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Abstract Recent advances in the field of genetic data analysis reveal promising
findings in the field of human history; especially when combined with proper data
analysis tools. Within the field of modern genetics, there is evidence that the human
populations have genetically interacted as a result of several events. The genetic
admixture contains multiple pieces of DNA that have been passed down subse-
quently through generations making it combine DNA from different source groups.
In this paper, we construct and analyze the network of human genetic admixture.
We study the topology of this network, we investigate its δ-hyperbolicity (negative
curvature), and, using it, identify the core vertices by proposing the δ-hyperbolicity-
neighborhood measure that we assign to each vertex.

1 Introduction

Using networks to describe systems that are composed of elements and the inter-
actions or connections between those elements aids analyzing and understanding
them. Therefore, networks in multiple disciplines ranging from computer science
to systems biology are being modeled as graphs were vertices represent the differ-
ent elements and edges represent the different interactions among those elements.
Within the field of modern genetics, there is evidence that the human populations
have interacted throughout history. This interaction, which may occur as a result of
migrations, invasions, and slavery, results in transfer of genetics and accordingly cre-
ates admixed populations. The genetic admixture contains multiple pieces of DNA
that have been passed down subsequently through generations making it combine
DNA from different source groups.

The work in [10] uses DNA frommany people around the world (95 populations)
to identify the mixed source groups and to decide when did those mixing events
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had occurred. Their results are presented on an interactive map in [1]. Their work
concludes that many populations are results of genetically mixed groups that mixed
throughout the last 4000 years. Furthermore, some of thosemixed source populations
are geographically very spread. Finally, even though genetic mixing among source
groups is often local with respect to time and space, neighboring populations do not
necessarily share the same ancestry or history.

Even though it is interesting to analyze the details of the direct genetic admix
among populations, it is equally interesting to see how this genetic admix looks like
in the organization level by the use of graph-theoretical tools. This global approach
of analyzing the genetic admix as a system not only as individual components may
increase our understanding of the human history inmultiple aspects; for example, the
transmission of languages and cultures. In this paper, we construct and analyze the
network of human genetic admixture. We investigate the topology of this network by
studying the degree distribution, the clustering coefficient, and the different measures
of centrality. We also investigate the δ-hyperbolicity of this network and, using it,
identify the core vertices. For this we propose the δ-hyperbolicity-neighborhood
of each vertex. Then we use this measure to identify the core vertices. Based on
our analysis, we find the average distance between a pair of populations across the
network are relatively small suggesting a small-world network. We also find that the
network comprises a number of sub-networks when edges are pruned based on their
weights. Those sub-networks are formed by multiple neighboring populations. Also,
we identify key vertices according to a number of centrality measures, and we find
that thosemeasures correlate verywell.Moreover, we find the core vertices identified
based on the δ-hyperbolicity-neighborhood measure correlate to some extent with
some of the typical centrality measures such as the betweenness centrality.

2 Data and Network Construction

The data was obtained from the Genetic Atlas of Human Admixture History interac-
tive website [1], which is a companion of the work presented in [10]. In this work,
the authors study 95 populations (a population or a group is a set of individuals
with similar genetic makeup). For each individual population p, they show the set
of other source populations that are genetically admixed in the DNA of population
p. For example, Fig. 1, which is a screen shot from [1], shows that the Polish popu-
lation has the following admixing groups: Lithuanian (53.1%), Norwegian (16%),
Russian (12.9%),Moroccan (3.7%), Sardinian (3.7%), Basque (2.6%), etc. The per-
cent associated with each source group indicates its contribution to that population
such that all admixed populations collectively make 100%. Overall, we found 2685
distinct edges in this network.

Here we construct and study the network of genetic admixture in human pop-
ulations. In this network vertices represent the different populations and an edge
connects two populations if one participates in the genetic makeup of the other.
Each edge has an associated direction and a weight. For a source population u and a
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Fig. 1 Genetic mixing in the genetic of the Polish population

population v, the edge euv is directed towards v. The weight assigned to each edge
euv denoted as wuv is based on the percent of contribution in which it participates in
building the DNA of this admixed group. Hence, the larger the weight is, the more
significant the contribution. We normalize the weights as follows. The weight of an
edge euv becomes wuv = (100 − λuv)/10, where λuv is the percent of the contribu-
tion as reported in [1]. This way the smaller the weight is, the larger the contribution,
and as a result, the shorter the distance between the two populations. For example, if
a source group u represents 50% of group v’s DNA, then the edge leaving u towards
v has a weight of 5.

