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a b s t r a c t

The δ-hyperbolicity of a graph is defined by a simple 4-point condition: for any four vertices
u, v, w, and x, the two larger of the distance sums d(u, v) + d(w, x), d(u, w) + d(v, x), and
d(u, x) + d(v, w) differ by at most 2δ ≥ 0. Hyperbolicity can be viewed as a measure of
how close a graph is to a tree metrically; the smaller the hyperbolicity of a graph, the
closer it is metrically to a tree. A graph G is Helly if its disks satisfy the Helly property,
i.e., every family of pairwise intersecting disks in G has a common intersection. It is known
that for every graph G there exists the smallest Helly graphH(G) intowhich G isometrically
embeds (H(G) is called the injective hull of G) and the hyperbolicity ofH(G) is equal to the
hyperbolicity of G. Motivated by this, we investigate structural properties of Helly graphs
that govern their hyperbolicity and identify three isometric subgraphs of the King-grid as
structural obstructions to a small hyperbolicity in Helly graphs.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The δ-hyperbolicity of a graph can be viewed as a measure of how close a graph is to a tree metrically; the smaller
the hyperbolicity of a graph, the closer it is metrically to a tree. Recent empirical studies indicated that a large number
of real-world networks, including Internet application networks, web networks, collaboration networks, social networks
and biological networks, have small hyperbolicity [1,2,10,29,31,35,36,38]. This motivates much research to understand
the structure and characteristics of hyperbolic graphs [1,3,6–8,11,13,16,32,39,41], as well as algorithmic implications of
small hyperbolicity [8,11–14,18,23,25,33,39]. One aims at developing approximation algorithms for certain optimization
problemswhose approximation factor depends only on the hyperbolicity of the input graph. To the date such approximation
algorithms exist for radius and diameter [11], minimum ball covering [14], p-centers [23], sparse additive spanners [12],
the Traveling Salesmen Problem [33], to name a few, which all have an approximation ratio that depends only on the
hyperbolicity of the input graph. Notably, there is a quasilinear time algorithm [23] for the p-center problem with additive
error at most 3δ, whereas in general it is known [27] that determining an α-approximate solution to p-centers is NP-hard
whenever α < 2. In another example, there is a linear time algorithm [11] that for any graph G finds a vertex v with
eccentricity at most rad(G)+ 5δ (almost the radius of G) and a pair of vertices u, v such that the distance between u and v is
at least diam(G) − 2δ (almost the diameter of G), where δ is the hyperbolicity parameter of G.

In this paper, we are interested in understanding what structural properties of graphs govern their hyperbolicity and in
identifying structural obstructions to a small hyperbolicity. It is a well-known fact that the treewidth of a graph G is always
greater than or equal to the size of the largest square grid minor of G. Furthermore, in the other direction, the celebrated
grid minor theorem by Robertson and Seymour [37] says that there exists a function f such that the treewidth is at most f (r)
where r is the size of the largest square gridminor. To the date the best bound on f (r) is O(r98+o(1)): every graph of treewidth
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Fig. 1. Graphs Hk
1 , H

k
2 , and Hk

3 in red, where k = 2. Each graph is shown isometrically embedded into the King-grid, which is a strong product of two paths
and is a particular Helly graph . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

larger than f (r) contains an (r × r) grid as a minor [9]. Can similar ‘‘obstruction’’ results be proven for the hyperbolicity
parameter?

We show in this paper that the thinness of metric intervals governs the hyperbolicity of a Helly graph and that three
isometric subgraphs of the King-grid are the only obstructions to a small hyperbolicity in Helly graphs. Our interest in Helly
graphs (the graphs in which disks satisfy the Helly property) stems from the following two facts. We formulate them in the
context of graphs although they are true for any metric space. For every graph G there exists the smallest Helly graph H(G)
into which G isometrically embeds;H(G) is called the injective hull of G [22,28]. If G is a δ-hyperbolic graph, thenH(G) is also
δ-hyperbolic and every vertex ofH(G) is within distance 2δ from some vertex of G [34]. Thus, from our main result for Helly
graphs (see Theorem 3), one can state the following.

Theorem 1. An arbitrary graph G has hyperbolicity at most δ if and only if its injective hull H(G) contains
– no Hδ

2 , when δ is an integer,

– neither H
δ+ 1

2
1 nor H

δ− 1
2

3 , when δ is a half-integer,
from Fig. 1 as an isometric subgraph.

The injective hull here can be viewed as playing a similar role as the minors in the grid minor theorem for treewidth
by Robertson and Seymour. Helly graphs play a similar role for the hyperbolicity as chordal graphs play for the treewidth.
Note that each of the graphs Hk

1 , H
k
2 , H

k
3 contains a square grid of side k (see Fig. 1) as an isometric subgraph. Thus, if the

hyperbolicity of a Helly graph is large then it has a large square grid as an isometric subgraph. This result (along with
a connection between the treewidth and the hyperbolicity established in [17]1) calls for an attempt to develop a theory
similar to the bidimensionality theory (see survey [19] and papers cited therein). The bidimensionality theory builds on
the graph minor theory of Robertson and Seymour by extending the mathematical results and building new algorithmic
tools. Using algorithms for graphs of bounded treewidth as sub-routines (see also an earlier paper [24]), it provides general
techniques for designing efficient fixed-parameter algorithms and approximation algorithms for NP-hard graph problems
in broad classes of graphs. This theory applies to graph problems that are ‘‘bidimensional’’ in the sense that (1) the solution
value for the k × k grid graph (and similar graphs) grows with k, typically as Ω(k2), and (2) the solution value goes down
when contracting edges, and optionally when deleting edges, in the graph. Examples of such problems include feedback
vertex set, vertex cover, minimummaximal matching, face cover, a series of vertex-removal parameters, (edge) dominating
set, connected (edge) dominating set, unweighted TSP tour, and chordal completion (fill-in). We are currently investigating
this direction.

Previously, it was known that the hyperbolicity of median graphs is controlled by the size of isometrically embedded
square grids (see [4,7]), and recently [7] showed that the hyperbolicity of weakly modular graphs (a far reaching superclass
of the Helly graphs) is controlled by the sizes of metric triangles and isometric square grids: if G is a weakly modular graph
in which any metric triangle is of side at most µ and any isometric square grid contained in G is of side at most ν, then G is
O(ν +µ)-hyperbolic. Recall that three vertices x, y, z of a graph form ametric triangle if for each vertex v ∈ {x, y, z}, any two
shortest paths connecting it with the two other vertices from {w, y, z} have only v in common. Projecting this general result
to Helly graphs (where µ ≤ 1) one gets only that every Helly graph with isometric grids of side at most ν is cν-hyperbolic
with a constant c larger than 1 (about 8).

Injective hulls of graphswere recently used in [13] to prove a conjecture by Jonckheere et al. [30] that real-world networks
with small hyperbolicity have a core congestion. It was shown [13] that any finite subset X of vertices in a locally finite δ-
hyperbolic graph G admits a disk D(m, 4δ) centered at vertexm, which intercepts all shortest paths between at least one half
of all pairs of vertices of X .

1 In fact, [17] establishes a relation between the treelength and the treewidth of a graph but according to [11] the hyperbolicity and the treelength are
within a factor of O(log n) from each other.
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Fig. 2. Vertices x, y, z and three shortest paths connecting them in pseudo-modular graphs.

