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Abstract. Hyperbolicity is a global property of graphs that measures
how close their structures are to trees in terms of their distances. It
embeds multiple properties that facilitate solving several problems that
found to be hard in the general graph form. In this paper, we investigate
the hyperbolicity of graphs not only by considering Gromov’s notion of
δ-hyperbolicity but also by analyzing its relationship to other graph’s
parameters. This new perspective allows us to classify graphs with re-
spect to their hyperbolicity, and to show that many biological networks
are hyperbolic. Then we introduce the eccentricity-based bending property
which we exploit to identify the core vertices of a graph by proposing two
models: the Maximum-Peak model and the Minimum Cover Set model.

1 Introduction

Using graph-theoretical tools for analyzing complex networks aids identifying
multiple key properties as well as explaining essential behaviors of those systems.
A common structure in many network disciplines is the core-periphery structure
which suggests partitioning the graph into a dense core and sparse periphery.
Vertices in the periphery interact through a series of core vertices. This pattern
of communication (where traffic tends to concentrate on a subset of vertices) has
been observed in trees where distant nodes communicate via the central nodes.
δ-Hyperbolicity, which is a measure that shows how close a graph is to a tree,
suggests that any shortest path between any pair of vertices bends (to some
extent) towards the core. This phenomenon has been justified by the negative
curvature which in case of graphs can be measured using hyperbolicity [24].

Multiple complex networks such as the Internet [28,14], data networks at the
IP layer [24], and social and biological networks [4,2] show low δ-hyperbolicity
(low hyperbolicity suggests a structure that is close to a tree structure [14,3]).
Also, it has been observed that networks with this property have highly con-
nected cores [24]. Generally, the core of a graph is specified according to one
or more centrality measures. For example, the betweenness centrality and the
eccentricity centrality. The δ-hyperbolicity of graphs embeds multiple properties
that facilitate solving several problems that found to be difficult in the gen-
eral graph form; for example, diameter estimation [9] and compact distance and
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routing labeling schemes [10,12]. In this paper, we investigate implications of the
δ-hyperbolicity of a graph and exploit them for the purpose of partitioning the
graph into core and periphery parts. Our main contributions can be summarized
as follows.

(a) We study the hyperbolicity of several biological networks and show that
the hyperbolicity of almost all the networks in our dataset is small. This confirms
the results in [4]. However, unlike previous efforts, we analyze the relationship
between the hyperbolicity and other global parameters of the graph. We find in
most of our networks that the hyperbolicity is bounded by the logarithm of the
graph’s diameter and the logarithm of the graph’s size. Based on this we classify
graphs into: strongly-hyperbolic, hyperbolic, and non-hyperbolic.

(b) We formalize the notion of the eccentricity layering of a graph and employ
it to introduce a new property that we find to be intrinsic to hyperbolic graphs:
the eccentricity-based bending property. Unlike previous work, we investigate the
essence of this bending in shortest paths by studying its relationship to the
distance between vertex pairs.

(c) We exploit the eccentricity-based bending property by proposing two core-
periphery separation models. We apply both models to our datasets. In contrast
to what was observed in [18], we find that biological networks exhibit a clear-cut
core-periphery structure. Some details were omitted in this conference version
of the paper. Interested readers can refer to [1].

2 Theoretical Background and Related Work

Preliminaries on Graph Theory. A simple undirected graph G = (V,E)
naturally defines a metric space (V, d) on its vertex set V . The distance d(u, v)
is defined as the number of edges in a shortest path ρ(u, v) that connects two
vertices u and v. We define the size of the graph denoted as size(G) as size(G) =
|V |+|E|. The diameter of the graph diam(G) is the length of the longest shortest
path between any two vertices u and v, i.e., diam(G) = maxu,v∈V {d(u, v)}. The
eccentricity of a vertex u is ecc(u) = maxv∈V {d(u, v)}, i.e., the distance between
u and any of its farthest neighbors v. The minimum value of the eccentricity
represents the graph’s radius : rad(G) = minu∈V {ecc(u)}. The set of vertices
with minimum eccentricity are considered the center of the graph C(G). In
other words, C(G) = {u ∈ V : ecc(u) = rad(G)}.
δ-Hyperbolicity. The δ-hyperbolicity measure of a metric space was proposed
by Gromov [17]. It measures how close the metric structure is to a tree structure.
A connected graph G can be viewed as a metric space with the graph distance
metric d. There are multiple equivalent definitions (up to constant factors [9])
for Gromov’s hyperbolicity. Here we use the four-point condition definition.