A graph can be expressed by its adjacency matrix auv where the value auv is one
if vertices u and v are connected and zero otherwise and wuv represents the weight
of that edge if one is present. We use this representation throughout this work. For
several reasons that will become apparent later on in this text, we will be analyzing
the weighted and the unweighted versions of this network. In the weighted network,
different edges will have associated weights as described above. In the unweighted
network, edges are either present or absent (we ignorewuv in this case). Table1 gives
some overall statistics of the constructed networks.
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3 Network Analysis

In this section, we study some fundamental global and local network parameters
of the two generated networks: the weighted genetic admixture network and the
unweighted genetic admixture network.

Diameter, characteristic path length, and small-world property. According
to the distances between vertices in the graph, the eccentricity of a vertex u is
ecc(u) = maxv∈V {d(u, v)}. The minimum value of the eccentricity represents the
graph’s radius: rad(G) = minu∈V {ecc(u)}. The diameter of the graph diam(G)

refers to the length of the longest shortest path between any two vertices u and v,
i.e., diam(G) = maxu,v∈V {d(u, v)}. Another important distance related measure of
graphs is the characteristic path length (CPL) which is the average distance between
vertex pairs. See Table1. Many real-world networks exhibit the small-world prop-
erty. A network is said to have this property when it has a small CPL or diameter
compared to the size of the network. Let si ze(G) = |V | + |E | be the size of graph
G, a network has the small-world property when diam(G) ≤ log2(si ze(G)). For
our network, log2(si ze(G)) = 11.44.

For the unweighted genetic admixture network, the diameter is 4, which is small
compared to the network’s size. However, since the diameter in graphs is susceptible
to outlier vertex pairs [11], we are also interested in the effective diameter which
represents the maximum distance between a fraction of vertex pairs (in our case
90%) of the network. The effective diameter for this network is 2, and the CPL is
1.8. Clearly, this network exhibits the small-world property. This indicates that if
one population p1 does not contribute (directly) in the genetic make up of another
population p2, then there is a small chain of population exchanges between the two.
For the weighted network, the diameter is≈36, the effective diameter is≈19, and the
CPL is ≈16. In both networks the diameter is finite which means that all vertices are
reachable from one another. In other words, the network of human genetic admixture
has one connected component. Also, we find that the network is biconnected.

Weights and network components. One would expect neighboring populations
to be genetically admixed; however, it was concluded in [10] that some mixture

Table 1 Basic network parameters

Measure Directed weighted Directed unweighted

diam(G) 36.38 4

C P L 15.83 1.8

rad(G) 19.68 2

k̄+(G) 143.8 14.6

k̄−(G) 273 28.3

k̄(G) 416.8 42.9

diam(G): network’s diameter; C P L: characteristic path length; rad(G): graph’s radius; k̄+(G),
k̄−(G), k̄(G): average in-degree, average out-degree, average total degree respectively
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events include populations that belong to very distant locations. This is evident
considering our genetic admixture network that is represented by one connected
component. However, this also motivates investigating the sub-networks that this
single component comprises. Specifically, we focus on the number of sub-networks,
the size of each sub-network, and how the populations in each sub-network are
connected. To obtain the set of sub-networks,we use the edgeweights as an indication
of their importance. Given a threshold number t , where 0 ≤ t ≤ 100, first, we fix the
threshold weight t and construct a graph Gt = (V, Et ) by pruning those edges with
weights less than t . Second, we identify the set of strongly connected components
for the directed network Gt ; each strongly connected component represents one
sub-network.