There has also been much related work on the characterization of δ-hyperbolic graphs via forbidden isometric sub-
graphs—particularly, when δ =

1
2 . Koolen andMoulton [32] provide such a characterization for 1

2 -hyperbolic bridged graphs
via six forbidden isometric subgraphs. Bandelt and Chepoi [3] generalize these results to all 1

2 -hyperbolic graphs via the same
forbidden isometric subgraphs and the property that all disks of G are convex. Additionally, Coudert and Ducoffe [16] prove
that a graph is 1

2 -hyperbolic if and only if every graph power Gi is C4-free for i ≥ 1, and one additional graph is C4-free.
Brinkmann et al. [6] characterize 1

2 -hyperbolic chordal graphs via two forbidden isometric subgraphs. Wu and Zhang [41]
prove that a 5-chordal graph is 1

2 -hyperbolic if and only if it does not contain six isometric subgraphs. Cohen et al. [15] prove
that a biconnected outerplanar graph is 1

2 -hyperbolic if and only if either it is isomorphic to C5 or it is chordal and does not
contain a forbidden subgraph. We present a characterization of δ-hyperbolic Helly graphs, for every δ, with three forbidden
isometric subgraphs. Further characterizations of Helly graphswith small hyperbolicity constant are deduced from ourmain
result.

2. Preliminaries

We use the terminology and definitions as described in standard graph theory textbooks [20,40]. All graphs G = (V , E)
appearing here are connected, finite, unweighted, undirected, loopless andwithout multiple edges. The length of a path from
a vertex v to a vertex u is the number of edges in the path. The distance dG(u, v) between vertices u and v is the length of a
shortest path connecting u and v in G. We omit the subscript when G is known by context. For a subset A ⊆ V , a subgraph
G(A) of a graph G induced by A is defined as G(A) = (A, E ′) where uv ∈ E ′ if and only if u, v ∈ A and uv ∈ E. An induced
subgraph H of G is isometric if the distance between any pair of vertices in H is the same as their distance in G. The kth power
Gk of G is defined as Gk

= (V , E ′) where E ′
= {uv : u, v ∈ V and d(u, v) ≤ k}. A disk D(v, r) of a graph G centered at a vertex

v ∈ V and with radius r is the set of all vertices with distance no more than r from v (i.e., D(v, r) = {u ∈ V : dG(v, u) ≤ r}).
For any two vertices u, v of G, I(u, v) = {z ∈ V : d(u, v) = d(u, z) + d(z, v)} is the (metric) interval between u and v, i.e., all
vertices that lay on shortest paths between u and v.

A family F of sets Si has the Helly property if for every subfamily F ′ of F the following holds: if the elements of F ′

pairwise intersect, then the intersection of all elements of F ′ is also non-empty. A graph is called Helly if its family of all
disks D(G) = {D(v, r) : v ∈ V , r ∈ N} satisfies the Helly property. Note that two disks D(v, p) and D(u, q) intersect each
other if and only if dG(u, v) ≤ p + q. Two disks D(v, p) and D(u, q) of G are said to see each other, sometimes also referred to
as touching each other, if they intersect or there is an edge in Gwith one end in D(v, p) and other end inD(u, q) (equivalently,
if dG(u, v) ≤ p+ q+ 1). The strong product of a set of graphs Gi for i = 1, 2, . . . , k is the graph ⊠k

i=1Gi whose vertex set is the
Cartesian product of the vertex sets Vi, and there is an edge between vertices a = (a1, a2, . . . , ak) and b = (b1, b2, . . . , bk) if
and only if ai is either equal or adjacent to bi for i = 1, 2, . . . , k. A King-grid is a strong product of two paths. King-grids form
a natural subclass of Helly graphs.

The following lemma will be frequently used in this paper. It is true for a larger family of pseudo-modular graphs but we
will use it in the context of Helly graphs. Pseudo-modular graphs are exactly the graphs where each family of three pairwise
intersecting disks has a common intersection [5]. Clearly, Helly graphs is a subclass of pseudo-modular graphs.

Lemma 1 ([5]). For every three vertices x, y, z of a pseudo-modular graph G there exist three shortest paths P(x, y), P(x, z), P(y, z)
connecting them such that either (1) there is a common vertex v in P(z, y)∩ P(x, z)∩ P(x, y) or (2) there is a triangle △(x′, y′, z ′)
in G with edge z ′y′ on P(z, y), edge x′z ′ on P(x, z) and edge x′y′ on P(x, y) (see Fig. 2). Furthermore, (1) is true if and only if
d(x, y) = p + q, d(x, z) = p + k and d(y, z) = q + k, for some k, p, q ∈ N, and (2) is true if and only if d(x, y) = p + q + 1,
d(x, z) = p + k + 1 and d(y, z) = q + k + 1, for some k, p, q ∈ N.

We are interested in hyperbolic graphs (sometimes referred to as graphs with a negative curvature). δ-Hyperbolic metric
spaces have been defined byGromov [26] in 1987 via a simple 4-point condition: for any four points u, v, w, x, the two larger
of the distance sums d(u, v)+d(w, x), d(u, w)+d(v, x), d(u, x)+d(v, w) differ by atmost 2δ ≥ 0. They play an important role
in geometric group theory and in the geometry of negatively curved spaces, and have recently become of interest in several
domains of computer science, including algorithms and networking. A connected graph G = (V , E) equipped with standard
graph metric dG is δ-hyperbolic if the metric space (V , dG) is δ-hyperbolic. The smallest value δ for which G is δ-hyperbolic
is called the hyperbolicity of G and denoted by hb(G). Let also hb(u, v, w, x) (u, v, w, x ∈ V ) denote one half of the difference
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Fig. 3. {a, b, c, d}-distance preserving subgraphs.

between the two larger distance sums from d(u, v)+d(w, x), d(u, w)+d(v, x), d(u, x)+d(v, w). The Gromov product of two
vertices x, y ∈ V with respect to a third vertex z ∈ V is defined as (x|y)z =

1
2 (d(x, z) + d(y, z) − d(x, y)). The focus of this

paper is primarily on δ-hyperbolic Helly graphs (i.e., graphs which satisfy the Helly property as well as have δ hyperbolicity).
Using the Gromov product, we can reformulate Lemma 1. Since d(x, y) = (x|z)y + (z|y)x, it is easy to check that for any

three vertices x, y, z of an arbitrary graph, either all products (y|z)x, (y|x)z , (x|z)y are integers or all are half-integers.

Lemma 2. For every three vertices x, y, z of a pseudo-modular graph G there exist three shortest paths P(z, y), P(x, z), P(x, y)
connecting them such that either (1) there is a common vertex v in P(z, y)∩ P(x, z)∩ P(x, y) or (2) there is a triangle △(x′, y′, z ′)
in G with edge z ′y′ on P(z, y), edge x′z ′ on P(x, z) and edge x′y′ on P(x, y) (see Fig. 2). Furthermore, (1) is true if and only if (x|y)z
is an integer and (x|y)z = d(z, v), and (2) is true if and only if (x|y)z is a half-integer and ⌊(x|y)z⌋ = d(z, z ′).