Given a graph G = (V,E), x, y, u, and v ∈ V are four distinct vertices, and
the three sums: d(x, y)+d(u, v), d(x, u)+d(y, v), and d(x, v)+d(y, u) sorted in a
non-increasing order, the hyperbolicity of the quadruple x, y, u, v is defined as:
δ(x, y, u, v) = ((d(x, y) + d(u, v))− (d(x, u) + d(y, v)))/2. The δ-hyperbolicity of
the graph G denoted as δ(G) (or simply δ) is δ(G) = maxx,y,u,v∈G δ(x, y, u, v).
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For finite graphs δ-hyperbolicity is finite. Consequently, one can think of all
finite graphs as hyperbolic except that the value of δ decides how hyperbolic the
graph is. On the other hand, when no finite δ exists (which may be the case
for infinite graphs), the graph is considered non-hyperbolic [3]. Generally, the
smaller the value of δ the closer the graph is to a tree (metrically).

Core-Periphery and Network Centrality in Complex Networks. In [6],
the authors formalize the core-periphery structure by developing two models:
the discrete model where vertices belong to one of two classes (core and periph-
ery) and the continuous model which includes three classes or more of vertices.
Holme in [18] introduces a coefficient that measures if a network has a clear
core-periphery structure based on the closeness centrality. Structure analyses of
some biological networks have detected the presence of the core-periphery orga-
nization. [13] proposes a parameter that detects the existence of a core-periphery
structure in a metabolic network based on the closeness centrality. [16] studies
recognizing the central metabolites in a metabolic network. In [21], the authors
identify the central metabolites using degree and closeness centrality.

In the study of communication networks, the core is usually identified by
the small dense part that carries out most traffic under shortest path routing
[5,24]. It is quite natural to associate the concepts of the network’s core and
its center. In [6], the authors argue that each central vertex is a core vertex;
consequently, all coreness measures are centrality measures. The notion behind
centrality is identifying vertices that are high contributors. There are multiple
centrality measures in the literature. The betweenness centrality expresses how
much effect each vertex has in the communication. Given a connected finite graph
G = (V,E), the betweenness centrality of a vertex u ∈ V measures the total
number of shortest paths between every pair of vertices x and y that pass through
u. The eccentricity centrality suggests that the center of the graph includes the
vertex (or vertices) that has the shortest distance to all other vertices.

3 Datasets

We analyze the protein interaction networks of Budding yeast [7], Escherichia
coli [8], Yeast [11], Saccharomyces cerevisiae [19], and Helicobacter Pylori [26].
Also, we analyze two brain area networks of the macaque monkey [25] [23];
and the metabolic networks of the Escherichia coli [20] and the Caenorhabditis
elegans [15]. Finally, we analyze the yeast transcription network [22]. In this
work, we consider unweighted graphs, and we only consider the largest connected
component of each network. The size of this component for each network is
presented in Table 1. We also ignore the directions of the edges.

4 δ-Hyperbolicity of Networks

For the purpose of investigating the hyperbolicity of networks, it seems natural to
analyze and classify them based on their hyperbolicity. The classification should
reflect how strong (evident) the tree-likeness is in the graph’s structure.



68 H. Alrasheed and F.F. Dragan

Table 1. Graph datasets and their parameters: number of vertices |V |; number of
edges |E|; graph’s size size(G); average degree d̄; diameter diam(G); radius rad(G);
hyperbolicity δ(G); and the average hyperbolicity δ

′
(G)

Network Category Network |V | |E| log2(size(G)) d̄ diam(G) rad(G) δ(G) δ
′
(G)

PI Networks

B-yeast-PI 1465 5839 12.8 7.97 8 5 2.5 0.299
E-coli-PI 126 581 9.5 9.2 5 3 2 0.251
Yeast-PI 1728 11003 13.6 12.7 12 7 3.5 0.322

S-cerevisiae-PI 537 1002 10.5 3.7 11 7 4 0.419
H-pylori-PI 72 112 7.5 3.1 7 5 3 0.368

Neural Networks Macaque-brain-1 45 463 9 11.3 4 2 1.5 0.231
Macaque-brain-2 350 5198 12.4 29.7 4 3 1.5 0.203

Metabolic Networks E-coli-metabolic 242 376 9.3 3.1 16 9 4 0.483
C-elegans-metabolic 453 4596 12.3 8.9 7 4 1.5 0.133

Transcription
Networks Yeast-transcription 321 711 10 4.4 9 5 3 0.365

Hyperbolicity of Biological Networks. We measure δ-hyperbolicity using
Gromov’s four-point condition. For each network, we identify a bi-connected
component with the maximum value of δ since the hyperbolicity of a graph
equals the maximum hyperbolicity of its bi-connected components [14].