We start this process with t = 100% (the highest possible weight). At this point,
every single vertex in the graph G100 represents a strongly connected component
on its own. Then we gradually reduce threshold t (obtaining a different set of sub-
networks) untilweget to a point inwhich all vertices are in the samecomponent (when
t = 0). The number of strongly connected components as well as some other prop-
erties about each component are listed in Table2. An interesting observation about
the formation of populations into distinct sub-networks is that it is highly affected
by the geographic locations of those populations. For an example, see Table3 in
which we provide a list of all sub-networks with size ≥2 along with the geographic
location to which the listed populations belong. The geographic regions are as pre-
sented in [10]. Note that all populations in a sub-network either belong to the same
geographic region or to a region that is close geographically. This indicates that, for
some populations, the genetic admixing with neighboring populations is more sig-
nificant. Another interesting observation is that the small-world property is evident
in the sub-networks. For example, G3, G2, and G1 in Table2.

Table 2 Sub-networks in each Gt that result from pruning edges with weights <t

t (%) |Gt | |Et | Min # of vertices
in a sub-network

Max # of vertices
in a sub-network

Diam of largest
sub-network

90 95 2 1 1 0

70 95 7 1 1 0

50 94 18 1 2 1

30 88 63 1 3 1

10 36 222 1 33 8

5 18 418 1 61 5

3 12 601 1 78 6

1 2 1099 5 90 4

0 1 2685 95 95 4

t : edge threshold; |Gt |, |Et |: number of sub-networks and edges in Gt ; Diam of largest sub-network
is the longest (unweighted) path that exists between any two vertices
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Table 3 A list of populations in some of the sub-networks in Gt where t = 20 and the geographic
region(s) of the listed populations

No. Populations Geographic region

1 GermanyAustria, Finnish, Norwegian, English,
Ireland Scottish, Spanish, French

N.W.Europe, E.Europe

2 Cambodian, Dai, Han, HanNchina, Tujia, Miao S.EastAsia

3 Balochi, Brahui, Sindhi, Pathan C.SouthAsia

4 BantuSouthAfrica, SanKhomani, SanNamibia Bantu, San

5 Belorussian, Polish, Lithuanian E.Europe

6 Ethiopian, EthiopianJew Ethiopian

7 BantuKenya, Yoruba Bantu, W.Africa

8 Adygei, Georgian W.Asia

9 Bedouin, Saudi S.MiddleEast

10 Daur, Oroqen N.EastAsia

11 Yi, Naxi S.EastAsia

Clustering coefficient. The clustering coefficient for a vertex v, denoted as cc(v),
indicates the likeliness that any two neighbors of v are also neighbors. Given an
unweighted graphG = (V, E) and a vertex v ∈ V , let N (v) be the neighborhood of v
consisting of all vertices adjacent to v. Also, let eN (v) be the set of edges between every
pair of vertices in v’s neighborhood. Then cc(v) = 2|eN (v)|

|N (v)||N (v)−1| . 0 ≤ cc(v) ≤ 1. The
clustering coefficient CC(G) ∈ [0, 1] of a graph G is the average of cc(v) taken over
all vertices v ∈ V . CC(G) = 0 when there is no clustering and CC(G) = 1 when
the clustering is very high which happens when the network includes a number of
sub-networks each of which is highly dense and connected with other sub-networks
with very few links.

For our network, the clustering coefficient measures the tendency of two popu-
lations that both already genetically admixed with a third population to themselves
admix (we ignore the directions here). The average clustering coefficient of the net-
work is about 0.57. We are also interested in exploring the following: if a population
p1 contributes to the genetic admix of another population p2, what is the probability
that population p2 also contributes to p1’s admix? This question can be answered
using the graph’s reciprocity which is another important property of directed net-
works [13]. The reciprocity of a given graph, denoted as R(G), is the fraction of
edges that point to both directions (vertices) and it is calculated as R(G) = |e∗

uv |
|E | ,

where |e∗
uv| is the number of bidirectional edges and 0 ≤ R(G) ≤ 1. The reciporcity

of our genetic admixture network is 0.24 which means that if population p1 con-
tributes to the DNA of population p2, then there is a probability of 24% that p2

also contributes to the DNA of population p1. This could be explained by the one
direction immigration. Close analysis of those pairs of populations, that admix in
only one direction, shows that the admix involves non-neighboring populations.