Proof. Let αz = (x|y)z , αx = (z|y)x, and αy = (z|x)y. We have d(z, x) − αz = d(z, x) −
1
2 (d(x, z) + d(y, z) − d(x, y)) =

1
2 (d(x, z) + d(x, y) − d(y, z)) = (z|y)x. Similarly, (z|x)y = d(z, y) − αz . Therefore, αx and αy are integers if and only if αz is an
integer.

Let there be a common vertex v in P(z, y)∩ P(x, z)∩ P(x, y). By definition, 2αz = (d(x, v)+ d(v, z))+ (d(z, v)+ d(v, y))−
(d(x, v) + d(v, y)) = 2d(v, z). Thus, d(v, z) = αz , and since d(v, z) is an integer then αz is an integer. The converse follows
from Lemma 1 for p = αx, q = αy and k = αz .

Let there be a triangle △(x′, y′, z ′) in Gwith edge z ′y′ on P(z, y), edge x′z ′ on P(x, z) and edge x′y′ on P(x, y). By definition,
2αz = (d(x, x′)+1+d(z ′, z))+ (d(z, z ′)+1+d(y′, y))− (d(x, x′)+1+d(y′, y)) = 2d(z, z ′)+1. Thus, d(z, z ′) = ⌊αz⌋, and since
2d(z, z ′) + 1 is odd then αz is a half-integer. The converse follows from Lemma 1 for p = ⌊αx⌋, q = ⌊αy⌋ and k = ⌊αz⌋. □

The set Sk(x, y) = {z ∈ I(x, y) : d(z, x) = k} is called a slice of the interval from x to y. The diameter of a slice Sk(x, y) is the
maximum distance in G between any two vertices of Sk(x, y). An interval I(x, y) is said to be τ -thin if diameters of all slices
Sk(x, y), k ∈ N , of it are at most τ . A graph G is said to have τ -thin intervals if all intervals of G are τ -thin. The smallest τ for
which all intervals of G are τ -thin is called the interval thinness of G and denoted by τ (G). That is,

τ (G) = max{d(u, v) : u, v ∈ Sk(x, y), x, y ∈ V , k ∈ N}.

The following lemma is a folklore and easy to show using the definition of hyperbolicity.

Lemma 3. For any graph G, τ (G) ≤ 2hb(G).

Proof. Consider any interval I(x, y) in G and arbitrary two vertices u, v ∈ Sk(x, y). Consider the three distance sums
S1 = d(x, y)+ d(u, v), S2 = d(x, u)+ d(y, v), S3 = d(x, v)+ d(y, u). As u, v ∈ Sk(x, y), we have S2 = S3 = d(x, y) ≤ S1. Hence,
2hb(G) ≥ S1 − S2 = d(x, y)+ d(u, v)− d(x, y) = d(u, v) for any two vertices from the same slice of G, i.e., 2hb(G) ≥ τ (G). □

3. Thinness of intervals governs the hyperbolicity of a Helly graph

A qualitative relationship between hyperbolicity and thinness of intervals is easy to show even for a more general class
of median graphs. The true contribution of our paper is more quantitative. In fact, we obtain the exact relationship between
the two. We focus now on demonstrating that the converse of Lemma 3 for Helly graphs is also true such that the value
of 2hb(G) is upper bounded by τ (G) + 1. Note that, for general graphs G, the values of τ (G) and 2hb(G) can be very far from
each other. Consider an odd cycle with 4k + 1 vertices; each pair of vertices has a unique shortest path, so no two vertices
are in the same slice. Thus τ (G) = 0 and 2hb(G) = 2k.

We say that a graph G′
= (V ′, E ′) with {a, b, c, d} ⊂ V ′ is an {a, b, c, d}-distance-preserving subgraph of a graph G if

dG(x, y) = dG′ (x, y) for every pair of vertices x, y from {a, b, c, d}. In Fig. 3(c), an {a, b, c, d}-distance-preserving subgraph of
a graph G with dG(a, c) = dG(b, d) = k + l + 3, dG(a, b) = dG(c, d) = l + 2, and dG(b, c) = dG(d, a) = k + 2 is shown.
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Fig. 4. Illustration for Case 1 for the proof of Lemma 4.

Fig. 5. Illustration for Case 2 for the proof of Lemma 4.

Lemma 4. For every Helly graph G, 2hb(G) ≤ τ (G) + 1. Furthermore, for any Helly graph G, 2hb(G) = τ (G) + 1 if and only
if τ (G) is odd and there exists in G an {a, b, c, d}-distance-preserving subgraph for some {a, b, c, d} as depicted in Fig. 3(c) with
k = l = ⌊

τ (G)
2 ⌋.

Proof. Consider arbitrary four vertices a, b, c, d with hb(G) = hb(a, b, c, d) =: δ and let dG(a, c) + dG(b, d) ≥ dG(a, b) +

dG(c, d) ≥ dG(a, d) + dG(b, c). Let also τ := τ (G). We apply Lemma 1 once to vertices {a, b, c} and again to vertices {a, d, c}.
By Lemma1, a set of three verticeswith some shortest paths connecting themdefine either configuration (1) or configuration
(2) from Fig. 2. Hence, there are three cases, up-to symmetry, to consider.

Case 1. For vertices a, b, c there are three shortest paths P(a, b), P(b, c), Pb(a, c) that share a common vertex x. For vertices a, d, c
there are three shortest paths P(a, d), P(d, c), Pd(a, c) that share a common vertex y. Note that we use the notation Pb(a, c) and
Pd(a, c) here to distinguish between the two shortest (a, c)-paths that exist by applying Lemma 1 to vertices a, b, c and again
separately to vertices a, d, c, respectively.

This situation is shown in Fig. 4. It is unknown if x and y are on the same slice of I(a, c) or not, so we consider vertices
y′

∈ Pb(a, c) and x′
∈ Pd(a, c) with dG(a, y) = dG(a, y′) =: p and dG(c, x) = dG(c, x′) =: q. Set also e := dG(y′, x) = dG(y, x′),

m := dG(d, y), t := dG(b, x) (see Fig. 4). Vertices x, x′ lie on the same slice of I(a, c), as do y, y′. Given that intervals of G are
τ -thin, we get 2δ = dG(a, c) + dG(b, d) − (dG(a, b) + dG(c, d)) ≤ p + e + q + t + τ + e + m − (p + e + t + m + e + q) = τ ,
i.e., 2δ ≤ τ .

Case 2. For vertices a, b, c there are three shortest paths P(a, b), P(b, c), Pb(a, c) and a triangle △(b′, c ′, a′) in G with edge a′b′

on P(a, b), edge b′c ′ on P(b, c) and edge a′c ′ on Pb(a, c). For vertices a, d, c there are three shortest paths P(a, d), P(d, c), Pb(a, c)
that share a common vertex y.

This situation is shown in Fig. 5. Consider vertex y′
∈ Pb(a, c) such that p := dG(a, y′) = dG(a, y), and let now q := dG(c, c ′),

set e := dG(y′, a′), and t := dG(b, b′). Since intervals of G are τ -thin, we get 2δ = dG(a, c) + dG(b, d) − (dG(a, b) + dG(c, d)) ≤

p + e + 1 + q + t + 1 + τ + e + m − (p + e + 1 + t + m + e + 1 + q) = τ , i.e., 2δ ≤ τ .