Table 1 shows that almost all networks in our datasets have small hyper-
bolicity. Even though the definition of δ-hyperbolicity considers the difference
between the largest two distance sums among any quadruples and takes into
account only the maximum one, this absolute analysis is deficient. Similar to
[14,3], closer analysis to the distribution of the value of δ (see Figure 1) shows
that only a very small percent of the quadruples have the maximum value of δ
while most quadruples have δ = 0. This observation makes it equally important
to calculate the value of the average delta δ′(G) (see Table 1).

Fig. 1. The distribution of the quadruples
over different values of δ

Fig. 2. Classification of the graph
datasets based on their hyperbolicity

Analysis and Discussion. Our goal is to categorize graphs with respect to
their hyperbolicity into three classes: strongly-hyperbolic, hyperbolic, and non-
hyperbolic. Studying the tree-like structure of graphs based solely on the value
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of the hyperbolicity may not be sufficient for two reasons. First, the hyperbolicity
is a relative measure. For example, for a given graph, a value of δ(G) = 10 can
be seen as too large when size(G) � 102. However, when size(G) � 107, the
hyperbolicity δ(G) = 10 looks much smaller. Second, small graph size and (or)
small diameter directly yield low hyperbolicity. In other words, small δ(G) does
not always suggest a graph with a tree-like structure; other graph attributes
that might impact the hyperbolicity must be investigated. We find size(G) and
diam(G) play an important role in deciding how hyperbolic a given graph is.

Since finite graphs will always have a finite value for δ such that the four-point
condition is true, it is natural to think that the non-hyperbolic class includes only
infinite graphs. However, in this study, we only consider finite graphs; accord-
ingly, a non-hyperbolic graph in our sense is a graph with too large δ with respect
to the logarithm of the graph’s size, i.e., when it violates δ(G) ≤ log2(size(G)).

In cases where δ(G) ≤ log2(size(G)), we move on and compare δ with the
diameter. To guarantee that the value of the diameter is not directly impacted
by the graph’s size, first we require that diam(G) ≤ log2(size(G)). Multiple
previous works have analyzed the relationship between δ(G) and the diameter.

Lemma 1 ([27]). For any graph G with diameter diam(G) and hyperbolicity
δ(G), δ(G) ≤ diam(G)/2.

Interestingly, for most of the networks in our graph datasets, we find that
δ(G) ≤ log2(diam(G)). Therefore, we say that a graph is strongly-hyperbolic if
it exhibits (1) diam(G) ≤ log2(size(G)) and (2) δ(G) ≤ log2(diam(G)) (small-
world), hyperbolic when it violates either (1) or (2), and non-hyperbolic whenever
it has a large δ, i.e., δ > log2(size(G)). As Table 1 shows, all networks in the
datasets, with the exception of S-cerevisiae-PI and E-coli-metabolic, ex-
hibit the small-world property. Also, it shows that δ(G) ≤ log2(diam(G)) in all
graphs except for the S-cerevisiae-PI and the H-pylori-PI networks. As a re-
sult, those three graphs have been classified as hyperbolic graphs, and their δ(G)
and δ

′
(G) values are on the larger side. In Figure 2, we show this classification.

Quantifying "small" and "large" for δ is not straightforward simply because
it is relative. Therefore, we judge according to the difference between δ and
log2(log2(size(G))). The more substantial this difference is the closer the graph’s
structure to a tree structure. For example network C-elegans-metabolic is
metrically closer to a tree than network Yeast-PI.

5 Core-Periphery Models Based on δ-Hyperbolicity

In this section, we formalize the notion of bending in shortest paths by intro-
ducing the eccentricity-based bending property. Then we use the implication of
this property to aid the partitioning of a graph into core and periphery parts.