The Network of Genetic Admixture in Humans 249

Degree distribution and the degree centrality. The degree of a vertex u (denoted
as ku) in an undirected graph G is the number of edges that have u as one of their
endpoints, i.e., ku = ∑

v auv . IfG is directed, then a vertex u has an in-degree denoted
as k+

u that represents the number of edges in E that have u as a source vertex, and
an out-degree k−

u that represents the number of edges that have u as a target vertex.
The in-degrees and the out-degrees of the vertices in our directed unweighted genetic
admixture network fluctuates between 1 and 63, with Papuan and Druze having the
highest in-degree and out-degree respectively. In case of weighted networks, the
weights of the edges are important to give a more precise characterization of its
complexity. Therefore, rather than considering the number of incident edges, we
consider their weights. Hence, the degree ku is defined as

∑
v auvwuv . The in-degree

and the out-degree are defined accordingly. The populationwith the highest weighted
in-degree is Papuan and the population with the highest out-degree is Druze. The
average degree of the graph G, k̄(G), is defined as k̄(G) = 1

|V |
∑

u∈V ku . See Table1.
The degree centrality considers the central vertices as the set of vertices with the

highest number of connections. The degree centrality is a local measure since it only
relies on the number of neighbors [6]. Therefore, we compute the degree distribution
p(k) and the cumulative degree distribution P(k) = ∑

�≥k p(�) which indicates the
fraction of vertices with degree k or larger. The cumulative degree distribution often
provides some global characteristic of the network. In Fig. 2, we plot the cumulative
in-degree and out-degree distributions for our directed unweighted genetic admixture
network in a semilogarithmic scale. One could think that vertices with very high
in-degrees act like populations that belong to popular geographical locations that
may had attracted immigrants or had represented commercial attractions. However,
it also may be the case that the high in-degree is just a result of being geographically
close to multiple other populations and the genetic admix is just a consequence of
the location.

Distances and centrality. The distance d(u, v) between two vertices u and v in a
graph G is the number of edges in a shortest (u, v)-path that connects them. When
G is a weighted graph, the distance d(u, v) is the sum of the weights of all edges in
a shortest (u, v)-path from u to v (direction is important). The centrality measures
presented in this section are all based on the set of shortest paths in a graph. A
centrality measure rank the vertices according to their importance. Then it identifies

Fig. 2 The cumulative degree distribution P(k) with the in-degree k (a) and the out-degree k (b).
The horizontal axis for each chart is the in-degree or the out-degree and the vertical axis is the
cumulative probability distribution of that degree
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the set of vertices that are most significant and accordingly more central. There are
multiple centrality measures each of which identifies the key vertices based on a
distinct purpose. In this section, we limit our discussion to those measures that are
directly based on the notion of distances.

The betweenness centrality measure expresses how much effect each vertex has
in the communication in the network assuming that all traffic follows shortest paths.
Informally, the betweenness centrality of a vertex v refers to the total number of short-
est paths between every vertex pair that pass through v. Let αwz(v) be the fraction of
shortest paths betweenw and z that pass through v, i.e.,αwz(v) = σwz(v)/σwz , where
σwz(v) is the number of all shortest paths between w and z that pass through v and
σwz is the number of all shortest paths between w and z. The betweenness centrality
cB(v) of v is cB(v) = ∑

w∈V

∑
z∈V αwz(v) [6]. Higher values of this measure indi-

cates higher importance of the vertex. The closeness centrality considers the central
vertices as the subset of vertices with the minimum total distance to all other vertices.
The closeness centrality cC(v) of a vertex v is defined as cC(v) = 1/

∑
u∈V d(v, u)

[6]. The eccentricity centrality suggests that the center of the graph includes the ver-
tex (or vertices) that has the shortest distance to all other vertices. For a given vertex
v, the eccentricity centrality is cE (v) = 1/max{d(v, u) : u ∈ V } [9]. The vertices
with the highest eccentricity centrality in fact form the center of the network C(G).
In other words, C(G) = {u ∈ V : ecc(u) = rad(G)}. Tables4 and 5 list the highest
ten populations for the degree, betweenness, eccentricity, and closeness centrality
measures for the unweighted and the weighted networks respectively. Note that in
the fifth column of Table4, all the five listed populations have equal eccentricity
centrality. For the unweighted network, the Spearman rank correlation coefficient,
which tests the association between two sets of ranks, between the betweenness and
the closeness centralities is 0.677 with 70% common populations in the list of top
10 populations. For the weighted network, the Spearman rank correlation between
the two measures is about 0.41.