Case 3. For vertices a, b, c there are three shortest paths P(a, b), P(b, c), Pb(a, c) and a triangle △(b′, c ′, a′) in G with edge a′b′

on P(a, b), edge b′c ′ on P(b, c) and edge a′c ′ on Pb(a, c). For vertices a, d, c there are three shortest paths P(a, d), P(d, c), Pd(a, c)
and a triangle △(d′, c ′′, a′′) in G with edge a′′d′ on P(a, d), edge d′c ′′ on P(d, c) and edge a′′c ′′ on Pd(a, c).

This situation is shown in Fig. 6. If vertices a′, a′′ are not in the same slice of I(a, c) then set p := dG(a, a′′), and
let vertex c∗ denote the vertex on Pb(a, c) such that dG(a, c∗) = p + 1. Set e := dG(c∗, a′) and m := dG(d, d′). Then,
2δ = dG(a, c)+dG(b, d)−(dG(a, b)+dG(c, d)) ≤ p+1+e+1+q+t+1+e+τ+1+m−(p+1+e+1+t+q+1+e+1+m) = τ .

If vertices a′, a′′ are in the same slice of I(a, c) (see Fig. 7 for this special subcase; only in this subcase we may have
2δ = τ + 1) then, using notations from Fig. 7, 2δ = dG(a, c) + dG(b, d) − (dG(a, b) + dG(c, d)) ≤ p + 1 + q + t + 1 + τ +

1 + m − (p + 1 + t + m + 1 + q) = τ + 1. Furthermore, if 2δ = τ + 1, then dG(a′, a′′) = dG(c ′, c ′′) = τ .
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Fig. 6. Illustration for Case 3 for the proof of Lemma 4.

Fig. 7. A special subcase of Case 3.

Fig. 8. When τ (G) = 2k, δ(a, b, c, d) = k.

Assume that 2δ = τ + 1 and τ is even (see Fig. 8). Let τ = 2k. Consider disks D(a, p − k),D(a′′, k), D(a′, k) in
G. These disks pairwise intersect. Hence, there must exist a vertex a∗ at distance p − k from a and at distance k from
both a′ and a′′. Similarly, there is a vertex c∗ in G at distance q − k from c and at distance k from both c ′ and c ′′. These
vertices a∗ and c∗ belong to slice St+1+k(b, d) of I(b, d). Hence, dG(a∗, c∗) ≤ τ = 2k must hold. On the other hand,
p + 1 + q = dG(a, c) ≤ dG(a, a∗) + dG(a∗, c∗) + dG(c∗, c) ≤ p − k + 2k + q − k = p + q, a contradiction. Thus, when
τ is even, 2δ = τ .

Assume now that 2δ = τ + 1 and τ is odd. Let τ = 2k + 1. As dG(a′, a′′) = 2k + 1 and dG(a, a′) = dG(a, a′′) = p, by
Lemma1, theremust exist three shortest paths P(a, a′), P(a, a′′), P(a′, a′′) and a triangle△(x, y, z) inGwith edge xy on P(a, a′),
edge xz on P(a, a′′) and edge zy on P(a′, a′′) (note that P(a, a′), P(a, a′′), P(a′, a′′) cannot have a common vertex because of
distance requirements). Similarly, there must exist three shortest paths P(c, c ′), P(c, c ′′), P(c ′, c ′′) and a triangle △(u, v, w)
in G with edge uv on P(c, c ′), edge uw on P(c, c ′′) and edge vw on P(c ′, c ′′). Thus, by distance requirements, four triangles
△(x, y, z), △(a′, b′, c ′), △(u, v, w), △(d′, a′′, c ′′) with corresponding shortest paths P(y, a′) ⊆ P(a, a′), P(a′′, z) ⊆ P(a′′, a),
P(c ′′, w) ⊆ P(c ′′, c), P(c ′, v) ⊆ P(c ′, c) of length k = ⌊

τ (G)
2 ⌋ each form in G an {x, b′, u, d′

}-distance-preserving subgraph
isomorphic to the one depicted in Fig. 3(c) with k = l.

To complete the proof, it is enough to verify that if τ (G) is odd and there exists in G an {a, b, c, d}-distance-preserving
subgraph depicted in Fig. 3(c) with k = l = ⌊

τ (G)
2 ⌋, then we obtain 2hb(a, b, c, d) = τ (G) + 1. □

The following lemmas prove that the three {a, b, c, d}-distance preserving subgraphs shown in Fig. 3 can be isometrically
embedded into three Helly graphs termedHk,l

1 ,Hk,l
2 , andHk,l

3 , respectively. Each ofHk,l
1 ,Hk,l

2 , andHk,l
3 is an isometric subgraph

of a King-grid (Fig. 9 gives small examples for k = l = 2). Each is induced by the vertices in red as demonstrated in Fig. 9(a),
Fig. 9(b), and Fig. 9(c) such that its four extreme vertices correspond to the four extreme vertices of an {a, b, c, d}-distance
preserving subgraph shown in Fig. 3(a), Fig. 3(b), and Fig. 3(c), respectively. In the description that follows let vertices of the
form xy and xz denote neighbors which are adjacent to vertex x such that xy ∈ I(x, y) and xz ∈ I(x, z). Thus, in H := Hk,l

1 we
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Fig. 9. Examples of Hk
1 , H

k
2 , and Hk

3 shown in red, where k = l = 2, based on respective inputs from Fig. 3. We omit the second superscript and use the
notation Hk

i when k = l. Isometric embeddings of those graphs into the King-grid are shown . (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 10. Extension of an isometric subgraph Hk−1,l−1
1 to an isometric subgraph Hk,l

1 .

have that dH (a, d) = dH (b, c) = k and dH (a, b) = dH (d, c) = l. In H := Hk,l
2 , we have that dH (ad, d) = dH (b, cb) = k and

dH (ab, b) = dH (d, cd) = l. Finally, in H := Hk,l
3 , we have that dH (ad, da) = dH (bc, cb) = k and dH (ab, ba) = dH (dc, cd) = l.

We will show in Section 4 that any Helly graph G with hb(G) = δ has an isometric Hk
1 , H

k
2 , or H

k
3 , where k is a function

of δ. These isometric subgraphs will be equally important as forbidden subgraphs for hb(G) ≤ δ in Section 4. We provide
the hellification of all three graphs here for completeness, however, the remainder of this section will use only the graph in
Fig. 3(c) and its hellification Hk,l

3 in order to refine result of Lemma 4 in the special case when 2hb(G) = τ (G) + 1.

Lemma5. If a Helly graphGhas an {a, b, c, d}-distance preserving subgraph depicted in Fig.3(a), thenGhas an isometric subgraph
Hk,l

1 with a, b, c, d as corner points (see Fig. 9(a)).