Eccentricity Layering of a Graph. The eccentricity layering of a graph
G = (V,E) denoted as EL(G) partitions its vertices into concentric circles or
layers �r(G), r = 0, 1, ... . Each layer r is defined as �r(G) = {u ∈ V :
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ecc(u)− rad(G) = r}. Here r represents the index of the layer. The inner-most
layer (layer 0) encloses the graph’s center C(G). Then the first layer includes
all vertices with eccentricities equal to rad(G) + 1, and so on. The vertices in
the last layer (outer-most) have eccentricities equal to the diameter. Any vertex
v ∈ �r(G) has level (or layer) level(v) = r. Figure 3 gives an illustration. We
noticed that the vertices’ population is denser in the middle layers in almost all
networks.

Fig. 3. Eccentricity layering of a graph.
Darker vertices belong to lower layers.

Table 2. The effect of the distance k be-
tween vertex pairs on the bending property.
Out of all vertex pairs with distance at least
k, we show the percentage of those that
bend for three networks.

C-elegans B-yeast Yeast
k -metabolic -PI -transcription

(diam(G) = 7) (diam(G) = 8) (diam(G) = 9)

2 96.99% 93.10% 96.65%
3 99.89% 94.87% 97.77%
4 100% 98.43% 99.11%
5 100% 99.93% 99.88%
6 100% 100% 100%
7 100% 100% 100%
8 100% 100%
9 100%

5.1 Eccentricity-Based Bending Property of δ-Hyperbolic Networks

Let G = (V,E) be a δ-hyperbolic graph, EL(G) be its eccentricity layering, and
C(G) be its center. In [9], the following useful metric property of δ-hyperbolic
graphs was proven.

Lemma 2 ([9]). Let G be a δ-hyperbolic graph and x, y, v, u be its four arbi-
trary vertices. If d(v, u) ≥ max{d(y, u), d(x, u)}, then d(x, y) ≤ max{d(v, x),
d(v, y)}+ 2δ.

We use this property to establish the following few interesting statements.
The proofs are omitted in this version. We direct interested readers to [1].

Proposition 1. Let G be a δ-hyperbolic graph and x, y, s be arbitrary vertices
of G. If d(x, y) > 4δ + 1, then d(w, s) < max{d(x, s), d(y, s)} for any middle
vertex w of any shortest (x, y)-path.

Proposition 2. Let G be a δ-hyperbolic graph and x, y be arbitrary vertices of
G. If d(x, y) > 4δ + 1, then on any shortest (x, y)-path there is a vertex w with
ecc(w) < max{ecc(x), ecc(y)}.

We define the bend in shortest paths between two distinct vertices u and
v with d(u, v) ≥ 2, denoted by bend(u, v), as follows ∀ u, v ∈ V bend(u, v) =
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min{level(z) : z ∈ V and d(u, z) + d(z, v) = d(u, v)}. Here level(z) = r iff
z ∈ �r(G). We say that shortest paths between u and v bend if and only if
a vertex z with ecc(z) < max{ecc(u), ecc(v)} exists in a shortest path between
them. In this case we say also that pair of vertices u and v bends. The parameter
bend decides the extent (or the level) to which shortest paths curve towards the
center. Note that in some cases bend(u, v) will be assigned either ecc(u) or ecc(v),
whatever is smaller. For example, see ρ(u, v) in Figure 3.

Now we investigate the effect of the distance between a vertex pair on its
bend. Our findings in this context are summarized in the following statements.

(A) Despite their distances, most vertex pairs bend. Moreover, among those
bending pairs, the majority are sufficiently far from each other.

(B) There is a direct relation between the distance among vertex pairs and
how close to the center a shortest path between them bends.

Motivation and Empirical Evaluation of (A). In light of Proposition 2,
we investigate how vertex pairs of various distances act with respect to the
eccentricity-based bending property. Interestingly, we noticed the bend in the
majority of shortest paths. A quick look at Table 2 shows that a big percent of
vertex pairs of distance at least two bend.

To quantify the distances at which the bend happens, we define two parame-
ters: the absolute curvity and the effective curvity. Let k be the distance between
a pair of vertices (2 ≤ k ≤ diam(G)), the absolute curvity k∗ is the minimum k
such that all pairs with distance ≥ k bend. The effective curvity k̃ is the mini-
mum k such that more than 90% of the pairs with distance ≥ k bend. When the
values of k∗ and k̃ of each graph are represented as a function of δ to compare
it with the upper bound 4δ + 1, we find that the networks have their k∗ either
equal to 2δ + 1 or to 2δ, and δ − 2 ≤ k̃ ≤ 2δ. Also, all networks (except for
Macaque-brain-1) have their k̃ less than their k∗.

