Fundamental Techniques

- The greedy method
 - philosophy (greedy choice, substructure property)
 - problems
 - Fractional knapsack
 - algorithm
 - run-time
 - Task scheduling
 - algorithm
 - run-time

- Divide & Conquer
 - philosophy (divide, recur, conquer)
 - problems
 - Merge Sort
 - algorithm
 - run-time
 - Integer Multiplication
 - algorithm
 - runtime
 - recurrence equations and master theorem

- Dynamic programming
 - philosophy (subproblem optimality) (bottom-up)
 - (subproblem correctness) (table)
 - define subproblems
 - show subproblem optimality
 - express solution to a larger problem through solutions to smaller problems
 - (recurrence formula)
 - implementation
 - problems
 - 0/1 knapsack problem
 - solution and algorithm
 - complexity
 - matrix chain multiplication
 - solution and algorithm
 - complexity
Graphs

- Definitions
 - graph, vertex, edge, directed, weighted, vertex degree, adjacent, incident, path, simple path, cycle, simple cycle
- Properties
 - subgraph, spanning subgraph, connected
- Presentations
 - edge list, Adjacency list, adjacency matrix, performances
- DFS
 - algorithm (time bound)
 - properties
 - connected component of v by DFS(G,v)
 - spanning tree by red edges (discovery edges, back edges = black)
 - applications
 - path finding
 - cycle finding
 - connectedness
 - connected components
 - spanning tree (forest)
 - biconnected components
 - be able to find (any method)
 - separation vertices
 - separation edges
 - biconnected components
- BFS
 - algorithm (time bound)
 - properties
 - connected component of v by BFS(G,v)
 - spanning tree by discovery edges (cross edges)
 - layering the vertices of G L0, L1, L2,...
 - applications
 - connected components (connectedness)
 - spanning tree (forest)
 - cycle finding
 - path with min. number of edges
- Comparison of DFS and BFS
Directed graphs

- Definitions
 - in-degree, out-degree, directed path, reachability
 - directed cycle, DAGs, strong connectivity
- Representation
 - (incomming edges)
 - (outgoing edges)
- Directed DFS (complexity)
 - strong connectivity algorithm (complexity)
- Transitive closure
 - definition
 - algorithm (Floyd-Warshall)
 - running time
- DAGs and topological sorting
 - any topological sorting algorithm
 - (one by one, DFS)
 - running time

Weighted graphs

- Shortest path problem formulation
- Shortest path tree and Dijkstra's algorithm
 - algorithm
 - complexity
 - applicability (no neg. edges)
- Bellman-Ford algorithm
 - algorithm
 - complexity
 - applicability (neg. edges-ok, neg. cycles-no)
- Shortest path in DAGs and linear time algorithm
 - algorithm (uses topological sorting)
 - applicability (neg. edges-ok)
- all pairs SH paths (Floyd-Warshall)
- Minimum spanning trees
 - definitions
 - Prim - Dijkstra's algorithm
 - algorithm
 - complexity
 - properties behind the correctness (partition property)
 - (cycle property)
 - Kruskal's Algorithm
 - algorithm (diff. from P-Y approach)
 - data structure and implementation (find, union)
 - complexity
 - no Boruvka's algorithm

Maximum Flow

- Definitions (edge capacity, flow network, source, sink, flow, cut, flow over cut, capacity)
- Maximum Flow problem formulation (a cut)
- Flow augmentation
 - augmenting path
- Ford-Fulkerson's algorithm
 - be able to apply/use
 - complexity
- Max-Flow and Min-Cut Theorem

String Matching

- def. (string, substring, prefix, suffix)
- Problem formulation
- Brute-Force alg.
 - algorithm
 - complexity
- Boyer-Moore algorithm
 - algorithm
 - last occurrence function (run time to build)
 - run-time of the BM algorithm
- Knuth-Morris-Pratt's alg.
 - algorithm (be able to use)
 - Failure function (no details of computation)
 - complexity