Proof. Let a, b, c, d be four vertices of a Helly graph G such that dG(a, c) = dG(b, d) = k + l and dG(a, b) = dG(c, d) = l
and dG(b, c) = dG(d, a) = k. Let P(d, a) = (d, v1, v2, . . . , vk = a), P(d, c) = (d, u1, u2, . . . , ul = c) be two shortest paths
connecting the appropriate vertices. Consider disks D(v1, 1), D(u1, 1), D(b, k + l − 2) in G. These disks pairwise intersect.
Hence, by the Helly property, there is a vertex d′ which is adjacent to both v1 and u1 and at distance k + l − 2 from b. Since
disksD(a, 1),D(b, l−1),D(d′, k−1) pairwise intersect, theremust exist a vertex a′ such that a′ is adjacent to a and at distance
k−1 from d′ and distance l−1 from b. Similarly, considering pairwise intersecting disksD(c, 1),D(b, k−1),D(d′, l−1), there
exists a vertex c ′ which is adjacent to c and at distance l−1 from d′ and distance k−1 from b. For vertices a′, b, c ′, d′ we have
dG(a′, c ′) = dG(b, d′) = l + k − 2 and dG(a′, b) = dG(c ′, d′) = l − 1 and dG(b, c ′) = dG(d′, a′) = k − 1. Hence, by induction,
wemay assume that in G there is an isometric subgraph Hk−1,l−1

1 with a′, b, c ′, d′ as corner points. In what follows, using the
Helly property, we extend this Hk−1,l−1

1 to isometric Hk,l
1 with a, b, c, d as corner points (see Fig. 10 for an illustration).

Let P(d′, a′) = (d′
= v′

1, v
′

2, . . . , v
′

k = a′) be the shortest path ofHk−1,l−1
1 connecting d′ with a′. For each edge v′

iv
′

i+1 of this
path, denote bywi a vertex ofH

k−1,l−1
1 which forms a trianglewith v′

iv
′

i+1. Let P(d, a) denote path (d = v0, v1, v2, . . . , vk = a).
First, we show that each vertex vi ∈ P(d, a) for i = 1, 2, . . . , k − 1 can be chosen such that viv

′

i is an edge of G for each i.
Let i ≥ 1 be the smallest index such that viv

′

i /∈ E. Consider pairwise intersecting disks D(vi−1, 1),D(v′

i , 1),D(a, dG(a, vi)).
By the Helly property, there is a vertex v∗

i in G which is adjacent to both vi−1 and v′

i and at distance dG(a, vi) from a. Hence,
we can replace part of P(d, a) from vi to a with a new shortest path from v∗

i to a. So, we can assume that viv
′

i ∈ E for
each i. Since vertices a, v′

k, wk−1, v
′

k−1, vk−1 are pairwise at distance at most 2, by the Helly property, there must exist a
vertex w′

k−1 which is adjacent to all a, v′

k, wk−1, v
′

k−1, vk−1. Having vertex w′

k−1, we can use the Helly property to impose
a new vertex w′

k−2 adjacent to all vk−1, v
′

k−1, w
′

k−1, wk−2, v
′

k−2, vk−2. Continuing this way, we obtain a new vertex w′

i (for
i = k − 3, k − 4, . . . , 1) which is adjacent to all vi+1, v

′

i+1, w
′

i+1, wi, v
′

i , vi. This completes the addition to Hk−1,l−1
1 along the
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Fig. 11. Using the Helly property, the graph from Fig. 3(b) is shown to have Hk,l
2 as an isometric subgraph.

Fig. 12. Using the Helly property, the graph from Fig. 3(c) is shown to have Hk,l
3 as an isometric subgraph.

path P(d, a) = (d, v1, v2, . . . , vk = a). Similarly, the addition along the path P(d, c) = (d, u1, u2, . . . , ul = c) can be done
completing the extension of Hk−1,l−1

1 to Hk,l
1 which is clearly an isometric subgraph of G. □

Lemma6. If aHelly graphGhas an {a, b, c, d}-distance preserving subgraph depicted in Fig.3(b), thenGhas an isometric subgraph
Hk,l

2 with a, b, c, d as corner points (see Fig. 9(b)).

Proof. Let a, b, c , d be vertices of a Helly graph G, with△(a, ab, ad) and△(c, cb, cd) such that dG(a, c) = k+ l+ 2 = dG(a, ab)+
dG(ab, cb)+dG(cb, c) = dG(a, ad)+dG(ad, cd)+dG(cd, c), dG(b, d) = k+l+1 = dG(d, ad)+1+dG(ab, b) = dG(d, cd)+1+dG(cb, b),
and dG(b, c) = dG(d, a) = k + 1 and dG(a, b) = dG(c, d) = l + 1. Consider disks D(ab, k), D(cb, l), and D(d, 1) in G. These
disks pairwise intersect. Hence, by the Helly property, there is a vertex d′ which is adjacent to d and at distance k from
ab and at distance l from cb. For vertices ab, b, cb, d′, we have dG(ab, b) = dG(cb, d′) = l, dG(b, cb) = dG(d′, ab) = k, and
dG(ab, cb) = dG(d′, b) = k+ l. By Lemma 5, there is an isometric subgraph Hk,l

1 with ab, b, cb, d′ as corner points (see Fig. 11).
Let P(ab, d′) = (ab = v′

0, v
′

1, v
′

2, . . . , v
′

k = d′) be the shortest path ofHk,l
1 connecting d′ with ab. For each edge v′

iv
′

i+1 of this
path, denote by w′

i+1 a vertex of Hk,l
1 which forms a triangle with v′

iv
′

i+1. Since vertices d, v′

k, v
′

k−1, w
′

k are pairwise distant at
most 2 and distant from a at most k + 1, by the Helly property there must exist a vertex v∗

k adjacent to d, v′

k, v
′

k−1, w
′

k and
at distance k from a. Having vertex v∗

k , we can use the Helly property to impose a new vertex v∗

k−1 which is adjacent to all
v∗

k , v
′

k−1, v
′

k−2, w
′

k−1 and at distance k − 1 from a. Continuing this way, we obtain a new vertex v∗

i which is adjacent to all
v∗

i+1, v
′

i , v
′

i−1, w
′

i and at distance i from a (for i = k − 2, k − 3, . . . , 1). This completes the addition to Hk,l
1 along the path

P(ab, d′). Similarly, the addition along the path P(cb, d′) = (cb = u′

0, u
′

1, u
′

2, . . . , u
′

l = d′) can be done. This completes the
extension of Hk,l

1 to Hk,l
2 .

Clearly, Hk,l
2 obtained from Hk,l

1 is an isometric subgraph of G. Recall that Hk,l
2 is a {a, b, c, d}-distance preserving subgraph

ofG.We know from Lemma 5 thatHk,l
1 -part ofHk,l

2 is an isometric subgraph ofG.We know also that every pair x, y ∈ Hk,l
2 \Hk,l

1
belongs to a shortest path of G from a to c passing through d. Finally, every pair x, ywith x ∈ Hk,l

2 \ Hk,l
1 and y ∈ Hk,l

1 belongs
to a shortest path of G connecting awith c or bwith d. □

Lemma7. If a Helly graphGhas an {a, b, c, d}-distance preserving subgraph depicted in Fig.3(c), thenGhas an isometric subgraph
Hk,l

3 with a, b, c, d as corner points (see Fig. 9(c)).