Motivation and Empirical Evaluation of (B). Here we examine the im-
pact of the distance on the level to which vertex pairs bend. Let k be the
distance between two vertices such that 2 ≤ k ≤ diam(G). Consider μk as
the lowest layer that all vertex pairs of distance ≥ k bend to. We define it as:
μk = max{bend(u, v) : ∀u, v ∈ V with d(u, v) ≥ k}. This allows us to look at
how the bends of the vertex pairs behave with respect to different distances
(see Figure 4). As expected, we found a direct relation between the distance
of vertex pairs and their bend. For example, in network yeast-pi, vertex pairs
with distances 3, 6, and 9 bend to layers 4, 3, and 2 respectively.

5.2 Core-Periphery Identification Using the Eccentricity-Based
Bending Property

A well-defined center of a graph is a good starting point for locating its core.
According to the pattern of data exchange discussed earlier, we identify the
core using the eccentricity centrality measure. Even though the center contains
all vertices that are closer to other vertices, this subset is not sufficient. More
vertices should be added to the core according to their participation in routing
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Fig. 4. μk values for each network in the
graph datasets

Fig. 5. Illustration of the eccentricity
layering of a graph and the Maximum-
Peak model. �r(G) represents each
layer r. The peaks of ρ(x, y) and ρ(u, v)
are w and z.

the traffic. We decide the participation of each vertex based on its eccentricity
and whether or not it lies on a shortest path between a vertex pair.

Graphs follow the core-periphery structure with different extents with respect
to the quality of their cores. We identify a good graph’s core as the one that (1)
includes a small number of layers with respect to the eccentricity layering; and
(2) has a size (with respect to the number of vertices) that is small compared to
the total number of vertices in the graph. The core should also contain vertices
that participate in the majority of interactions among other vertices. In the
following subsections, we discuss two core-periphery separation models.

Model I: The Maximum-Peak Model. Given a δ-hyperbolic graph G =
(V,E) along with its eccentricity layering EL(G), the Maximum-Peak model
identifies a separation layer index p ≥ 0 and defines the core as the subset of
vertices formed by layers �0(G), �1(G), ..., �p(G).

In light of the eccentricity-based bending property, each bend(x, y) for a pair
of vertices x and y represents a peak for ρ(x, y). In this model, we are locating
the index of the lowest layer p over all layers that vertex pairs bend to. Index p
represents the separation point where the layers can be partitioned to a core and
a periphery. See Figure 5 for an illustration. After identifying all peaks, the core
will include all vertices starting at �0(G) until �p(G), i.e., core(G) =

⋃p
r=0 �r(G).

Then the periphery will include the vertices in the remaining layers.
Again, to avoid the impact that outlier vertices may impose, we define two

types of p. The absolute separation index p∗ is the lowest layer that all vertex
pairs bend to; we call the core defined by this index the absolute core set C∗

core.
The effective separation index p̃ is the lowest layer where 90% of the vertex pairs
bend to, and the core defined by this index is the effective core set C̃core. Table 3
shows the cores for the networks in our datasets according to this model.

Table 3 shows a big difference in the sizes of the absolute core and the effective
core in the majority of the networks. Closer analysis to C̃core suggests that
deciding the core according to this notion generates good cores (number of layers
in the core is small and the number of vertices is about 25% of the total number
of vertices) for some networks such as the Yeast-PI. Also, networks with core
sizes between 25% - 50% can be considered good as well; such as the core of
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the S-cerevisiae-PI. On the other hand, networks like E-coli-PI have too
large core sizes compared to the overall graph size. This model is highly affected
by the distribution of vertices over the layers. For example, the core of graph
B-yeast-PI has two layers (out of four). This can be considered as a balanced
core-periphery separation. However, considering the distribution of the vertices
in the four layers, which is 90, 902, 465, and 17, explains the increase in the size
of the core. This issue can be resolved by using the second model.

Table 3. The cores of the graph datasets based on the Maximum-Peak model. |V | is
the number of vertices; |Layers| is the number of layers; C∗

core-lyr and |C∗
core| are the

number of layers and number of vertices in the absolute core set; C̃core-lyr and |C̃core|
are the number of layers and number of vertices in the effective core set.

