d(u,zx) < 2p+ 1 then
(08)’ set d(z,v) := h(z) + h(v) — 2k + 2p + 1 and remove S, from F
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~

we will compute for each current vertex z all values d(x,y) := hr(x) + hr(y) —
Q;ZT(x, y; 2p+1)+2p+1, y > z, in O(|V|) total time. By Proposition 7, dg(z,y) <
hr(x) +hr(y) = 2slr (2, y; 20 +1) + da(zk, yi) < hr(x) +hr(y) = 2sle (2, y; 20+
1) + d(zk, yx) < hr(z) + hr(y) — 2slr(z,y32p + 1) + 2p + 1 = d(z,y) and
c?(x, y) = hr(z) + he(y) — 2slr(z,y;2p+ 1) + 2p+ 1 < dg(x,y) + 2p + 2. Thus,
we have the following result:

Theorem 4. Let G = (V, E) be a graph with §-thin triangles.

(a) If the value of & is known, then all distances in G with an additive one-sided
error of at most 26 + 2 can be found in O(|V|?log®|V|) time.

(b) If an approximation p of § such that 6 < p < ad + b is known (where a and
b are constants), then all distances in G with an additive one-sided error of
at most 2(ad + b+ 1) can be found in O(|V|*log? |V|) time.

The second part of Theorem 4 says that if an approximation of the thinness
of a graph G is given, then all distances in G can be additively approximated
in O(|V|?log? |V]) time. Recently, it was shown in [11] that the converse is also
true. From an estimate of all distances in G with an additive one-sided error
of at most k, it is possible to compute in O(]V|?) time an estimation p* of the
thinness of G such that § < p* < 85 + 12k + 4, proving a O(\V\Q)-equivalence
between approximating the thinness and approximating the distances in graphs.
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