Proof. Let a, b, c, d be vertices of a Helly graph G such that dG(a, c) = dG(b, d) = l+k+3 and dG(a, b) = dG(c, d) = l+2 and
dG(b, c) = dG(d, a) = k+2 (see Fig. 12(a)). Since d(ab, cb) = k+ l+1, d(ab, d) = k+1+1 and d(cb, d) = 1+ l+1, by Lemma 1,
there is a triangle △(d′, d′

a, d
′
c) such that d is adjacent to d′ and dG(d′

c, cb) = l, dG(d′
a, ab) = k. For vertices ab, b, cb, d′, we have

dG(ab, b) = dG(cb, d′) = l + 1, dG(b, cb) = dG(d′, ab) = k + 1, and dG(d′, b) = k + l + 2, as well as dG(ab, cb) = k + l + 1. By
Lemma 6, there is in G an isometric Hk,l

2 with ab, b, cb, d′ as corner points (see Fig. 12(b)).
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Let P(ab, d′) = (ab = v′

0, v
′

1, v
′

2, . . . , v
′

k, d
′) be the shortest path of Hk,l

2 connecting d′ with ab, and let P(cb, d′) = (cb =

u′

0, u
′

1, u
′

2, . . . , u
′

l, d
′) be the shortest path of Hk,l

2 connecting d′ with cb. For each edge v′

iv
′

i+1, denote by wi+1 a vertex of Hk,l
2

which forms a triangle with v′

iv
′

i+1. Since vertices d′, d, v′

k, u
′

l are pairwise at distance at most 2 and at distance at most k+ 2
from a, by theHelly property, theremust exist a vertex v∗

k+1 adjacent to d′, d, v′

k, u
′

l and at distance k+1 from a. Having vertex
v∗

k+1, we can use the Helly property to impose a new vertex v∗

k which is adjacent to all v∗

k+1, wk, v
′

k, v
′

k−1 and at distance k
from a. Continuing this way, we obtain a new vertex v∗

i which is adjacent to all v∗

i+1, wi, v
′

i , v
′

i−1 and at distance i from a (for
i = k − 1, k − 2, . . . , 1).

For each edge u′

iu
′

i+1 denote by yi+1 a vertex of Hk,l
2 which forms a triangle with u′

iu
′

i+1. Since vertices d, v∗

k+1, u
′

l, v
′

k are
pairwise at distance at most 2 and at distance at most l + 2 from c , by the Helly property, there must exist a vertex u∗

l+1
adjacent to d, v∗

k+1, u
′

l, v
′

k and at distance l + 1 from c . Having vertex u∗

l+1, we can use the Helly property to impose a new
vertex u∗

l which is adjacent to all u∗

l+1, u
′

l, u
′

l−1, yl and at distance l from c. Continuing this way, we obtain a new vertex u∗

i
which is adjacent to all u∗

i+1, u
′

i, u
′

i−1, yi and is at distance i from c (for i = l − 1, l − 2, . . . , 1). This completes the extension
of Hk,l

2 to Hk,l
3 .

Clearly, Hk,l
3 obtained from Hk,l

2 is an isometric subgraph of G. Recall that Hk,l
3 is a {a, b, c, d}-distance preserving subgraph

ofG.We know from Lemma 6 thatHk,l
2 -part ofHk,l

3 is an isometric subgraph ofG.We know also that every pair x, y ∈ Hk,l
3 \Hk,l

2
belongs to a shortest path of G from a to d or from d to c or from a to c passing through a neighbor of d. Finally, every pair
x, y with x ∈ Hk,l

3 \ Hk,l
2 and y ∈ Hk,l

2 belongs to a shortest path of G connecting swith t where s, t ∈ {a, b, c, d}. □

Combining Lemmas 3, 4 and 7, we conclude with a tight bound on hyperbolicity with respect to interval thinness in Helly
graphs, as well as with a characterization of the case in which the hyperbolicity of a Helly graph realizes the upper bound.

Theorem 2. For every Helly graph G, τ (G) ≤ 2hb(G) ≤ τ (G)+ 1. Furthermore, 2hb(G) = τ (G)+ 1 if and only if τ (G) is odd and
G contains graph Hk

3 with k = ⌊
τ (G)
2 ⌋ as an isometric subgraph.

Corollary 1. For every Helly graph G, if τ (G) is even, then hb(G) is an integer and 2hb(G) = τ (G).

4. Three isometric subgraphs of the King-grid are the only obstructions to a small hyperbolicity in Helly graphs

In this section, we will identify three isometric subgraphs of the King-grid that are responsible for the hyperbolicity of a
Helly graph G. These are named Hk

1 , H
k
2 , H

k
3 , and are shown in Fig. 9. We may assume that hb(G) > 0 as the structure of any

graphwith hyperbolicity 0 is well-known; they are exactly the block graphs, i.e., graphswhere each biconnected component
is a complete graph [26].

The following lemma shows the existence of one of the three isometric subgraphs in a Helly graph Gwith hb(G) = k > 0.

Lemma 8. Let G be a Helly graph with hb(G) = k > 0.
If τ (G) = 2k and k is an integer, then G contains Hk

1 as an isometric subgraph.

If τ (G) = 2k and k is a half-integer, then G contains H
k− 1

2
2 as an isometric subgraph.

If τ (G) = 2k − 1, then k is an integer and G contains Hk−1
3 as an isometric subgraph.

Proof. Let hb(G) = k > 0, and let interval I(x, y) realize the maximum thinness, that is there are vertices z, t ∈ Sα(x, y),
for some integer α, such that d(z, t) = τ (G). By Theorem 2, either τ (G) = 2k or τ (G) = 2k − 1. If τ (G) = 2k − 1, then by
Theorem 2, τ (G) is odd (thus k is an integer) and G contains Hk−1

3 as an isometric subgraph. If τ (G) = 2k, then τ (G) can be
even or odd (since k can be a half-integer). Set α := d(x, t) = d(x, z), and β := d(t, y) = d(z, y).

Let τ (G) = 2k be even (thus k is an integer). Clearly α ≥ k and β ≥ k, otherwise d(z, t) < 2k. By Lemma 2, there is a vertex
x′ such that d(x, x′) = α − k, d(z, x′) = k, and d(t, x′) = k, and there is a vertex y′ such that d(y, y′) = β − k, d(z, y′) = k, and
d(z, y′) = k. By the triangle inequality, d(x′, y′) ≤ d(x′, z)+d(z, y′) = 2k andα+β = d(x, y) ≤ α−k+d(x′, y′)+β−k ≤ α+β .
Therefore, d(x′, y′) = 2kmust hold. Then, by Lemma5,G contains an isometric subgraphHk

1 with {x′, z, y′, t} as corner points.
Let τ (G) = 2k be odd (thus k is a half-integer). Let k = p +

1
2 for an integer p. Then d(z, t) = 2p + 1. Clearly α > p and

β > p, otherwise d(z, t) < 2p+1. By Lemma 2, there is a triangle△(x′, xz, xt ) such that d(x, x′) = α−p−1, d(xz, z) = p, and
d(xt , t) = p, and there is a triangle △(y′, yz, yt ) such that d(y, y′) = β − p − 1, d(yz, z) = p, and d(yt , t) = p. By the triangle
inequality, d(x′, y′) ≤ d(x′, xz)+d(xz, z)+d(z, yz, )+d(yz, y′) = 2p+2 andα+β = d(x, y) ≤ α−p−1+d(x′, y′)+β−p−1 =

α + β . Therefore, d(x′, y′) = 2p + 2. Since p = k −
1
2 , by Lemma 6, G contains an isometric subgraph H

k− 1
2

2 with {x′, z, y′, t}
as corner points. □

Using the previous lemma, we can now characterize Helly graphs G with hb(G) ≤ δ based on three forbidden isometric
subgraphs. Whether δ is an integer or a half-integer determines which of the Hk

1 , H
k
2 , H

k
3 graphs are forbidden and the value

of k.