Table 4 Top ten populations with respect to degree, betweenness, eccentricity, and closeness cen-
trality measures for the directed unweighted genetic admixture network

In-degree Out-degree Tot-degree Betweenness Eccentricity Closeness

Papuan Druze Adygie Burusho Papuan Druze

Maya Palestinian Armenian Papuan Melanesian Palestinian

Melanesian Burusho Balochi Druze Columbian Burusho

Burusho Maya BantuKenya Melanesian Lahu Maya

Uzbekistani Hazara BantuSouthAfrica IndianJew Hazara Hazara

IndianJew Melanesian Basque Maya – Melanesian

Cambodian Sardinian Bedouin Hazara – Papuan

Adygie Papuan Belorussian Palestinian – Sardinian

Turkish Kalash BiakaPygmy Adygie – Kalash

Pathan Indian Brahui MbutiPygmy – Brahui
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Table 5 Top ten populations with respect to degree, betweenness, eccentricity, and closeness cen-
trality measures for the directed weighted genetic admixture network

In-degree Out-degree Tot-degree Betweenness Eccentricity Closeness

Papuan Druze Papuan Spanish Burusho Druze

Melanesian Palestinian Burusho Maya Armenian Han

Indian Burusho Maya Han Pathan Palestinian

Burusho Maya Melanesian SanKhomani Maya Maya

Maya Hazara Indian Moroccan Hazara Burusho

Pathan Indian Palestinian Iranian Melanesian Balochi

Myanmar Melanesian Druze Cypriot Papuan Jordanian

Cambodian Papuan Hazara Pathan She Moroccan

IndianJew Bedouin IndianJew Adygei Han Brahui

Adygei Mozabite MbutiPygmy EastSicilian Yakut Melanesian

4 δ-Hyperbolicity and Network’s Core

δ-Hyperbolicity is ameasure that captures the notion of negative curvature in abstract
metric spaces including graphs. A simple graph G = (V, E) naturally defines a met-
ric space (V, d) on its vertex set V where the distance d(u, v) is defined as the length
a shortest (v, u)-path between v and u. In graphs, δ-hyperbolicity measures how
close the graph’s structure is to a tree structure metrically [8]. Given a graph G =
(V, E), x , y, u, and v ∈ V are four distinct vertices, and the three sums: d(x, y) +
d(u, v), d(x, u) + d(y, v), and d(x, v) + d(y, u) sorted in a non-increasing order,
the hyperbolicity of the quadruple x , y, u, v denoted as δ(x, y, u, v) is defined as:
δ(x, y, u, v) = (d(x, y) + d(u, v)) − (d(x, u) + d(y, v))/2.The δ-hyperbolicity of
the graph is δ(G) = maxx,y,u,v∈G δ(x, y, u, v). Generally, the smaller the value of
δ(G) the closer the graph is to a tree metrically and, as a result, the hyperbolicity
property is more evident. Even though the δ-hyperbolicity by definition considers
the maximum difference between any two largest distance sums for any quadruple,
recent research also analyzes the distribution of δ-hyperbolicity of the quadruples
[2, 3, 7]. This makes the value of the average δ-hyperbolicity (taken over all quadru-
ples) equally important. The small δ-hyperbolicity property has been found in many
real-world networks [2, 3, 7, 12]. However, in many of those networks, this low
value is a direct result of the small-world property especially that the inequality
δ(G) ≤ diam(G)