Network |V | |Layers| C∗
core-lyr |C∗

core| |C∗
core| to |V | C̃core-lyr |C̃core| |C̃core| to |V |

B-yeast-PI 1465 4 3 1448 ≈ 99% 2 902 ≈ 62%
E-coli-PI 126 3 2 93 ≈ 74% 2 93 ≈ 74%
Yeast-PI 1728 6 5 1725 ≈ 100% 2 472 ≈ 27%

S-cerevisiae-PI 537 5 5 537 100% 2 223 ≈ 42%
H-pylori-PI 72 3 2 56 ≈ 78% 2 56 ≈ 78%

Macaque-brain-1 45 3 2 31 ≈ 69% 2 31 ≈ 69%
Macaque-brain-2 350 2 2 350 100% 2 350 100%
E-coli-metabolic 242 8 7 240 ≈ 99% 3 102 ≈ 42%

C-elegans-metabolic 453 4 3 439 ≈ 97% 1 17 ≈ 4%
Yeast-transcription 321 5 4 314 ≈ 98% 2 62 ≈ 19%

Model II: The Minimum Cover Set Model. Consider a graph G = (V,E)
with the eccentricity layering EL(G) and with the center C(G). The way this
model works is to start the core as an empty set and expand it to include vertices
which have smaller eccentricity, are closer to the center, and participate in the
traffic. This expansion should be orderly, first incorporating the vertices that
have higher priority, and then vertices who are less eligible. For each vertex
v ∈ V , we define three parameters according to which we prioritize the vertices.

– The eccentricity ecc(v). Vertices with smaller eccentricities have higher pri-
ority to be in the graph’s core.

– The distance-to-center, denoted as f(v), which expresses the distance be-
tween v and its closest vertex from the center C(G), i.e., f(v) = d(v, C(G)).
Vertices with small f(v) have higher priority of being in the core. For exam-
ple, in Figure 5, vertex y is closer to the center than u.

– The betweenness b(v). The betweenness measures how many pairs of dis-
tant vertices x and y have v in one of their shortest paths (versus
counting all shortest paths in the classic definition of the betweennes).
It quantifies the participation of a vertex v in the traffic flow process,
and we define it as: b(v) = number of pairs x, y ∈ V with v �= x, v �=
y, d(x, y) ≥ 2 and d(x, v)+d(v, y) = d(x, y). According to the core-periphery
organization, the betweenness of a vertex should increase as its eccentricity
decreases.
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Our goal in this model is to identify the smallest subset of vertices that par-
ticipate in all traffic throughout the network. The algorithm for this model com-
prises two stages. First, in a priority list T we lexicographically sort the vertices
according to the three attributes: ecc(v), f(v), and b(v). T now has the vertices
in the order that they should be considered to become part of the core. The
goal is to ensure that there exists at least one vertex v ∈ core(G) such that
v ∈ ρ(x, y) for each pair of vertices x, y ∈ V . In such case, we say that a shortest
path ρ(x, y) is covered by v (a shortest path from y to x is also covered by v
since we are dealing with undirected graphs).

The second stage starts with a vertex v at the head of T being removed from
T and added to an initially empty set C∗

core that represents the absolute core
set. This vertex must cover at least one pair. After this initial step, the process
continues by repeatedly removing the vertex v at the head of T and adding it
to C∗

core if and only if v covers an uncovered yet pair x and y (when there is at
least one vertex v ∈ C∗

core that covers a pair (x, y), then it becomes covered).
This step should run until all pairs are covered. Note that we consider the core
set C∗

core as absolute since all vertex pairs must be covered by a vertex in it.
Now the vertices in set C∗

core represent the core of the graph while the remaining
vertices represent the periphery. The number of vertices in the absolute and the
effective core sets of each graph in our datasets is listed in Table 4.

Table 4. The cores of the graph datasets based on the Minimum Cover Set model. |V |
is the number of vertices; δ(G) is the hyperbolicity; |C∗

core| is the number of vertices in
the absolute core set; |C̃core| is the number of vertices in the effective core set; C∗

MaxLyr

is the largest index layer found among vertices in C∗
core; and C̃MaxLyr is the largest

index layer found among vertices in C̃core.