Theorem 3. Let G be a Helly graph and k be a non-negative integer.
– hb(G) ≤ k if and only if G contains no Hk

2 as an isometric subgraph.
– hb(G) ≤ k +

1
2 if and only if G contains neither Hk+1

1 nor Hk
3 as an isometric subgraph.
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Fig. 13. Forbidden isometric subgraphs for 3
2 -hyperbolic Helly graphs.

Fig. 14. Forbidden isometric subgraph for 2-hyperbolic Helly graphs.

Fig. 15. The graph H0
3 , also known as the 4-sun S4 .

Proof. Assume hb(G) ≤ k and that G has Hk
2 as an isometric subgraph. It is easy to check that hb(Hk

2) = k +
1
2 > k (the

hyperbolicity realizes on four extreme vertices). As the hyperbolicity of a graph is at least the hyperbolicity of its isometric
subgraph, hb(G) > k, giving a contradiction.

Assume hb(G) ≤ k+ 1
2 , and thatG hasHk+1

1 orHk
3 as an isometric subgraph. It is easy to check that hb(Hk+1

1 ) = k+1 > k+ 1
2

and hb(Hk
3) = k + 1 > k +

1
2 (the hyperbolicity of each realizes on four extreme vertices). As the hyperbolicity of a graph is

at least the hyperbolicity of its isometric subgraph, hb(G) > k +
1
2 , giving a contradiction.

For the other direction, assume hb(G) = δ. Then, by Lemma 8, G has one of Hδ
1 , H

δ− 1
2

2 , Hδ−1
3 as an isometric subgraph. Note

that, for any integer m, Hm
1 is an isometric subgraph of Hm

2 and Hm+1
1 , Hm

2 is an isometric subgraph of Hm
3 , Hm+1

2 and Hm+1
1 ,

and Hm
3 is an isometric subgraph of Hm+1

3 . If δ is an integer, G contains Hδ
1 or Hδ−1

3 , and hence Hk+1
1 or Hk

3 when δ > k +
1
2 , as

an isometric subgraph. If δ is a half-integer, G contains H
δ− 1

2
2 , and hence Hk

2 when δ ≥ k +
1
2 , as an isometric subgraph. □

Theorem 3 can easily be applied to determine the forbidden subgraphs characterizing any δ-hyperbolic Helly graph. The
corollaries that follow exemplify this for 3

2 -hyperbolic Helly graphs and 2-hyperbolic Helly graphs.

Corollary 2. A Helly graph is 3
2 -hyperbolic if and only if it contains neither of graphs from Fig. 13 as an isometric subgraph.

Corollary 3. A Helly graph is 2-hyperbolic if and only if it does not contain graph from Fig. 14 as an isometric subgraph.

To give a few equivalent characterizations of 1
2 -hyperbolic Helly graphs, we will need one more lemma. Let C4 denote an

induced cycle on four vertices. We say that a graph G is C4-free if it does not contain C4 as an induced subgraph. The graph
H0

3 is also known in the literature as the 4-sun S4 (see Fig. 15).

Lemma 9 ([21]). For any C4-free Helly graph G, every C4 in G2 forms in G an isometric subgraph S4.
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By combining Theorems 2, 3 and Lemma 9, we obtain the following characterization of 1
2 -hyperbolic Helly graphs. One

necessary and sufficient condition is that G and G2 are C4-free. In fact, in the characterization of any 1
2 -hyperbolic graph [16],

there is a similar requirement that every graph power Gi for i ≥ 1 is C4-free and one additional graph is C4-free. We explore
this relationship between C4-free graph powers and the δ-hyperbolicity of any Helly graph in subsequent results presented
here.

Corollary 4. The following statements are equivalent for any Helly graph G:

(i) G is 1
2 -hyperbolic;

(ii) G has neither C4 nor S4 as an isometric subgraph;
(iii) Neither G nor G2 has an induced C4;
(iv) τ (G) ≤ 1 and G has no S4 as an isometric subgraph.

The following lemmas describe the three forbidden isometric subgraphs in terms of graph powers.

Lemma 10. Let G be a Helly graph and k be a non-negative integer. Then G has Hk+1
1 as an isometric subgraph if and only if there

exist four vertices in G that form C4 in Gℓ for all ℓ ∈ [k + 1, 2k + 1].

Proof. Suppose G has Hk+1
1 as an isometric subgraph. Then, for four extreme vertices x, y, z, t of Hk+1

1 , we have d(x, y) =

d(y, z) = d(z, t) = d(t, x) = k + 1 and d(x, z) = d(y, t) = 2k + 2. Thus, x, y, z, t , form C4 in Gℓ for all ℓ ∈ [k + 1, 2k + 1].
Now, let x, y, z, t be four vertices in G that form C4 in Gℓ for all ℓ ∈ [k + 1, 2k + 1]. Then, each of d(x, y), d(y, z), d(z, t),

d(t, x) is less than or equal to k+ 1, and d(x, z), d(y, t) are greater than or equal to 2k+ 2. From these distance requirements,
necessarily, d(x, y) = d(y, z) = d(z, t) = d(t, x) = k + 1 and d(x, z) = d(y, t) = 2k + 2. By Lemma 5, G has isometric
Hk+1

1 . □

A cycle on 4 vertices with one diagonal is called a diamond.

Lemma 11. Let G be a Helly graph and k be a non-negative integer. Then G has Hk
2 as an isometric subgraph if and only if there

exist four vertices in G that form C4 in Gℓ for all ℓ ∈ [k + 1, 2k] and form a diamond in G2k+1.

Proof. Suppose G has Hk
2 as an isometric subgraph. Then, for four extreme vertices x, y, z, t of Hk

2 , we have d(x, y) = d(y, z) =

d(z, t) = d(t, x) = k + 1 and d(x, z) = 2k + 2 and d(y, t) = 2k + 1. Thus, x, y, z, t , form C4 in Gℓ for all ℓ ∈ [k + 1, 2k] and
form a diamond in G2k+1.

Next, let x, y, z, t be four vertices in G that form C4 in Gℓ for all ℓ ∈ [k + 1, 2k] and form a diamond in G2k+1. Then, each
of d(x, y), d(y, z), d(z, t), d(t, x) is less than or equal to k + 1. Without loss of generality, let yt be the chord of a diamond
in G2k+1 formed by x, y, z, t . Thus, d(y, t) ≥ 2k + 1 and d(x, z) ≥ 2k + 2. From these distance requirements, necessarily,
d(x, y) = d(y, z) = d(z, t) = d(t, x) = k + 1, 2k + 1 ≤ d(y, t) ≤ 2k + 2 and d(x, z) = 2k + 2. If d(y, t) = 2k + 2,
then by Lemma 5, G has an isometric Hk+1

1 , and hence an isometric Hk
2 (note that Hk+1

1 contains an isometric Hk
2). Let now

d(y, t) = 2k + 1. By Lemma 2, there exist shortest paths P(x, y) and P(x, t) such that the neighbors of x on those paths are
adjacent. Similarly, there exist shortest paths P(z, y) and P(z, t) such that the neighbors of z on those paths are adjacent.
Thus, x, y, z, t form {x, y, z, t}-distance preserving subgraph depicted in Fig. 3(b). By Lemma 6, G has an isometric Hk

2 . □

The following result generalizes Lemma 9.