2 is sharp. For our unweighted network, δ(G) = 2 and the average
δ-hyperbolicity of the graph δ′(G) is 0.24. For our weighted network, δ(G) = 15
and δ′(G) = 1.96.
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δ-Hyperbolicity, centrality, and network’s core. It was suggested in [4] that the
concentration of load on a subset of vertices of the network, for communication
assuming shortest path routing, is due to its negative curvature or δ-hyperbolicity.
This concentration can be seen as a bend in those shortest paths towards a core of
the network defined by its most central vertices. However, the identification of core
vertices differ according to the centrality measure used to decide the central vertices.
In [4], the core is defined as the subset of verticeswith highest betweenness centrality.
In [3] the core is defined based on the eccentricity centrality and the betweenness
centrality.

Proposition 1 ([3]) Let G be a δ-hyperbolic graph and x, y be arbitrary vertices
of G. If d(x, y) > 4δ + 1, then on any shortest (x, y)-path there is a vertex w with
ecc(w) < max {ecc(x), ecc(y)}.

According to the proposition, shortest paths bend towards vertices with smaller
eccentricity making the graph’s core mostly represented with vertices with the small-
est eccentricity (rad(G) or rad(G) + 1 in most cases). Then, the betweenness cen-
trality is used to prioritize those vertices according to their participation. In [2], it
has been observed that if one constructs a small r -neighborhood where (r = δ(G))
around a vertex v on a shortest path between two vertices x and y, then all shortest
paths between x and y include a vertex in this r -neighborhood.1 Our goal is to identify
the core vertices using the δ-hyperbolicity of the network without any presumptions
about the centrality of the vertices in the network. Then we analyze the core vertices
in terms of their centrality.

For each integer r ≥ 0, let Nr (u) denotes the neighborhood of distance at most
r centered at u, i.e., Nr (u) = {v ∈ V : d(u, v) ≤ r}. We define the δ-hyperbolicity-
neighborhood of a vertex u, denoted as NΔ(u), as the smallest integer Δ, where 0 ≤
Δ ≤ δ(G), such that themajority of vertex pairs (more than 90%) are covered by that
neighborhood. We say a vertex pair (w, z) is covered by the
δ-hyperbolicity-neighborhood of a vertex v, if there is at least one vertex u ∈ NΔ(v)

such that d(w, z) = d(w, v) + d(v, z). Figure3 shows that the δ-hyperbolicity-
neighborhoods of the majority of vertices when Δ = 0 cover a small percent of
vertex pairs (between 3% and 15%). An exception is those vertices with higher
betweenness; for example, Papuan that covers about 33% of other vertex pairs.
However, when Δ = 1, the δ-hyperbolicity-neighborhood around each vertex cov-
ers the majority of vertex pairs. Again some exceptions include French that covers
only 27%. For the details, take a look at Table6.

1Note that the value of r could be higher but never exceeds 6δ(G) + 2 [2]. However, for real-
networks it was observed in [2] that r ≈ δ(G).
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Fig. 3 Percent of vertex pairs covered by the δ-hyperbolicity-neighborhood NΔ(v) of each vertex
v in the directed unweighted genetic admixture network. 1 ≤ v ≤ 95 and 0 ≤ Δ ≤ δ(G) = 2

Table 6 Percent of vertex pairs covered by each δ-hyperbolicity-neighborhood in the directed
unweighted genetic admixture network

v Population N0(v) (%) N1(v) (%) N2(v) (%)

a Populations with high coverage

12 Burusho 29.48 98.53 100

33 Hazara 22.5 96.2 100

63 Papuan 33.08 96.77 100

b Populations with low coverage

10 Bulgarian 2.8 9.18 72.06

25 French 3.68 27.22 91.58

35 Hungarian 2.79 18.8 93.1

Now we can rank our vertices according to their δ-hyperbolicity-neighborhoods.
Each vertex v has two values: (1) Δ, that represents the smallest integer Δ ≤ δ(G)

such that the δ-hyperbolicity-neighborhood NΔ(v) covers more than 90% of ver-
tex pairs, and (2) the percent of vertex pairs covered by this δ-hyperbolicity-
neighborhood. We lexicographically sort all vertices according to those two values.
The results are listed in Table7. The higher the ranking of a vertex, the more it
becomes part of the core set.