Network |V | δ(G) |C∗
core| |C∗

core| to |V | C∗
MaxLyr |C̃core| |C̃core| to |V | C̃MaxLyr

B-yeast-PI 1465 2.5 1117 ≈ 76 % 3 117 ≈ 8 % 1
E-coli-PI 126 2 65 ≈ 52 % 2 13 ≈ 10 % 1
Yeast-PI 1728 3.5 902 ≈ 52 % 5 318 ≈ 18 % 2

S-cerevisiae-PI 537 4 438 ≈ 82 % 4 114 ≈ 21 % 1
H-pylori-PI 72 3 54 ≈ 75 % 2 15 ≈ 21 % 1

Macaque-brain-1 45 1.5 20 ≈ 44 % 2 7 ≈ 16 % 1
Macaque-brain-2 350 1.5 197 ≈ 56 % 1 31 ≈ 9 % 0
E-coli-metabolic 242 4 208 ≈ 86 % 7 66 ≈ 27 % 2

C-elegans-metabolic 453 1.5 202 ≈ 45 % 2 12 ≈ 3% 0
Yeast-transcription 321 3 155 ≈ 48 % 4 40 ≈ 12% 1

Close analysis of Table 4 shows that each produced absolute core C∗
core is

of a size between 44% to 86% of the original number of vertices in the graph.
It is important to note that vertices in the core are expected to have different
contributions (some vertices cover more vertex pairs than others). Figure 6 shows
how many vertex pairs are remained uncovered after the orderly addition of
vertices to the absolute core. For example, in the network B-yeast-PI, 80% of
vertex pairs are uncovered after adding the first vertex to C∗

core. However, after
adding 20 vertices, only 35% of the vertex pairs are uncovered. It is also clear
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that many of the vertices that have been added later to the absolute core set
cover a very small percentage of vertex pairs.

To keep only vertices that are considered higher contributors we define the
effective core set C̃core. The effective core is the subset of the core that is sufficient
to cover 90% of the vertex pairs in the graph. To obtain C̃core, we examine the
vertices of the core C∗

core in the same order in which they were added. A new
vertex is added to current C̃core only if more than 10% of the vertex pairs remain
uncovered. The results on the core according to both concepts in this model are
presented in Table 4. Note that the index of the layer of the last vertex added
to the core in each network has significantly decreased.

Because hyperbolic graphs adhere to the property of having shortest paths
that bend to the core, it was natural to think that hyperbolic graphs with lower
δ(G) should have even smaller cores. A quick comparison between the C̃core of
each graph with its δ(G) supports this idea.

Fig. 6. The percentage of the un-
covered vertex pairs after the or-
derly addition of vertices to the
core set C∗

core. Number i indicates
the cardinality of the current core.

Table 5. Summary of the graph datasets’ parame-
ters and cores. C̃core is the effective core according
to the Minimum Cover Set model.

Network log2(size) diam δ δ′ C̃core

Strongly-
hyperbolic
Networks

1 C-elegans-metab. 12.3 7 1.5 0.133 3%
B-yeast-PI 12.8 8 2.5 0.299 8%

2

Macaque-brain-2 12.4 4 1.5 0.203 9%
E-coli-PI 9.5 5 2 0.251 10%

Yeast-transcr. 10 9 3 0.365 12%
Macaque-brain-1 9 4 1.5 0.231 16%

Yeast-PI 13.6 12 3.5 0.322 18%

Hyperbolic
Networks

S-cerevisiae-PI 10.5 11 4 0.419 21%
H-pylori-PI 7.5 7 3 0.368 21%
E-coli-metab. 9.3 16 4 0.483 27%

6 Concluding Remarks

The structure of several biological networks has been often described as a tree-
like topology in molecular biology [4]. This motivates investigating if those net-
works also admit tree-like structures based on their distances. In Section 4, we
observed that most biological networks appear to have low hyperbolicity. Since
strongly-hyperbolic graphs have a structure that is closer to a tree, this moti-
vates the following hypothesis: do strongly-hyperbolic graphs have more concise
cores compared to other hyperbolic graphs? It is clear from Tables 5 that hyper-
bolic networks have larger cores when compared to strongly-hyperbolic networks
(which confirms our hypothesis). Here we only consider cores according to the
Minimum Cover Set model. The sizes of the cores in strongly-hyperbolic graphs
are less than 20% of the number of vertices of each network.
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We also observed two patterns in strongly-hyperbolic networks named groups
1 and 2 in Table 5. The networks in group 1 have δ(G) < 3 and in the same time
δ(G) is sufficiently smaller than the value of half the diameter. The cores for
those networks are very small. The second group has networks that are either
with higher hyperbolicity, or low hyperbolicity with value of δ(G) very close to
diam(G)/2. The cores for group 2 are larger than those in group 1.
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