Lemma 12. Let G be a Helly graph and k be a non-negative integer. Then G has Hk+1
1 or Hk

3 as an isometric subgraph if and only
if there exist four vertices in G that form C4 in Gℓ for all ℓ ∈ [k + 1, 2k + 1] or there exist four vertices in G that form C4 in Gℓ for
all ℓ ∈ [k + 2, 2k + 2].

Proof. By Lemma 10, G has Hk+1
1 as an isometric subgraph if and only if there exist four vertices in G that form C4 in Gℓ

for all ℓ ∈ [k + 1, 2k + 1]. Suppose G has Hk
3 as an isometric subgraph. Then, for four extreme vertices x, y, z, t , we have

d(x, y) = d(y, z) = d(z, t) = d(t, x) = k+2 and d(x, z) = d(y, t) = 2k+3. Thus, x, y, z, t form C4 inGℓ for all ℓ ∈ [k+2, 2k+2].
Next, let x, y, z, t be four vertices in G that form C4 in Gℓ for all ℓ ∈ [k + 2, 2k + 2]. Then, each of d(x, y), d(y, z), d(z, t),

and d(t, x) is less than or equal to k+ 2, and each of d(x, z) and d(y, t) is greater than or equal to 2k+ 3. Additionally, d(x, y),
d(y, z), d(z, t), and d(t, x) must be greater than or equal to k+ 1, since otherwise d(x, z) < 2k+ 3 and d(y, t) < 2k+ 3. Thus,
2k + 3 ≤ d(x, z) ≤ 2k + 4 and 2k + 3 ≤ d(y, t) ≤ 2k + 4. We consider three cases.

In case 1, let d(x, z) = d(y, t) = 2k + 4. Then, necessarily, d(x, y) = d(y, z) = d(t, z) = d(t, x) = k + 2. By Lemma 5, G
has an isometric Hk+2

1 . Since Hk+1
1 is an isometric subgraph of Hk+2

1 , G has an isometric Hk+1
1 .

In case 2, let d(x, z) = 2k + 3 and d(y, t) = 2k + 4. Then d(x, y) = d(y, z) = d(t, z) = d(t, x) = k + 2 (otherwise,
d(y, t) < 2k + 4). As in the proof of Lemma 11, we conclude that G has an isometric Hk+1

2 . Thus, G has an isometric Hk+1
1

(recall that Hk+1
2 contains an isometric Hk+1

1 ).
In case 3, let d(x, z) = d(y, t) = 2k + 3. First assume, without loss of generality, that d(x, y) = k + 1. Then, necessarily,

d(x, t) = d(y, z) = k + 2. If also d(t, z) = k + 1 then, by Lemma 5, G has an isometric Hk+1,k+2
1 . Since Hk+1

1 is an isometric
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Fig. 16. Illustrations for Case 3 for the proof of Lemma 12.

subgraph of Hk+1,k+2
1 , G has an isometric Hk+1

1 . If now d(t, z) = k+ 2 then, by Lemma 2 applied to y, z, t , there exist shortest
paths P(z, y) and P(z, t) such that the neighbors of z on those paths are adjacent. Let z ′ be the neighbor of z on P(z, y). We
have d(x, t) = d(t, z ′) = k + 2, d(x, y) = d(y, z ′) = k + 1 and hence d(x, z ′) = 2k + 2 as d(x, z) = 2k + 3. By Lemma 2
applied to x, z ′, t , there exists a vertex t ′ adjacent to t such that d(t ′, x) = k + 1 and d(t ′, z ′) = k + 1, as shown in Fig. 16(a).
Since d(x, y) = d(x, t ′) = k+ 1 and d(y, t) = 2k+ 3, necessarily d(y, t ′) = 2k+ 2. By Lemma 5, G has an isometric Hk+1

1 with
x, y, z ′, t ′ as corner points.

To finish case 3, it remains to analyze the situation when d(x, z) = d(y, t) = 2k + 3 and d(x, y) = d(y, z) = d(z, t) =

d(t, x) = k + 2. By Lemma 2 applied to x, z, t , there is a triangle △(tx, t, tz) such that tx is the neighbor of t on a shortest
(x, t)-path, and tz is the neighbor of t on a shortest (z, t)-path. Similarly, by Lemma 2 applied to x, z, y, there is a triangle
△(yx, y, yz) such that yx is the neighbor of y on a shortest (x, y)-path, and yz is the neighbor of y on a shortest (z, y) path. From
the distance requirements, 2k+1 ≤ d(tx, yx) ≤ 2k+2 and 2k+1 ≤ d(tz, yz) ≤ 2k+2 (recall that d(x, z) = d(y, t) = 2k+3).

If d(tx, yx) = 2k + 2 then, by Lemma 2 applied to yx, z, tx, there exists a vertex z ′ adjacent to z such that d(z ′, yx) =

d(z ′, tx) = k + 1, as shown in Fig. 16(b). Necessarily, d(x, z ′) = 2k + 2 as d(x, z) = 2k + 3. Now, d(x, yx) = d(x, tx) =

d(z ′, yx) = d(z ′, tx) = k+ 1 and d(yx, tx) = d(x, z ′) = 2k+ 2, and we can apply Lemma 5 and get in G an isometric Hk+1
1 with

x, yx, z ′, tx as corner points. Thus, we may assume that d(tx, yx) = 2k + 1. Similarly, we may assume that d(tz, yz) = 2k + 1.
By Lemma 2 applied to tx, x, yx, there exist shortest paths P(yx, x) and P(tx, x) such that the neighbors of x on those paths

are adjacent. By Lemma 2 applied to yz, z, tz , there exist shortest paths P(yz, z) and P(tz, z) such that the neighbors of z
on those paths are adjacent, as shown in Fig. 16(c). Thus, we have constructed an {x, y, z, t}-distance preserving subgraph
depicted in Fig. 3(c). Hence, by Lemma 7, G has an isometric subgraph Hk

3 . □

The following result reformulates Theorem 3 in terms of graph powers. It follows directly from Theorem 3, Lemmas 11
and 12. It relates to a result of Coudert and Ducoffe [16], which characterizes any 1

2 -hyperbolic graph by forbidding C4 in
certain graph powers. Here, we give a characterization for any δ-hyperbolic Helly graph, for all values of δ, by forbidding C4
and the diamond graph in certain graph powers.

Theorem 4. Let G be a Helly graph and k be a non-negative integer.
– hb(G) ≤ k if and only if there are no four vertices that form C4 in Gℓ for all ℓ ∈ [k + 1, 2k] and form a diamond in G2k+1.
– hb(G) ≤ k+

1
2 if and only if there are no four vertices that form C4 in Gℓ for all ℓ ∈ [k+1, 2k+1], and there are no four vertices

that form C4 in Gℓ for all ℓ ∈ [k + 2, 2k + 2].
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