Discussions. From Fig. 3 and the results listed in Table7 it is clear that the ranking of
vertices obtained according by the coverage of their δ-hyperbolicity-neighborhoods
corresponds to some extent with the ranking obtained from the centrality measures;
especially the out-degree centrality, the betweenness centrality, the eccentricity cen-
trality, and the closeness centrality. One can see that the majority of the top ten
populations in each centrality measure are also present in the top ten list of the
vertices with respect to their δ-hyperbolicity-neighborhoods. In contrast, some pop-
ulations who are not at the top of the rankingwith respect to some centralitymeasures
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Table 7 Top ten populations with respect to the δ-hyperbolicity-neighborhoods of vertices in the
directed unweighted genetic admixture network

Rank Population In-degree
rank

Out-degree
rank

Betweenness
rank

Eccentricity
rank

Closeness
rank

1 Burusho 4 3 1 2 3

2 Druze 19 1 3 2 1

3 Palestinian 16 2 8 2 2

4 Melanesian 3 5 4 1 6

5 Kalash 17 7 19 2 9

6 Maya 2 4 6 2 4

7 Indian 10 7 15 2 11

8 Papuan 1 7 2 1 7

9 IndianJew 5 9 5 2 22

10 Sardinian 29 6 35 2 8

Here we compare this rank of each vertex with its rank according to the five centrality measures
discussed earlier: the in-degree, out-degree, betweenness, eccentricity, and closeness

actually appear as core vertices according to their δ-hyperbolicity-neighborhood. For
example, the three populations: Kalash, Indian, and Sardinian all are considered as
core vertices according to their δ-hyperbolicity-neighborhood; however, they have
lower values for the eccentricity centrality and/or the betweenness centrality mea-
sures. This can be justified by the existence of multiple core vertices distributed over
multiple cores of the network defined using different centrality measures (or even by
the existence of a number of nested cores). Some core vertices are more important
with respect to their location and according to the percent of other vertex pairs they
cover. This makes those vertices have higher values for the eccentricity centrality
and/or the betweenness centrality measures. Still other core vertices, which may
have lower eccentricity or betweenness centralities, are important (i.e., essential for
communication) for a smaller percent of vertices. This observation motivates investi-
gating the existence of multiple communities that revolve around those different core
vertices. Generally, communities in a network are represented by a number of highly
dense (with respect to the number of connections) set of vertices; and different com-
munities are linked with fewer connections. Here we use the Louvain method [5] for
detecting communities in our unweighted genetic admixture network (we ignore the
direction of the edges here). The method identifies three communities (or modules)
in our network which admits a modularity of 1.62. The modularity here measures
the density of connections inside communities to the density of connections outside
communities. See Figs. 4 and 5. Unlike the sub-networks identified earlier in Sect. 3,
the modules are represented mostly by non-neighboring populations, and the core
vertices are distributed among the different modules.
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Fig. 4 Populations in three different modules.Module sizes (with respect to the number of vertices)
are 36, 34, 25

Fig. 5 Each population is assigned to a different module. Larger circles indicates the core vertices
in each module based on the δ-hyperbolicity-neighborhood of vertices

5 Conclusion

Wehave studied the genetic admixture network of humans inwhich vertices represent
populations and a link exists between a pair of populations if one participates in the
genetic admix of the other.We have considered both theweighted and the unweighted
versions of the network. The networks studied were based on data published in [10].
Based on our analysis, we find the average distance between a pair of populations
across the network are relatively small suggesting a small-world network. We also
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find that the network comprises a number of sub-networks when edges are pruned
based on their weights. Those sub-networks are formed bymultiple neighboring pop-
ulations. Also, we identify key vertices according to a number of centrality measures,
and we find that those measures correlate very well. Finally, we propose a method of
identifying core vertices based on the δ-hyperbolicity of the network. This network
is dynamic; i.e., the connections among populations are based on a specific time
frame. It is interesting to capture different admixing statistics based on various time
frames and compare how the dynamicity of this network changes with time.
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