Fundamental techniques

- The greedy method
 - philosophy (greedy choice, substructure property)
 - problems
 - Fractional knapsack
 - algorithm
 - run-time
 - Task scheduling
 - algorithm
 - run-time

- Divide & Conquer
 - philosophy (divide, recur, conquer)
 - problems
 - Merge Sort
 - algorithm
 - run-time
 - Integer Multiplication
 - algorithm
 - runtime
 - Recurrence equations and master theorem

- Dynamic programming
 - philosophy (subproblem optimality) (bottom-up)
 - subproblem overlapping (table)
 - define subproblems
 - show subproblem optimality
 - express solution to a larger problem through solutions to smaller problems
 - recurrence formula
 - implementation
 - problems
 - Knapsack problem
 - solution and algorithm
 - complexity
 - Matrix chain multiplication
 - solution and algorithm
 - complexity
Graphs

- Definitions
 - graph, vertex, edge, directed, weighted,
 vertex degree, adjacent,
 incident, path, simple path, cycle, simple cycle,

- Properties
 - subgraph, spanning subgraph, connected,

- Presentations
 - edge list, Adjacency list, adjacency matrix
 - performances

- DFS
 - algorithm (time bound)
 - properties
 - connected component of \(v \) by DFS(\(G, v \))
 - spanning tree by red edges
 (discovery edges, back edges = black)

 - applications
 - path finding
 - cycle finding
 - connectedness
 - connected components
 - spanning tree (forest)
 - bi-connected components
 - be able to find (any method)
 - separation vertices
 - separation edges
 - bi-connected components

- BFS
 - algorithm (time bound)
 - properties
 - connected component of \(v \) by BFS(\(G, v \))
 - spanning tree by discovery edges
 (cross edges)
 - layering the vertices of \(G \) \(l_0, l_1, l_2, \ldots \)

 - applications
 - connected components (connectedness)
 - spanning tree (forest)
 - cycle finding
 - path with min. number of edges
Directed graphs

- Definitions
 - in-degree, out-degree, directed path, reachability, directed cycle, DAGs, strong connectivity
- Representation
 - $v \rightarrow (\text{incoming edges})$
 - $v \rightarrow (\text{outgoing edges})$
- Directed DFS (complexity)
 - strong connectivity algorithm (complexity)
- Transitive closure
 - definition
 - algorithm (Floyd-Warshall)
 - running time
- DAGs and topological sorting
 - any topological sorting algorithm
 - running time

Weighted graphs

- Shortest path problem formulation
- Shortest path tree and Dijkstra's algorithm
 - algorithm
 - complexity
 - applicability (no neg. edges)
- Bellman-Ford algorithm
 - algorithm
 - complexity
 - applicability (neg. edges-yes, neg. cycles-no)
- Shortest path in DAGs and linear time algorithm
 - algorithm (use topological sorting)
 - applicability (neg. edges-yes)
- All pair shortest path (Floyd-Warshall)
- Minimum Spanning Trees
 - definitions
 - Prim - Jarník's algorithm
 - algorithm
 - complexity
 - properties behind the correctness (partition property) (merge property)
 - Kruskal's Algorithm
 - algorithm (diff. from P-Y. approach)
 - data structure and implementation (find, union)
 - Borůvka's algorithm
 - NP-completeness
 - definitions
 - Dec. Problems
 - class \(P \)
 - class \(NP \)
 - class \(NP \)-hard
 - class \(NP \)-complete
 - idea of polynomial reduction
 - reduction from 3SAT to Vertex Cover
 (only construction)
 - some list of other \(NP \)-complete problems